Zofia Kostrzycka©
Yutaka Miyazaki

Normal Modal Logics Determined by Aligned Clusters

Abstract

We consider the family of logics from NExt(KTB) which are determined by linear frames with reflexive and symmetric relation of accessibility. The condition of linearity in such frames was first defined in the paper [9]. We prove that the cardinality of the logics under consideration is uncountably infinite.

Keywords: Brouwer modal logic, Kripke frames, Characteristic formulas, Normal extensions.

1. Introduction

Since the emergence of Kripke semantics, the semantical analysis of propositional modal logics has achieved a great success for modal logics with the transitivity axiom, or at least a weak transitivity axiom. In contrast to these rich harvests, modal logics without weak transitivity axioms seem to remain almost untouched, and a further investigation must be needed in order to open a next door of the study of modal logics.

The Brouwer logic KTB is a normal extension of the minimal normal modal logic \mathbf{K} by adding the following axioms:

$$
\begin{aligned}
T & :=\square p \rightarrow p \\
B & :=p \rightarrow \square \diamond p
\end{aligned}
$$

Semantically, it is determined by the class of reflexive and symmetric frames (admitting non-transitivity). Hence, KTB is said to be a non-transitive logic. Adding transitivity gives us the Lewis logic S5. The feature of transitivity (or, at least weak transitivity) for frames is very desirable by modal logicians. Thus, the logics located in the interval $\mathbf{S 4 - S 5}$ are intensively studied. Also, for weak transitive logics there are known some important results mostly connected with Kripke incompleteness (see [6-8,11,12]). In contrast to these two families of logics, the family of non-transitive logics has not been thoroughly examined yet.

In this paper we deal with non-transitive logics and continue research initiated in the paper [9]. Actually, we extract from the whole family NExT(KTB) a sub-family of logics determined by frames having linear shape. Our motivation for such a choice has two sources. One is the logic $\mathbf{S 4 . 3}:=\mathbf{S} 4 \oplus(3)$, where:

$$
(3):=\square(\square p \rightarrow q) \vee \square(\square q \rightarrow p)
$$

It is complete with respect to linearly quasi ordered frames $(x R y$ or $y R x$ for any distinct $x, y \in W)$. They are usually presented as chains of clusters. A cluster in a Kripke frame $\langle W, R\rangle$ is a maximal subset $C \subseteq W$ such that for all $x, y \in C x R y$. In a reflexive and transitive frame, all clusters turn out to be disjoint. The famous results for $\mathbf{S} 4.3$ and its normal extensions are the following (see, for example [1]):

Theorem 1.1. (Bull's Theorem) Every normal modal logic extending S4.3 has the finite model property (f.m.p).

Theorem 1.2. (Fine's Theorem) Every normal modal logic extending S4.3 is finitely axiomatizable (and hence-decidable).

The second source for our motivation comes from a normal modal logic KTBAlt $(\mathbf{3}):=\mathbf{K T B} \oplus$ alt $_{3}$, where:

$$
\left.\left(a l t_{3}\right):=\square p \vee \square(p \rightarrow q) \vee \square((p \wedge q) \rightarrow r)\right) \vee \square((p \wedge q \wedge r) \rightarrow s)
$$

This logic is determined by the class of reflexive and symmetric frames forming, either chains of points, or circles of points. It is proved in $[2,3]$ that all logics from NExT(KTBAlt(3)), have also very strong properties.

Theorem 1.3. (Byrd and Ullrich [2] and Byrd [3]) Every normal modal logic extending KTBAlt(3) has the finite model property and is finitely axiomatizable (and hence-decidable).

It is easily seen by the above theorem that the cardinality of the class NExT(KTBAlt(3)) is only countably infinite. This means that this is rather a nice subclass of modal logics in $\operatorname{NExT}(\mathbf{K T B})$.

