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Abstract Normal mode analysis (NMA) can facilitate quick
and systematic investigation of protein dynamics using data
from the Protein Data Bank (PDB). We developed an elastic
network model-based NMA program using dihedral angles as
independent variables. Compared to the NMA programs that
use Cartesian coordinates as independent variables, key attri-
butes of the proposed program are as follows: (1) chain con-
nectivity related to the folding pattern of a polypeptide chain is
naturally embedded in the model; (2) the full-atom system is
acceptable, and owing to a considerably smaller number of
independent variables, the PDB data can be used without fur-
ther manipulation; (3) the number of variables can be easily
reduced by some of the rotatable dihedral angles; (4) the PDB
data for anymolecule besides proteins can be consideredwith-
out coarse-graining; and (5) individual motions of constituent
subunits and ligand molecules can be easily decomposed into
external and internal motions to examine their mutual and
intrinsic motions. Its performance is illustrated with an exam-
ple of a DNA-binding allosteric protein, a catabolite activator
protein. In particular, the focus is on the conformational
change upon cAMP and DNA binding, and on the communi-
cation between their binding sites remotely located from each
other. In this illustration, NMA creates a vivid picture of the

protein dynamics at various levels of the structures, i.e.,
atoms, residues, secondary structures, domains, subunits,
and the complete system, including DNA and cAMP.
Comparative studies of the specific protein in different states,
e.g., apo- and holo-conformations, and free and complexed
configurations, provide useful information for studying struc-
turally and functionally important aspects of the protein.

Keywords Elastic networkmodel . Protein structure
network . Catabolite activator protein . Full-atom system .

Decomposition into internal and external motions

Introduction

Protein folding and structure–function relationships are major
challenges in molecular biology, biophysics, and other related
fields. The three-dimensional structural data deposited in the
Protein Data Bank (PDB) (Berman et al. 2003) have played an
important role in investigating these problems. However, the
information extracted from the PDB contains mainly static
structural features. It is generally recognized that both the
dynamic and static aspects of the protein structures are neces-
sary to fully understand these problems. The only dynamics-
related data provided in the PDB is a crystallographic temper-
ature factor. This provides some information on the fluctua-
tions of individual atoms, but also reflects various problems
specific to a crystal, such as crystalline disorder and crystal
contacts with neighboring molecules. Furthermore, as most of
the PDB data are obtained based on fluctuations as isotropic
motions, such data lack directional information on the fluctu-
ations. As the temperature factor is not sufficient for resolving
most of the protein dynamics problems, it is necessary to
perform computer simulations, such as molecular dynamics
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(MD) and normal mode analysis (NMA), to acquire more
information about protein dynamics from the PDB data.

MD and NMA are useful methods for characterizing
various dynamic aspects of biological macromolecules.
MD is more accurate than NMA. Although NMA is based
on the normal mode vibrations that are defined as simple
harmonic oscillations around an energy minimum, MD
can encompass a significantly greater volume of the con-
formational space. Consequently, the performance of
NMA is limited to investigating fluctuations around a
specific conformation, and cannot reveal a significant
conformational change that may occur during MD simu-
lations. Nonetheless, many investigations have demon-
strated that the results obtained from NMA are capable
of characterizing the dynamic aspects of biomolecules
well. Notably, it has been shown that some of the low-
frequency normal modes are strongly correlated with the
large-amplitude conformational changes in proteins that
have been observed upon ligand binding (Tama and
Sanejouand 2001; Krebs et al. 2002; Reuter et al. 2003;
Alexandrov et al. 2005; Bahar and Rader 2005; Tobi and
Bahar 2005; Dobbins et al. 2008; Wako and Endo 2011).
Furthermore, time-averaged properties, in particular the
root mean square (RMS) fluctuation of an atom averaged
over all normal modes and over time, have been shown to
be well correlated with the temperature factor provided in
the PDB data (Gō et al. 1983; Brooks and Karplus 1983;
Levitt et al. 1985).

