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Abstract. We consider the family of logics from NExt(KTB) which are determined

by linear frames with reflexive and symmetric relation of accessibility. The condition of

linearity in such frames was first defined in the paper [9]. We prove that the cardinality of

the logics under consideration is uncountably infinite.
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1. Introduction

Since the emergence of Kripke semantics, the semantical analysis of propo-
sitional modal logics has achieved a great success for modal logics with the
transitivity axiom, or at least a weak transitivity axiom. In contrast to these
rich harvests, modal logics without weak transitivity axioms seem to remain
almost untouched, and a further investigation must be needed in order to
open a next door of the study of modal logics.

The Brouwer logic KTB is a normal extension of the minimal normal
modal logic K by adding the following axioms:

T := �p → p

B := p → �♦p

Semantically, it is determined by the class of reflexive and symmetric frames
(admitting non-transitivity). Hence, KTB is said to be a non-transitive
logic. Adding transitivity gives us the Lewis logic S5. The feature of transi-
tivity (or, at least weak transitivity) for frames is very desirable by modal
logicians. Thus, the logics located in the interval S4–S5 are intensively stud-
ied. Also, for weak transitive logics there are known some important results
mostly connected with Kripke incompleteness (see [6–8,11,12]). In contrast
to these two families of logics, the family of non-transitive logics has not
been thoroughly examined yet.
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In this paper we deal with non-transitive logics and continue research ini-
tiated in the paper [9]. Actually, we extract from the whole family
NExt(KTB) a sub-family of logics determined by frames having linear
shape. Our motivation for such a choice has two sources. One is the logic
S4.3 := S4 ⊕ (3), where:

(3) := �(�p → q) ∨ �(�q → p).

It is complete with respect to linearly quasi ordered frames (xRy or yRx for
any distinct x, y ∈ W ). They are usually presented as chains of clusters. A
cluster in a Kripke frame 〈W, R〉 is a maximal subset C ⊆ W such that for
all x, y ∈ C xRy. In a reflexive and transitive frame, all clusters turn out to
be disjoint. The famous results for S4.3 and its normal extensions are the
following (see, for example [1]):

Theorem 1.1. (Bull’s Theorem) Every normal modal logic extending S4.3
has the finite model property (f.m.p).

Theorem 1.2. (Fine’s Theorem) Every normal modal logic extending S4.3
is finitely axiomatizable (and hence—decidable).

The second source for our motivation comes from a normal modal logic
KTBAlt(3) := KTB ⊕ alt3, where:

(alt3) := �p ∨ �(p → q) ∨ �((p ∧ q) → r)) ∨ �((p ∧ q ∧ r) → s).

This logic is determined by the class of reflexive and symmetric frames
forming, either chains of points, or circles of points. It is proved in [2,3] that
all logics from NExt(KTBAlt(3)), have also very strong properties.

Theorem 1.3. (Byrd and Ullrich [2] and Byrd [3]) Every normal modal
logic extending KTBAlt(3) has the finite model property and is finitely
axiomatizable (and hence—decidable).

It is easily seen by the above theorem that the cardinality of the class
NExt(KTBAlt(3)) is only countably infinite. This means that this is
rather a nice subclass of modal logics in NExt(KTB).

It is, here, worth comparing the above result with those of Bull’s and
Fine’s. For modal logics from NExt(S4.3), all clusters are disjoint in a frame
for those logics, because of transitivity, and so every frame for them can be
uniquely represented as a chain of clusters. However, in connected KTB-
frames, clusters are not always disjoint. Thus a representation of frames for
logics in NExt(KTB) must be a little different. In a reflexive and symmetric
Kripke frame, some clusters have non-empty intersection that plays a role of
a link between them. In spite of this big difference, it is helpful to consider
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clusters in frames for logics in NExt(KTB). It has to be emphasized here
that (alt3) permits the existence of two-element clusters, at most. There is
space here for extending their class of logics to a wider and still a gentle
one.

In this paper we will consider a more general condition of linearity in
reflexive and symmetric frames. We allow for the existence of n-element
clusters for any n ∈ N. The appropriate requirements are defined in [9] and
in [10] (see also the next section). Then, the logic determined by such a class
of frames is axiomatized as follows: KTB.3′A := KTB ⊕ 3′ ⊕ A where:

(3′) := �p ∨ �(�p → �q) ∨ �((�p ∧ �q) → r),

(A) := �((�p ∧ q) → r) ∨ �((�q ∧ r) → s) ∨ �((�r ∧ s ∧ ♦¬s) → p) ∨
∨�((�s ∧ p ∧ ♦¬p) → q).