It is, here, worth comparing the above result with those of Bull's and Fine's. For modal logics from $\operatorname{NExT}(\mathbf{S 4 . 3})$, all clusters are disjoint in a frame for those logics, because of transitivity, and so every frame for them can be uniquely represented as a chain of clusters. However, in connected KTBframes, clusters are not always disjoint. Thus a representation of frames for logics in $\operatorname{NExT}(\mathbf{K T B})$ must be a little different. In a reflexive and symmetric Kripke frame, some clusters have non-empty intersection that plays a role of a link between them. In spite of this big difference, it is helpful to consider
clusters in frames for logics in $\operatorname{NExT}(\mathbf{K T B})$. It has to be emphasized here that $\left(a_{l} t_{3}\right)$ permits the existence of two-element clusters, at most. There is space here for extending their class of logics to a wider and still a gentle one.

In this paper we will consider a more general condition of linearity in reflexive and symmetric frames. We allow for the existence of n-element clusters for any $n \in \mathbb{N}$. The appropriate requirements are defined in [9] and in [10] (see also the next section). Then, the logic determined by such a class of frames is axiomatized as follows: KTB.3 $\mathbf{3}^{\prime} \mathbf{A}:=\mathbf{K T B} \oplus 3^{\prime} \oplus A$ where:

$$
\begin{aligned}
\left(3^{\prime}\right):= & \square p \vee \square(\square p \rightarrow \square q) \vee \square((\square p \wedge \square q) \rightarrow r), \\
(A):= & \square((\square p \wedge q) \rightarrow r) \vee \square((\square q \wedge r) \rightarrow s) \vee \square((\square r \wedge s \wedge \diamond \neg s) \rightarrow p) \vee \\
& \vee \square((\square s \wedge p \wedge \diamond \neg p) \rightarrow q) .
\end{aligned}
$$

A theorem similar to Theorems 1.1 and 1.3, is also proved for logics above $\mathbf{K T B . 3} \mathbf{~} \mathbf{A}^{\mathbf{A}}$ in [9], (see also [10]).

Theorem 1.4. Every normal modal logic extending KTB.3'A has the finite model property.

We see that all logics from those three families $\operatorname{NExt}\left(\mathbf{K T B} . \mathbf{3}^{\prime} \mathbf{A}\right)$, $\operatorname{NExT}(\mathbf{S 4 . 3})$ and $\operatorname{NExT}(\mathbf{K T B A l t}(\mathbf{3})$) have the f.m.p. Thus, a question about decidability of logics from the first family arises. It depends on the answer of the following problem from [9]:

Problem 1. What is the cardinality of the class NExt(KTB.3'A)?
In this paper we will solve this problem.

2. Preliminaries

In this section we remind the basic definitions from [9]. We apply a frametheoretic approach here.

Definition 2.1. Relation R is called a tolerance if it is reflexive and symmetric.

Definition 2.2. A non-empty subset $U \subseteq W$ is called a block of the tolerance R, if U is a maximal subset with $U \times U \subseteq R$ (if $U \subseteq V$ and $V \times V \subseteq R$, then $U=V)$.

Note that the two notions cluster and block of tolerance coincide. But we prefer to use the second one since, in our case, clusters sometimes have non-empty intersections. Then we define:

Diagram 1. A frame with linearly ordered blocks
Definition 2.3. We say that a frame $\langle W, R\rangle$ consists of linearly ordered blocks if the following two conditions hold:
(L1) $B_{1} \cap B_{2} \cap B_{3}=\emptyset$,
$(L 2) \quad\left(B_{1} \cap B_{2} \neq \emptyset \& B_{2} \cap B_{3} \neq \emptyset\right) \quad \Rightarrow \quad\left(B_{1} \cap B_{2}\right) \cup\left(B_{2} \cap B_{3}\right)=B_{2}$
for any three distinct blocks B_{1}, B_{2}, B_{3}
Below, we give two examples.
Example 2.4. Suppose $W:=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and R is symmetric and reflexive, and additionally the following points are related (and only these points): $x_{1} R x_{2}, x_{2} R x_{3}, x_{2} R x_{4}, x_{3} R x_{4}, x_{3} R x_{5}, x_{4} R x_{5}$ (see Diagram 1). Then the tolerance has three blocks: $B_{1}=\left\{x_{1}, x_{2}\right\}, B_{2}=\left\{x_{2}, x_{3}, x_{4}\right\}, B_{3}=$ $\left\{x_{3}, x_{4}, x_{5}\right\}$. They are linearly ordered.