NMA has some advantages compared to MD. NMA
can be carried out considerably more quickly than MD,
and the properties calculated in NMA are analytically well
defined. This makes it possible to systematically perform
NMA for many PDB structures. Using this advantage,
several databases and online servers delivering NMA
have been developed to reveal the dynamic features of
proteins (Echols et al. 2003; Suhre and Sanejouand
2004; Wako et al. 2004; Yang et al. 2005, 2006;
Skjærven et al. 2014; Tiwari et al. 2014; Eyal et al.
2015). ProMode, ProMode-Oligomer, and ProMode-
Elastic are examples of such databases developed by the
authors (Wako et al. 2004; Wako and Endo 2012, 2013).
ProMode and ProMode-Oligomer provided our results ob-
tained by orthodox NMA, but they have now been closed.
ProMode-Elastic is available at PDBj (https://pdbj.org;
Kinjo et al. 2017). Although it is typically difficult to
derive necessary and sufficient information about protein
dynamics using only NMA, NMA can be a powerful
method for preliminary surveys before more accurate
investigations such as MD simulations are undertaken.

In this review, we will describe NMA using dihedral angles
as independent variables, which are characteristic of our NMA
calculations, and then illustrate what kind of information can
be derived from the PDB data using a specific example.

Theory and methods

General theory of normal modes

The theory of normal modes gives a complete analytical so-
lution to the equation of motion for a molecular system subject
to the assumption that a given conformation is at the confor-
mational energy minimum and the energy surface in the vi-
cinity of the minimum is a multidimensional parabola. In this
assumption, the conformational energy E can be expressed as
a quadratic function of the variables to define a conformation
of molecules, qi:

E ¼
1

2
∑
i; j
F ijΔqiΔq j; ð1Þ

where Δqi is the deviation of the ith variable from the mini-
mum point and Fij is the second derivative of Ewith respect to
qi and qj at the minimum, ∂2E/∂qi∂qj. The variables q = {qi}
are generalized, and can be atomic Cartesian coordinates,
translation and rotation variables, dihedral angles, or any other
variables to define a molecular system.

The kinetic energy T is also approximated as a quadratic

function of the velocities q˙ i with the coefficient matrix H:

T ¼
1

2
∑
i; j
H ijq

˙

iq
˙

j; ð2Þ

Then, the normal modes of vibration and their frequency
are obtained by solving the generalized eigenvalue equation:

ΗΑΛ ¼ FΑ; ð3Þ

whereΛ is a diagonal matrix whose diagonal elementΛii =ωi
2

is the frequency of the ith normal mode and A provides the
variations of variables for individual normal mode vibrations.
Various time-averaged properties, such as atomic fluctuations,
dihedral angle fluctuations, and correlations between these
properties, can be analytically formulated with Λ and A,
and, thus, numerically calculated easily.

As for variables to define a conformation of a molecule,
most researchers on NMA adopt the Cartesian coordinate sys-
tem (CCS). In this review, however, we will focus on the
dihedral angle system (DAS) because it is not familiar to the
researchers. We will clarify the differences between the two
systems.

Elastic network model-based NMA

Conformational energy analysis of a protein molecule using
dihedral angles as independent variables was developed by
Scheraga’s group at Cornell University in the 1970s
(Momany et al. 1975). The developed program was named
ECEPP. Based on ECEPP, the authors developed the program
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to perform conformational energy minimization and NMA,
termed as FEDER (Wako and Gō 1987; Wako et al. 1995).
However, we experienced problems in extending FEDER to a
system that included molecules other than a polypeptide. The
all-atom force fields were provided mainly for the proteins in
ECEPP. They were not available for other molecules such as
DNA or various ligands in the PDB data.

In such a situation, the elastic network model-based NMA
(ENM-NMA) opened a new era (Bahar et al. 1997, 2010;
Hinsen 1998) in the field of NMA including both CCS and
DAS. It replaced standard potentials that were used in an
orthodox NMA by a simple pairwise Hookean potential:

E ¼ ∑
i; j
k dij−d

PDB
ij

� �2
; ð4Þ

where dij and dij
PDB are distances between the atoms i and j in

the calculated and PDB conformations, respectively, and k is a
spring constant. There are some options for defining k. We
adopted the form:

k ¼ cexp −
dPDBij

a

 !2
8

<

:

9

=

;

; ð5Þ

where a and c are constants determined independently of the
atomic types of i and j. In this formulation, the spring constant
k decreases with the increasing distance between the atoms. It
is possible to set a cutoff distance to neglect the interaction
between remote atoms. We usually used c = 1 and a = 5 Å.
The ENM-NMA results do not strongly depend on the func-
tional form or the parameter values.