A theorem similar to Theorems 1.1 and 1.3, is also proved for logics above
KTB.3′A in [9], (see also [10]).

Theorem 1.4. Every normal modal logic extending KTB.3′A has the finite
model property.

We see that all logics from those three families NExt(KTB.3′A),
NExt(S4.3) and NExt(KTBAlt(3)) have the f.m.p. Thus, a question
about decidability of logics from the first family arises. It depends on the
answer of the following problem from [9]:

Problem 1. What is the cardinality of the class NExt(KTB.3′A)?

In this paper we will solve this problem.

2. Preliminaries

In this section we remind the basic definitions from [9]. We apply a frame-
theoretic approach here.

Definition 2.1. Relation R is called a tolerance if it is reflexive and sym-
metric.

Definition 2.2. A non-empty subset U ⊆ W is called a block of the toler-
ance R, if U is a maximal subset with U ×U ⊆ R (if U ⊆ V and V ×V ⊆ R,
then U = V ).

Note that the two notions cluster and block of tolerance coincide. But we
prefer to use the second one since, in our case, clusters sometimes have
non-empty intersections. Then we define:
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Diagram 1. A frame with linearly ordered blocks

Definition 2.3. We say that a frame 〈W, R〉 consists of linearly ordered
blocks if the following two conditions hold:

(L1) B1 ∩ B2 ∩ B3 = ∅,

(L2) (B1 ∩ B2 �= ∅ & B2 ∩ B3 �= ∅) ⇒ (B1 ∩ B2) ∪ (B2 ∩ B3) = B2

for any three distinct blocks B1, B2, B3

Below, we give two examples.

Example 2.4. Suppose W := {x1, x2, x3, x4, x5} and R is symmetric and
reflexive, and additionally the following points are related (and only these
points): x1Rx2, x2Rx3, x2Rx4, x3Rx4, x3Rx5, x4Rx5 (see Diagram 1). Then
the tolerance has three blocks: B1 = {x1, x2}, B2 = {x2, x3, x4}, B3 =
{x3, x4, x5}. They are linearly ordered.

Example 2.5. Suppose W := {x1, x2, x3, x4, x5}, R is symmetric and reflex-
ive, and additionally the following points are related (and only these points):
x1Rx2, x2Rx3, x2Rx4, x2Rx5, x3Rx5, x3Rx4 (see Diagram 2). Then the tol-
erance has three blocks: B1 = {x1, x2}, B2 = {x2, x3, x4}, B3 = {x2, x3, x5}.
They are not linearly ordered since B1 ∩ B2 ∩ B3 = {x2}.
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Diagram 2. A frame with blocks, which are not linearly ordered

The class of reflexive and symmetric frames with linearly ordered blocks will
be marked by LOB. We may consider two types of frames from this class:
open and closed. In an open frame we can distinguish the first and the last



Normal Modal Logics Determined by Aligned Clusters 5

B B B1 2 3

x x xxx1 2 3 4 5

B4
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Diagram 4. A closed frame from the class LOB

blocks of the tolerance. Each of them sees only one block. Examples of such
open frames from LOB are presented in Diagrams 1 and 3. In closed frames
each block sees two other distinct blocks of tolerance. See Diagram 4.

In this paper we will deal with open frames, only. We briefly recall the
definition of a p-morphism between Kripke frames.

Definition 2.6. Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be Kripke frames. A
map f : W1 → W2 is a p-morphism from F1 to F2, if it satisfies the following
conditions:

(p1) f is from W1 onto W2,

(p2) for all x, y ∈ W1, xR1y implies f(x)R2f(y),

(p3) for each x ∈ W1 and for each a ∈ W2, if f(x)R2a then there

exists y ∈ W1 such that xR1y and f(y) = a.

3. The Existence of a Contiuum in NExt(KTB.3′A)

In this section, we show that there exists a continuum of normal modal
logics in NExt(KTB.3′A). We utilize an infinite sequence S = {Fk}k≥1

of Kripke frames in LOB and the characteristic formulas for such frames,
to prove that the sequence {L(Fk)}k≥1 of logics of the frames determines
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Diagram 5. The frame Fk

a class of infinite mutually incomparable logics, and that every different
subclass of S defines a different logic.