Example 2.5. Suppose $W:=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, R$ is symmetric and reflexive, and additionally the following points are related (and only these points): $x_{1} R x_{2}, x_{2} R x_{3}, x_{2} R x_{4}, x_{2} R x_{5}, x_{3} R x_{5}, x_{3} R x_{4}$ (see Diagram 2). Then the tolerance has three blocks: $B_{1}=\left\{x_{1}, x_{2}\right\}, B_{2}=\left\{x_{2}, x_{3}, x_{4}\right\}, B_{3}=\left\{x_{2}, x_{3}, x_{5}\right\}$. They are not linearly ordered since $B_{1} \cap B_{2} \cap B_{3}=\left\{x_{2}\right\}$.

Diagram 2. A frame with blocks, which are not linearly ordered
The class of reflexive and symmetric frames with linearly ordered blocks will be marked by $\mathcal{L O B}$. We may consider two types of frames from this class: open and closed. In an open frame we can distinguish the first and the last

Diagram 3. An open frame from the class $\mathcal{L O B}$

Diagram 4. A closed frame from the class $\mathcal{L O B}$
blocks of the tolerance. Each of them sees only one block. Examples of such open frames from $\mathcal{L O B}$ are presented in Diagrams 1 and 3. In closed frames each block sees two other distinct blocks of tolerance. See Diagram 4.

In this paper we will deal with open frames, only. We briefly recall the definition of a p-morphism between Kripke frames.

Definition 2.6. Let $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle$ and $\mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$ be Kripke frames. A $\operatorname{map} f: W_{1} \rightarrow W_{2}$ is a p-morphism from \mathfrak{F}_{1} to \mathfrak{F}_{2}, if it satisfies the following conditions:
(p1) f is from W_{1} onto W_{2},
(p2) for all $x, y \in W_{1}, x R_{1} y$ implies $f(x) R_{2} f(y)$,
(p3) for each $x \in W_{1}$ and for each $a \in W_{2}$, if $f(x) R_{2} a$ then there exists $y \in W_{1}$ such that $x R_{1} y$ and $f(y)=a$.

3. The Existence of a Contiuum in $\operatorname{NExt(KTB.3'A)~}$

In this section, we show that there exists a continuum of normal modal logics in $\operatorname{NExT}\left(\mathbf{K T B} . \mathbf{3}^{\prime} \mathbf{A}\right)$. We utilize an infinite sequence $\mathcal{S}=\left\{\mathcal{F}_{k}\right\}_{k \geq 1}$ of Kripke frames in $\mathcal{L O B}$ and the characteristic formulas for such frames, to prove that the sequence $\left\{\mathbf{L}\left(\mathcal{F}_{k}\right)\right\}_{k \geq 1}$ of logics of the frames determines

Diagram 5. The frame \mathcal{F}_{k}
a class of infinite mutually incomparable logics, and that every different subclass of \mathcal{S} defines a different logic.

