
1234 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 38, NO. 9, SEPTEMBER 2002

Normal-Incidence InAs Self-Assembled
Quantum-Dot Infrared Photodetectors

With a High Detectivity
Zhengmao Ye, Joe C. Campbell, Zhonghui Chen, Eui-Tae Kim, and Anupam Madhukar

Abstract—An InAs/AlGaAs quantum-dot infrared photode-
tector based on bound-to-bound intraband transitions in undoped
InAs quantum dots is reported. AlGaAs blocking layers were
employed to achieve low dark current. The photoresponse peaked
at 6.2 m. At 77 K and 0.7 V bias, the responsivity was 14 mA/W
and the detectivtiy, , was 1010 cm Hz1 2/W.

M ID- and far-infrared (3–20 m) detection is a key tech-
nology for numerous commercial, military and space ap-

plications, e.g., night vision, thermal imaging, chemical anal-
ysis, nondestructive detection, remote sensing, and missile guid-
ance and defense. Due to the long carrier capture and relaxation
times, quantum-dot infrared photodetectors (QDIPs) have the
potential for lower dark current and higher photoresponse than
quantum-well infrared photodetectors (QWIPs). Most impor-
tantly, the three-dimensional (3-D) confinement of electrons in
the quantum dots permits QDIPs to operate in the normal inci-
dence mode, unlike QWIPs which are not sensitive to radiation
that is incident perpendicular to the quantum wells [1]. To date,
there have been several papers on InAs/GaAs, InGaAs/GaAs,
and InGaAs/InGaP QDIPs [2]–[11]. Most of the devices em-
ployed a doped active region, which resulted in high dark cur-
rent. In this paper, we report an InAs/GaAs QDIP with unin-
tentionally doped active region and AlGaAs barrier layers. Our
previous study on QDIPs with doped active region (2 elec-
trons per quantum dot) show that the dark current is higher
than QDIPs with an unintentionally doped active region. The
AlGaAs layers act as blocking layers [6]–[11] for dark cur-
rent, as first demonstrated in [6]. The devices reported here have
demonstrated low dark current, low noise, and high detectivity.

The InAs QDIP studied in this work belongs to the class
of n-i-n structure QDIPs (Fig. 1) [6]–[8]. The samples were
grown on semi-insulating GaAs (001) substrates by solid-source
molecular beam epitaxy. Five layers of 3-monolayer (ML) InAs
quantum dots were inserted between highly Si-doped top and
bottom GaAs contact layers. The punctuated island growth tech-
nique was used to grow the quantum dots [12]. The GaAs spacer
layers between the contact layers and the nearest quantum-dot
layer had a thickness of 219–239 ML. 30-ML GaAs regions
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Fig. 1. Schematic of InAs/GaAs QDIP structure.

were used as the quantum-dot cap layers. In order to reduce the
dark current, four pairs of AlAs/GaAs (1 ML/4 ML) were in-
troduced below the quantum-dot layers and on the top of the
GaAs cap layers. The size of the pyramidal-shaped quantum
dots was estimated with atomic force microscopy (AFM) and a
cross-sectional transmission electron microscope (XTEM): the
height was 59 17 Å and the base width was 210 Å. The dot
density was 62540 / m .

Device fabrication followed standard procedure: pho-
tolithography, wet chemical etching, metal deposition and
lift-off, and rapid thermal annealing. Mesas having a diameter
of 250 m and a height of 1.4 m were defined with an etch
of H PO : H O L H O (8 : 1 : 61). A 50- m-diameter top
contact and the bottom contact were formed by evaporation
and liftoff of Au/Ni/AuGe. The contacts were then annealed at
430 C for 20 s. In the following discussion, “positive” bias
means that a positive voltage was applied to the top contact.

The normal-incidence spectral response was measured with a
Nicolet Magna-IR 570 Fourier transform infrared (FTIR) spec-
trometer and an SRS 570 low-noise current preamplifier. Fig. 2
shows the spectral response at 0.8-V bias and at temperatures
of 63 K, 77 K, and 100 K. The intraband photoresponse peaks
occurred at 6.2 m for all three spectra. The full-width at half-
maximum (FWHM) of the spectrum, , was 0.4 m, from
which it follows that %. The narrow spectral width
is consistent with our previous results [8], [13]. These results in-
dicate that the electron transitions are intraband transitions from
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Fig. 2. Normal incident photoresponse of the QDIP sample at the bias of 0.8 V
and temperatures of 63 K, 77 K, and 100 K.

Fig. 3. Peak responsivity at 77 K, 100 K, and 120 K.

a lower bound state to a higher bound state [13]. The observed
spectral width reflects the uniformity of the size of the quantum
dots. The QDIP exhibits the highest photoresponse at 77 K. This
can be explained as follows. As the temperature increases, more
electrons occupy the lower states of the quantum dots. As long
as there are unoccupied excited states available, the electrons in
the lower states can participate in photon induced intraband tran-
sitions. However, a further increase in the number of electrons
in the quantum dots, which results from the increase in dark cur-
rent at higher temperature, will cause a decrease in the number
of unoccupied excited states and, consequently, a decrease in the
photoresponse. Additionally, a decrease in photo-excited elec-
tron lifetime at higher temperature can also result in a decrease
in the photoresponse.