A coarse-grained model is used in most ENM-NMA cal-
culations, where each residue is represented by a Cα atom
only. In contrast, we adopted a full-atom system in the
ENM-NMA computational program named PDBETA
(Wako and Endo 2013). In practice, the full-atom system
can be adopted, because a much smaller number of indepen-
dent variables are required in DAS than in CCS (discussed
below). Consequently, PDBETA is applicable to a system
involving DNA, RNA, and ligand molecules without
transforming them into a coarse-grained model.

Furthermore, ENM-NMA frees the conformational energy
minimization that is necessary to perform the orthodox NMA
in advance. This is because the PDB structure is considered as
the energy-minimum conformation in ENM-NMA. In fact,
very precise energy minimization of a PDB structure required
in orthodox NMA is the most time-consuming process. In
addition, the problem that the energy-minimum conformation
sometimes deviates significantly from the PDB structure is
resolved in ENM-NMA. In spite of such a sweeping approx-
imation, many studies have shown that ENM-NMA can pre-
dict global conformational changes associated with the bio-
logical functions of the proteins (Tama and Sanejouand 2001;

Krebs et al. 2002; Alexandrov et al. 2005; Tobi and Bahar
2005; Dobbins et al. 2008; Bahar et al. 2010; Skjærven et al.
2011; Wako and Endo 2011).

Dihedral angle system

The NMAmethod used in ProMode, ProMode-Oligomer, and
ProMode-Elastic developed by the authors is characterized by
the use of dihedral angles as independent variables, and its
application to a full-atom system of any molecule including
not only proteins but also DNA, RNA, and ligand molecules
in the PDB data.Whereas an amino acid residue is represented
by a Cα atom in most NMA calculations, we have been fo-
cusing on the use of the full-atom system for properly accom-
modating any molecules in the PDB data without coarse-
graining them.

We have used a molecular structure model with fixed bond-
length and bond-angle geometry. In this system, an indepen-
dent variable is a dihedral angle of a rotatable covalent bond
rather than the Cartesian coordinates used in most NMA ap-
plications. If more than one molecule exists in a system, how-
ever, six additional variables (i.e., translational and rotational
variables) are necessary for each additional molecule.
Therefore, it is possible to involve water molecules in a sys-
tem. However, we have removed them to keep the number of
variables small.

DAS has an advantage with respect to the number of var-
iables to define the molecular conformations, compared to
CCS. In the case of a protein molecule, the number of vari-
ables in DAS is approximately one-eighth of that in CCS for a
full-atom system. Because memory size requirements, and,
thus, computing time, are proportional to the square or to the
cube of the number of variables, this is critical, particularly for
huge systems. Another advantage is that DAS naturally in-
volves the chain connectivity that plays an important role in
determining the folding pattern of a polypeptide chain, where-
as CCS is required to take measures to maintain the chain
connectivity in NMA calculations. However, DAS is not as
popular as CCS because NMA in DAS, in particular matrices
F and H defined in Eqs. 1–3, is formulated in a mathemati-
cally complicated manner than compared to that of CCS
(Noguti and Gō 1983a, b).

In the NMA calculation in DAS, it is required to represent a
molecular system as a tree in the sense of graph theory. This is
essential for rapid calculation of the second derivatives of the
potential energy functions with respect to the dihedral angles
(Noguti and Gō 1983b; Abe et al. 1984; Wako and Gō 1987).
It is possible to extend this into a system consisting of two or
more molecules in the same framework as the formulation for
a one-molecule system. Such a system can be also represented
as a tree, including translational and rotational variables
(Braun et al. 1984; Higo et al. 1985; Wako et al. 1995).
Although the NMA calculation includes mathematically
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complicated formulas, the computation program can be coded
in a comprehensive manner so that it may work for any molec-
ular systems represented as a tree. Therefore, the tree represen-
tation of a system is essential in the NMA calculation in DAS.