For each $k \geq 1$, the frame $\mathcal{F}_{k}:=\left\langle W_{k}, R_{k}\right\rangle$ is defined as follows:

$$
\begin{aligned}
W_{k} & :=T_{k} \cup C_{k}, \text { where } T_{k}:=\left\{a_{i} \mid 0 \leq i \leq k\right\}, \text { and } C_{k}:=\left\{b_{1}, b_{2}, a_{k}\right\}, \\
R_{k} & :=\left\{(x, x) \mid x \in T_{k}\right\} \cup\left\{\left(a_{i}, a_{i+1}\right),\left(a_{i+1}, a_{i}\right) \text { for } 0 \leq i \leq k-1\right\} \\
& \cup\left\{(x, y) \mid x, y \in C_{k}\right\} .
\end{aligned}
$$

In \mathcal{F}_{k}, T_{k} is a tail part, that consists of an undirected chain of $k+1$ reflexive points, whereas C_{k} is a three-point-cluster part, and these two parts are connected by a point $a_{k} \in T_{k} \cap C_{k}$. This point will play a significant role in our proof, and so we call this point a_{k} a neck.

For each $\mathcal{F}_{k}(k \geq 1)$, we define a characteristic formula δ_{k}. Characteristic formulas were first introduced for intuitionistic logic (and Heyting algebras) by V.Jankov [5]; for modal logics they were modified by K. Fine [4]. First of all, we prepare a finite set P_{k} of propositional variables, that correspond to points in W_{k}. That is, we associate p_{i} with a point $a_{i} \in T_{k}$ for each $i(0 \leq i \leq k)$ and p_{k+1} for b_{1} and p_{k+2} for b_{2}. Then, the diagram Δ_{k} of this frame \mathcal{F}_{k} is defined as:

$$
\begin{aligned}
\Delta_{k} & :=\left\{p_{x} \rightarrow \diamond p_{y} \mid x R y\right\} \cup\left\{p_{x} \rightarrow \neg \diamond p_{y} \mid \neg(x R y)\right\} \cup\left\{p_{x} \rightarrow \neg p_{y} \mid x \neq y\right\} \\
& \cup\left\{\bigvee_{x \in W_{k}} p_{x}\right\}
\end{aligned}
$$

Then the characteristic formula δ_{k} for the frame \mathcal{F}_{k} is just the conjunction of this diagram, that is, $\delta_{k}:=\bigwedge \Delta_{k}$. Here we use the formula $\sigma_{k}:=\square^{k+2} \delta_{k} \wedge p_{0}$. The following lemma is crucial for our task.

Lemma 3.1. For any $m, n \geq 1, \sigma_{m}$ is satisfiable in \mathcal{F}_{n} if and only if $m=n$.
Proof. (\Longleftarrow)