The absolute spectral responsivity was calibrated with a
blackbody source ( 995 K). Since the blackbody spectrum
included near infrared radiation, which could result in interband
transitions, in addition to mid- and long-wavelength photons,
optical filters were placed next to the aperture of the blackbody
to block radiation with wavelengths less than 3.5m. Fig. 3
shows the peak spectral responsivity versus bias at temperatures
of 77 K, 100 K, and 120 K. With an increase in positive bias, the
responsivity increased from 0.33 mA/W at 0.1 V to 280 mA/W
at 1.7 V. For negative bias, the responsivity increased near four
orders of magnitude from 5.2 10 mA/W at zero bias to
418 mA/W at 1.6 V. Negative differential responsivity [8]
was not observed within the bias range from1.6 to 1.7 V.
The different responsivity curves for the positive and negative
bias are attributed to the asymmetric shape of the quantum dots
along the growth direction and the wetting layers beneath the

Fig. 4. Dark current density at temperature ranging from 60 K to 296 K.

Fig. 5. Measured noise current (dots) at 77 K and 100 K, and calculated
thermal noise current at 77 K.

quantum dots. Consequently, electrons in the quantum dots
experience different barrier heights, depending on whether
transport is toward the top or bottom contacts.

Dark current density versus voltage characteristics are shown
in Fig. 4 for temperature in the range from 60 K to 296 K. The
structural asymmetry of the quantum dots also results in asym-
metrical dark current density for positive and negative bias. At
low bias, the increase in dark current density is due to the fact
that as the bias increases, more electrons occupy the quantum
dots, which results in an increase in the average sheet electron
density. When a large fraction of the quantum-dots states are
occupied, further increase in bias does not significantly alter
the sheet electron density. This causes a lowering of the en-
ergy barrier for injected electrons at the contact layers, which
results in the nearly exponential increase of the dark current.
At 0.7-V bias, the dark current density was 2.510 A/cm
at 60 K. With increasing temperature, it increased over seven
orders of magnitude to 11.1 A/cmat room temperature. Sim-
ilarly, at 0.7-V bias, there was an increase of over eight or-
ders of magnitude from 1.6 10 A/cm at 60 K to 14.4
A/cm at 296 K. Compared to a similar structure without the
Al Ga As blocking layers, the dark current has been sup-
pressed by over three orders of magnitude [8]. For bias0.7 V
and 100 K, the dark current increased exponentially with
temperature, which suggests that in this temperature range, the
dark current originates from thermionic emission. The calcu-
lated activation energy was 196 meV at zero bias, which was
close to the energy corresponding to the cutoff wavelength (193
meV) of the sample. For temperatures lower than 100 K, se-
quential resonant tunneling and phonon-assisted tunneling are
probably the dominant components of the dark current.
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Fig. 6. Peak detectivity at 77 K and 100 K.

The noise current was characterized with low noise cur-
rent preamplifiers and a SRS 760 fast Fourier transform spec-
trum analyzer. For V, the noise current was mea-
sured with a SRS current preamplifier. However, below 0.6 V,
the photodetector noise current was below the noise floor of the
instrument. Near zero bias, a low noise current preamplifier with
high gain was used. However, restricted by the input power lim-
itation of this current preamplifier, in the bias range from 0.1
to 0.5 V and 0.5 to 0.1 V, the noise current was interpo-
lated. Fig. 5 shows the noise current of a 250-m-diameter de-
vice at 77 K and 100 K. The calculated thermal noise current

at 77 K is also shown. The thermal noise current can be ex-
pressed as , where is Boltzmann’s constant,

is the absolute temperature, andis the differential resis-
tance of the device, which was extracted from the dark current.
At V, the calculated thermal noise current (3.2
10 A/Hz ) was very close to the measured noise current
(2.9 10 A/Hz ), which indicates that thermal noise is
significant in the low bias region. As the bias was increased, the
noise current increased much faster than thermal noise.

The detectivity is given by , where is
the device area, is the responsivity, is the noise current, and

is the bandwidth. Fig. 6 shows the peak detectivity versus
bias at 77 K and 100 K. The best performance was achieved at 77
K and 0.7 V where the peak detectivity was 10cm Hz /W.
The corresponding responsivity was 14 mA/W. With increase in
temperature to 100 K, the peak detectivity dropped to 1.110
cm Hz /W at 0.5 V, due to the decrease in responsivity and
increase in noise current.

In conclusion, we have demonstrated QDIPs based on
bound-to-bound intraband transitions. These QDIPs were sen-
sitive to normal-incident infrared radiation and exhibited a low
dark current with cm Hz /W and
mA/W at 0.7-V bias and 77 K. In contrast, the QDIPs with
the same structure, except with a GaAs barrier layer, exhibited

cm Hz /W at 77 K.
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