In the tree representation, a molecule comprises of a rigid-
body portion that contains one or more atoms and a rotatable
covalent bond connecting the rigid-body portions. The rigid-
body portion and the rotatable covalent bond correspond to a
vertex and an edge of a tree graph, respectively. In our previ-
ous works, the vertices and edges are simply referred to as a
unit and bond, respectively (Wako and Gō 1987; Wako et al.
1995).

A critical feature of the tree representation of a molecule is
that the tree cannot have any loops. In particular, a loop con-
taining any rotatable covalent bond is not allowed in the NMA
algorithm for a rapid calculation of the second derivatives of
the potential functions. One of the challenging points is asso-
ciated with various ring structures in the PDB data including
an aromatic ring and a sugar ring. These are not problematic as
long as they can be regarded as rigid bodies that do not contain
any rotatable bonds. However, if, for example, a disulfide
bond is formed in a protein, a loop is generated containing
rotatable covalent bonds within it. In this case, it is difficult to
acknowledge that the rigid-body assumption of the loop is
appropriate. The same result is possible if a ligand molecule
binds to a protein with more than one covalent bond. In such
cases, we have avoided the loop problem by assuming that
one of the covalent bonds in the loop is non-bonded in order to
break the loop. Instead, a strong force is imposed at some
distance between the atoms to maintain the original bond
length and bond angles by incorporating a pseudo-potential
energy for loop closing.

Inversely, using this strategy, we can introduce flexibility in
the sugar ring of DNA and RNA. For example, an O4’-C1’
bond was regarded as non-bonded, and the loop-closing po-
tential was applied to the four atom pairs (O4’, C1’), (C4’,
C1’), (O4’, C2’), and (O4’, N1) to maintain the bond length
and bond angles. The introduction of flexibility to the sugar
ring in this manner provided better quantitative results than
those calculated with the rigid-body sugar rings (Wako and
Endo 2013).

The process to construct a tree from PDB data is given in
our previous paper (Wako and Endo 2013). Essentially, any
molecules in the PDB data can be represented as a tree.
Because a disulfide bond and a ring structure can be algorith-
mically detected, the tree representation of the PDB data can
be performed automatically except for few peculiar data. Once
the system is presented as a tree, NMA can be performed by
the same computer program. In fact, NMA has been demon-
strated for various systems composed of not only proteins but
also DNA, RNA, and various ligand molecules.

Making full use of the characteristics of NMA in DAS, we
have tried to introduce another possibility. We fixed some of

the dihedral angles in the NMA calculations. By this opera-
tion, the number of independent variables can be reduced
while the full-atom system is being considered. For example,
it is possible to fix the side chain dihedral angles and one of
the main chain dihedral angles,ω, which keeps a flat peptide
plane. In this system, the conformations of the system can be
treated with only the main chain dihedral angles, ϕ and ψ, as
independent variables. That is, each residue has only two var-
iables, in contrast to three variables (x, y, and z coordinates) of
the Cα atom used in CCS. Figure 1 shows how the units and
bonds are re-defined in fixing the dihedral angles.

NMA for the system with only ϕ and ψ as independent
variables (referred to as system B) provides fluctuation pro-
files of atoms similar to the system in which any rotatable
dihedral angles are taken into computation (system A), as
shown in Fig. 2 and Fig. S1 in the supplementary material.
In Fig. 2, the fluctuation profiles for residues of the two sys-
tems are compared for the various PDB data with resolution
less than 1 Å. The closed circles in Fig. 2 show the RMS
difference of the calculated fluctuations from those estimated
by temperature factors for system B plotted against that for
system A. In this comparison, the temperature in the NMA
calculation was adjusted so that the mean fluctuation may be
coincident with the fluctuation estimated from a temperature
factor. The diagonal line indicates that the RMS differences

a

b

φ ωψ

χ

φ ψ

ω

φ

φ

Fig. 1 Tree representation of a molecule. The tree is composed of a unit
and a bond. The atoms enclosed with a dashed line constitute a rigid-body
component referred to as a unit. A chemical bond with a rotation arrow is
rotatable and referred to as a bond. a All dihedral angles are considered
rotatable (system A). b Main-chain dihedral angle ω and side-chain
dihedral angles are fixed, and, thus, only main-chain dihedral angles, φ
and ψ, are rotatable (system B)
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for the two systems are identical. Figure 2 suggests that the
deviations between the RMS differences for the two systems
do not differ significantly. In Fig. 2, the proteins are classified
according to their sizes. Clear dependence on protein size is
not found. Figure 2 also indicates that most of the RMS devi-
ations of the calculated fluctuation profiles from the tempera-
ture factors are less than 0.2 Å.