If $m=n$, we define a valuation V_{0} on \mathcal{F}_{n} as: $V_{0}\left(p_{i}\right):=\left\{a_{i}\right\}$ for $0 \leq i \leq m$, and $V_{0}\left(p_{m+j}\right):=\left\{b_{j}\right\}$ for $j=1,2$. Then it is obvious that σ_{m} is satisfiable at the point a_{0} in a $\operatorname{model}\left\langle\mathcal{F}_{n}, V_{0}\right\rangle$.
(\Longrightarrow)
Suppose that σ_{m} is satisfiable in \mathcal{F}_{n} and $m>n$. Formula σ_{m} includes the following sub-formulas: $p_{i} \rightarrow \diamond p_{i+1}$ for $i:=0,1,2, \ldots, m+1$. The range of σ_{m} is the whole frame \mathcal{F}_{n} because the frame \mathcal{F}_{n} consist of $n+3$ points with $n<m$. Then obviously there is at least one point in \mathcal{F}_{n}, at which two distinct variables p_{i} and p_{j} must be true. Since σ_{m} includes also subformulas $p_{i} \rightarrow \neg p_{j}$ for $i \neq i$ and $i, j:=0,1,2, \ldots, m+2$ then we see that for any valuation in this case the formula σ_{m} is not satisfiable. Then we get a contradiction.
Suppose then that σ_{m} is satisfiable in \mathcal{F}_{n} and $m<n$.
One may notice that a_{m} is the only point in \mathcal{F}_{m} that is related by R_{m} to three different points except for itself, that is, b_{1}, b_{2} and a_{m-1} in \mathcal{F}_{m}. Therefore we find that p_{m} is true at nowhere else but at a_{n} in \mathcal{F}_{n}. Then, variables p_{m+1} and p_{m+2} can be satisfied at b_{1}, b_{2} in \mathcal{F}_{n}. For variables for the tail part in \mathcal{F}_{m}, p_{m-1} must be true at a_{n-1}, p_{m-2} must be true at a_{n-2}, and finally we reach the fact that p_{0} must be true at the point a_{n-m}, in the middle of the tail in \mathcal{F}_{n} since $m<n$. Hence, we see that the range of formula σ_{m} is $m+2$ in both directions from the point a_{n-m}.
Case 1. $n-m \leq m$. To match the valuation in the other part of the tail we may choose for the next point a_{n-m-1} either p_{0} or p_{1}. It is because in σ_{m} we have the sub-formulas $p_{0} \rightarrow \diamond p_{0}, p_{0} \rightarrow \diamond p_{1}$ and $p_{0} \rightarrow \neg \diamond p_{i}$, for $i \neq 0,1$.
Sub-case 1a. Suppose that we choose p_{0}. Since in σ_{m} there are also subformulas $p_{i} \rightarrow \diamond p_{i+1}$, for $i=0,1, \ldots, m+2$ then at the next points a_{k} 's with $n-m-2 \geq k \geq 0$ we set the variables $p_{1}, p_{2}, \ldots, p_{n-m-1}$ true. At the last point a_{0} in \mathcal{F}_{n} we valuate variable p_{n-m-1}. Since in this case the range of σ_{m} is the whole frame \mathcal{F}_{n} then at a_{0} we should have the formula $p_{n-m-1} \rightarrow \diamond p_{n-m}$ true. But it is impossible, so we get a contradiction.
Sub-case 1b. Suppose we take p_{1} and $n-m<m$. As above at the next points a_{k} 's with $n-m-2 \geq k \geq 0$ we valuate variables $p_{2}, p_{3}, \ldots, p_{n-m-1}$. At the last point a_{0} in \mathcal{F}_{n} we valuate variable p_{n-m}. Again, the range of σ_{m} is the whole frame \mathcal{F}_{n}. Then at a_{0} we should have true the formula $p_{n-m} \rightarrow \diamond p_{n-m+1}$. But it is impossible, so we get a contradiction.
Sub-case 1c. Suppose we take p_{1} and $n-m=m$. Again at the points a_{k} 's with $n-m-2 \geq k \geq 0$ we valuate variables $p_{2}, p_{3}, \ldots, p_{n-m-1}$. At the last point a_{0} in \mathcal{F}_{n} we valuate variable p_{n-m}. But then $p_{n-m}=p_{m}$. We may notice that in σ_{m} we have sub-formulas $p_{m} \rightarrow \diamond p_{m+1}$ and $p_{m} \rightarrow \diamond p_{m+2}$. But at a_{0} it is impossible to valuate that formulas and we get a contradiction.