For each k ≥ 1, the frame Fk := 〈Wk, Rk〉 is defined as follows:

Wk := Tk ∪ Ck, whereTk := {ai | 0 ≤ i ≤ k}, and Ck := {b1, b2, ak},

Rk := {(x, x) | x ∈ Tk} ∪ {(ai, ai+1), (ai+1, ai) for 0 ≤ i ≤ k − 1}
∪{(x, y) | x, y ∈ Ck}.

In Fk, Tk is a tail part, that consists of an undirected chain of k + 1
reflexive points, whereas Ck is a three-point-cluster part, and these two parts
are connected by a point ak ∈ Tk ∩Ck. This point will play a significant role
in our proof, and so we call this point ak a neck.

For each Fk (k ≥ 1), we define a characteristic formula δk. Characteristic
formulas were first introduced for intuitionistic logic (and Heyting algebras)
by V.Jankov [5]; for modal logics they were modified by K. Fine [4]. First
of all, we prepare a finite set Pk of propositional variables, that correspond
to points in Wk. That is, we associate pi with a point ai ∈ Tk for each
i (0 ≤ i ≤ k) and pk+1 for b1 and pk+2 for b2. Then, the diagram Δk of this
frame Fk is defined as:

Δk := {px → ♦py | xRy} ∪ {px → ¬♦py | ¬(xRy)} ∪ {px → ¬py | x �= y}
∪{

∨

x∈Wk

px}

Then the characteristic formula δk for the frame Fk is just the conjunction of
this diagram, that is, δk :=

∧
Δk. Here we use the formula σk := �k+2δk∧p0.

The following lemma is crucial for our task.

Lemma 3.1. For any m, n ≥ 1, σm is satisfiable in Fn if and only if m = n.

Proof. (⇐=)
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If m = n, we define a valuation V0 on Fn as: V0(pi) := {ai} for 0 ≤ i ≤ m,
and V0(pm+j) := {bj} for j = 1, 2. Then it is obvious that σm is satisfiable
at the point a0 in a model 〈Fn, V0〉.
(=⇒)
Suppose that σm is satisfiable in Fn and m > n. Formula σm includes the
following sub-formulas: pi → ♦pi+1 for i := 0, 1, 2, . . . , m + 1. The range
of σm is the whole frame Fn because the frame Fn consist of n + 3 points
with n < m. Then obviously there is at least one point in Fn, at which
two distinct variables pi and pj must be true. Since σm includes also sub-
formulas pi → ¬pj for i �= i and i, j := 0, 1, 2, . . . , m+2 then we see that for
any valuation in this case the formula σm is not satisfiable. Then we get a
contradiction.
Suppose then that σm is satisfiable in Fn and m < n.
One may notice that am is the only point in Fm that is related by Rm

to three different points except for itself, that is, b1, b2 and am−1 in Fm.
Therefore we find that pm is true at nowhere else but at an in Fn. Then,
variables pm+1 and pm+2 can be satisfied at b1, b2 in Fn. For variables for
the tail part in Fm, pm−1 must be true at an−1, pm−2 must be true at an−2,
and finally we reach the fact that p0 must be true at the point an−m, in
the middle of the tail in Fn since m < n. Hence, we see that the range of
formula σm is m + 2 in both directions from the point an−m.
Case 1. n − m ≤ m. To match the valuation in the other part of the tail we
may choose for the next point an−m−1 either p0 or p1. It is because in σm