Case 2. $n-m>m$. As in Case 1 we have to match the valuation in the other part of the tail and we may choose for the next point a_{n-m-1}, that either p_{0} or p_{1} is true.
Sub-case 2a. Suppose we choose p_{0}. Analogously to sub-case 1a we have to valuate variables $p_{1}, p_{2}, \ldots, p_{m}$ in the next points $a_{n-m-2}, a_{n-m-3}, \ldots$, $a_{n-2 m-1}$. Since the range of formula σ_{m} is $m+2$ in both directions from the point a_{n-m}, then in the point $a_{n-2 m-1}$ we valuate p_{m}. In formula σ_{m} we have $p_{m} \rightarrow \diamond p_{m+1}$ and $p_{m} \rightarrow \diamond p_{m+2}$, so we should at the next point valuate both p_{m+1} and p_{m+2}. If $n-2 m-1=0$ then we get immediately a contradiction. If $n-2 m-1>0$ then there is a next to $a_{n-2 m-1}$ point $a_{n-2 m-2}$. So we should valuate at $a_{n-2 m-2}$ both p_{m+1} and p_{m+2}. But $a_{n-2 m-2}$ lies within the range of σ_{m} so we must take into account formulas $p_{i} \rightarrow \neg p_{j}$ for $i \neq j$, $i, j:=0,1, \ldots, m+2$. Hence we get a contradiction.
Sub-case 2b. Suppose we choose p_{1}. Analogously as in Sub-case 1b we have to valuate variables $p_{2}, p_{3}, \ldots, p_{m}$ in the next points $a_{n-m-2}, a_{n-m-3}, \ldots$, $a_{n-2 m}$. Then at $a_{n-2 m-1}$ we valuate both p_{m+1} and p_{m+2}. As before $a_{n-2 m-1}$ lies within the range of σ_{m} so we must take into account formulas $p_{i} \rightarrow \neg p_{j}$ for $i \neq j, i, j:=0,1, \ldots, m+2$. Hence we get a contradiction.

Now we are in a position to show our main theorem.
Theorem 3.2. (1) For subclasses $\mathcal{C}, \mathcal{D} \subseteq \mathcal{S}$, if $\mathcal{C} \neq \mathcal{D}$, then $\mathbf{L}(\mathcal{C}) \neq \mathbf{L}(\mathcal{D})$.
(2) There exists a continuum of normal modal logics in $\operatorname{NEXT}\left(\mathbf{K T B} \cdot \mathbf{3}^{\prime} \mathbf{A}\right)$.

Proof. (1): Suppose $\mathcal{C} \nsubseteq \mathcal{D}$. Then, $\mathcal{F}_{m} \in \mathcal{C}$ and $\mathcal{F}_{m} \notin \mathcal{D}$ for some $\mathcal{F}_{m} \in \mathcal{S}$. Then, by the above lemma, $\neg \sigma_{m} \in \mathbf{L}(\mathcal{D})$ and $\neg \sigma_{m} \notin \mathbf{L}(\mathcal{C})$. Hence we have $\mathbf{L}(\mathcal{D}) \nsubseteq \mathbf{L}(\mathcal{C})$.
(2): It follows from (1).

4. Conclusions and Problems

We proved that the cardinality of $\operatorname{NExT}\left(\mathbf{K T B} . \mathbf{3}^{\prime} \mathbf{A}\right)$ is uncountably infinite. This fact distinguishes the logic KTB.3'A from S4.3 and KTBAlt(3) as well. It occurred that the logic KTB.3'A has continuum normal extensions, all of which are Kripke complete and have the f.m.p.

It is well known that the axiom $a l t_{3}$ is an instance of the following general axiom alt ${ }_{n}$: $(n \geq 0)$

$$
\begin{aligned}
\left(\text { alt }_{n}\right):= & \left.\square p_{1} \vee \square\left(p_{1} \rightarrow p_{2}\right) \vee \square\left(\left(p_{1} \wedge p_{2}\right) \rightarrow p_{3}\right)\right) \vee \\
& \cdots \vee \square\left(\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right) \rightarrow p_{n+1}\right)
\end{aligned}
$$

Diagram 6. The lattice $\left.\operatorname{NExt(KTB.3^{\prime }} \mathbf{A}\right)$

This axiom characterizes the class of frames in which every point can see at most n points. Here, let us take a closer look at our construction of frames in Lemma 3.1. Then it is not very hard to see that for any n, every point in the frame \mathcal{F}_{n} can see at most four points. Indeed, only the neck of each frame can see four points including itself. This means that all members of the class $\left\{\mathcal{F}_{n}\right\}_{n \geq 1}$ are frames for $\mathbf{K T B A l t}(4):=\mathbf{K T B} \oplus$ alt $_{4}$. Hence we have proved the following stronger fact.

THEOREM 4.1. There exists a continuum of normal modal logics in $\operatorname{NExT}\left(\mathbf{K T B . 3} \mathbf{3} \mathbf{A} \oplus\right.$ alt $\left._{\mathbf{4}}\right)$.

The above theorem, of course, implies that the cardinality of the class NExT(KTBAlt(4)) is uncountably infinite, which shows us a sharp boundary located between KTBAlt(3) and KTBAlt(4). In this sense, the logic KTBAlt(3) sits on a special position in the lattice $\operatorname{NExT}(\mathbf{K T B})$.

The lattice of $\operatorname{NExT}\left(\mathbf{K T B} \cdot \mathbf{3}^{\prime} \mathbf{A}\right)$ is so intriguing that it requires further investigations. Our future work will concern the following problems:

1. Existence of splitting logics,
2. Local finiteness,

3. Algebraic counterpart of Kripke frames for KTB.3 ${ }^{\prime} \mathbf{A}$.

It would be also very interesting to generalize the axiom $\left(3^{\prime}\right)$ together with (A) (analogously like from alt $_{3}$ to alt $_{n}$) and obtain a syntactical characterization of reflexive and symmetric frames in which each cluster is in accessibility relation with a bounded number of other clusters. Then we could investigate logics determined by frames in a shape of net.

Acknowledgements. To complete this work, the first author is grateful for the financial support by the NCN, research grant DEC-2013/09/B/HS1/ 00701. To complete this work, the second author is grateful for the financial support by the Grant-in-Aid for Scientific Research (C) No. 23500028 from Japan Society for the Promotion of Science.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, New York, 2001.
[2] Byrd, M., and D. Ullrich, The extensions of BAlt $_{3}$, Journal of Philosophical Logic 6:109-117, 1977.
[3] Byrd, M., The extensions of BAlt ${ }_{3}$-revisited, Journal of Philosophical Logic 7:407413, 1978.
[4] Fine, K., An ascending chain of S4 logics, Theoria 40(2):110-116, 1974.
[5] Jankov, V. A., On the Relation Between Deducibility in Intuitionistic Propositional Calculus and Finite Implicative Structures, Dokl. Akad. Nauk SSSR, vol. 151, 1963, pp. 1293-1294. English translation in Sov. Math., Dokl. 4, 1963, pp. 1203-1204, 1969.
[6] Kostrzycka, Z., On non-compact logics in $\operatorname{NEXT(KTB),~Mathematical~Logic~}$ Quarterly 54(6):617-624, 2008.
[7] Kostrzycka, Z., On a finitely axiomatizable Kripke incomplete logic containing KTB, Journal of Logic and Computation 19(6):1199-1205, 2009.
[8] Kostrzycka, Z., On Modal Systems in the Neighbourhood of the Brouwer Logic, Acta Universitatis Wratislaviensis No 3238, Logika 25, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław, 2010.
[9] Kostrzycka, Z., On linear Brouwerian logics, Mathematical Logic Quarterly 60(4-5):304-313, 2014.
[10] Kostrzycka, Z., Correction of the article: On linear Brouwerian logics, manuscript is avaliable at http://z.kostrzycka.po.opole.pl/publikacje/correctionkostrzycka4.pdf. It will be submitted.
[11] Miyazaki, Y., Normal modal logics containing KTB with some finiteness conditions, Advances in Modal Logic 5: 171-190, 2005.
[12] Miyazaki, Y., Kripke incomplete logics containing KTB, Studia Logica 85(3):311-326, 2007.

Z. Kostrzycka
Opole University of Technology
Opole, Poland
z.kostrzycka@po.opole.pl
Y. Miyazaki
Osaka University of Economics and Law
Osaka, Japan
y-miya@keiho-u.ac.jp