we have the sub-formulas p0 → ♦p0, p0 → ♦p1 and p0 → ¬♦pi, for i �= 0, 1.
Sub-case 1a. Suppose that we choose p0. Since in σm there are also sub-
formulas pi → ♦pi+1, for i = 0, 1, . . . , m + 2 then at the next points ak’s
with n − m − 2 ≥ k ≥ 0 we set the variables p1, p2, . . . , pn−m−1 true. At
the last point a0 in Fn we valuate variable pn−m−1. Since in this case the
range of σm is the whole frame Fn then at a0 we should have the formula
pn−m−1 → ♦pn−m true. But it is impossible, so we get a contradiction.
Sub-case 1b. Suppose we take p1 and n − m < m. As above at the next
points ak’s with n−m− 2 ≥ k ≥ 0 we valuate variables p2, p3, . . . , pn−m−1.
At the last point a0 in Fn we valuate variable pn−m. Again, the range of
σm is the whole frame Fn. Then at a0 we should have true the formula
pn−m → ♦pn−m+1. But it is impossible, so we get a contradiction.
Sub-case 1c. Suppose we take p1 and n − m = m. Again at the points ak’s
with n−m− 2 ≥ k ≥ 0 we valuate variables p2, p3, . . . , pn−m−1. At the last
point a0 in Fn we valuate variable pn−m. But then pn−m = pm. We may
notice that in σm we have sub-formulas pm → ♦pm+1 and pm → ♦pm+2. But
at a0 it is impossible to valuate that formulas and we get a contradiction.
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Case 2. n − m > m. As in Case 1 we have to match the valuation in the
other part of the tail and we may choose for the next point an−m−1, that
either p0 or p1 is true.
Sub-case 2a. Suppose we choose p0. Analogously to sub-case 1a we have
to valuate variables p1, p2, . . . , pm in the next points an−m−2, an−m−3, . . . ,
an−2m−1. Since the range of formula σm is m+2 in both directions from the
point an−m, then in the point an−2m−1 we valuate pm. In formula σm we have
pm → ♦pm+1 and pm → ♦pm+2, so we should at the next point valuate both
pm+1 and pm+2. If n − 2m − 1 = 0 then we get immediately a contradiction.
If n − 2m − 1 > 0 then there is a next to an−2m−1 point an−2m−2. So we
should valuate at an−2m−2 both pm+1 and pm+2. But an−2m−2 lies within
the range of σm so we must take into account formulas pi → ¬pj for i �= j,
i, j := 0, 1, . . . , m + 2. Hence we get a contradiction.
Sub-case 2b. Suppose we choose p1. Analogously as in Sub-case 1b we have
to valuate variables p2, p3, . . . , pm in the next points an−m−2, an−m−3, . . . ,
an−2m. Then at an−2m−1 we valuate both pm+1 and pm+2. As before
an−2m−1 lies within the range of σm so we must take into account formulas
pi → ¬pj for i �= j, i, j := 0, 1, . . . , m + 2. Hence we get a contradiction.

Now we are in a position to show our main theorem.

Theorem 3.2. (1) For subclasses C, D ⊆ S, if C �= D, then L(C) �= L(D).

(2) There exists a continuum of normal modal logics in NExt(KTB.3′A).

Proof. (1): Suppose C �⊆ D. Then, Fm ∈ C and Fm �∈ D for some Fm ∈ S.
Then, by the above lemma, ¬σm ∈ L(D) and ¬σm �∈ L(C). Hence we have
L(D) �⊆ L(C).

(2): It follows from (1).

4. Conclusions and Problems

We proved that the cardinality of NExt(KTB.3′A) is uncountably infinite.
This fact distinguishes the logic KTB.3′A from S4.3 and KTBAlt(3) as
well. It occurred that the logic KTB.3′A has continuum normal extensions,
all of which are Kripke complete and have the f.m.p.

It is well known that the axiom alt3 is an instance of the following general
axiom altn: (n ≥ 0)

(altn) := �p1 ∨ �(p1 → p2) ∨ �((p1 ∧ p2) → p3)) ∨
· · · ∨ �((p1 ∧ p2 ∧ · · · ∧ pn) → pn+1).
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Diagram 6. The lattice NExt(KTB.3′A)

This axiom characterizes the class of frames in which every point can see at
most n points. Here, let us take a closer look at our construction of frames
in Lemma 3.1. Then it is not very hard to see that for any n, every point
in the frame Fn can see at most four points. Indeed, only the neck of each
frame can see four points including itself. This means that all members of
the class {Fn}n≥1 are frames for KTBAlt(4) := KTB ⊕ alt4. Hence we
have proved the following stronger fact.

Theorem 4.1. There exists a continuum of normal modal logics in
NExt(KTB.3′A ⊕ alt4).

The above theorem, of course, implies that the cardinality of the class
NExt(KTBAlt(4)) is uncountably infinite, which shows us a sharp bound-
ary located between KTBAlt(3) and KTBAlt(4). In this sense, the logic
KTBAlt(3) sits on a special position in the lattice NExt(KTB).

The lattice of NExt(KTB.3′A) is so intriguing that it requires further
investigations. Our future work will concern the following problems:

1. Existence of splitting logics,

2. Local finiteness,
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3. Algebraic counterpart of Kripke frames for KTB.3′A.

It would be also very interesting to generalize the axiom (3′) together
with (A) (analogously like from alt3 to altn) and obtain a syntactical char-
acterization of reflexive and symmetric frames in which each cluster is in
accessibility relation with a bounded number of other clusters. Then we
could investigate logics determined by frames in a shape of net.
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