In Fig. S1, the fluctuations in the system where only ϕ and
ψ are changeable were compared with those calculated from
temperature factors for a specific example: a spliceosomal
protein, Prp8, which is a heterodimer of two subunits of 334
and 1407 amino acid residues (PDB ID: 4i43) (Query and
Konarska 2013). The correspondence between the calculated
and experimentally observed fluctuations was good except for
residues on the protein surface. In the NMA calculation, the
side chains of residues on the protein surface were allowed to
fluctuate rather freely, because there were no molecules sur-
rounding it. In contrast, such side chains are restrained by
other proteins surrounding them in the crystal.

We also examined RMS differences between the fluctua-
tion profiles of the two systems, A and B (not shown here).
The small differences of less than 0.1 Å also suggest that
fixing the side chain and ω dihedral angles is a good
approximation.

Furthermore, it is possible to set up various situations in
NMA in DAS. For example, the fluctuations of protein in a
crystalline environment have been studied in CCS (Hinsen
2008; Riccardi et al. 2009; Hafner and Zheng 2010; Lu and

Ma 2013). In contrast to these studies, we explored a simple
model where the atoms surrounding the relevant molecules in
the crystal are considered as a rigid body. These atoms are
considered as one unit in a tree representation. Because it is
not necessary to consider the connections between the atoms
within the rigid-body part, it is possible to consider only the
atoms relatively near to the relevant molecules. By this model,
it was confirmed that the large fluctuations of the side chains
on the protein surface, a problem mentioned above, are con-
trolled so that they may coincide with the fluctuations calcu-
lated from the temperature factors (unpublished results). For
another possibility, NMA can be applied to the system of
virtual bonds (Cα-Cα bonds) with fixed virtual bond angles.
In this case, the number of independent variables is one per
residue. Interestingly, the profiles of atomic fluctuations are
reproduced well in such a roughly constructed model (unpub-
lished results).

NMA in DAS can provide various systems in which some
parts of molecules are fixed and, thus, they are treated as a
rigid body. The preliminary results shown above indicate that
such rigid-body approximation is of little influence to NMA.
Although it is important to clarify the reason why such ap-
proximations are effective, we cannot show it at this point. It
requires further study.

As mentioned before, for any model, it is required to rep-
resent the system as a tree, and the NMA calculation program
need not be modified any further.

Illustration of normal mode analysis

Protein for an illustration

In this section, we will demonstrate various dynamic aspects
of molecules that can be derived by NMA for the PDB data.
For this purpose, we used the PDB data for catabolite activator
protein (CAP). CAP is a transcriptional activator known to
regulate hundreds of transcription units by responding to fluc-
tuations in the cellular concentration of cAMP. CAP un-
dergoes cAMP-mediated allosteric transition to modulate
DNA-binding activity. Allostery, in which ligand binding to
a protein alters an activity at a distant site, was interesting from
the perspective of protein dynamics. Although Rodgers et al.
(2013) and Townsend et al. (2015) have already discussed the
allostery of CAP based onNMA,wewill discuss this textbook
example of allostery based on our ENM-NMA calculations.

The three-dimensional structures of CAP have been deter-
mined in the three states: (a) in the absence of cAMP and free
from DNA (PDB ID: 2wc2) (Popovych et al. 2009), (b) in the
cAMP-bound state and free from DNA (1g6n) (Passner et al.
2000), and (c) in the cAMP-bound state and in complex with
DNA (1j59) (Parkinson et al. 1996).

Fig. 2 Root mean square (RMS) differences of the two systems, A and
B, defined in Fig. 1. The protein structure data in the Protein Data Bank
(PDB) with high resolution (less than 1 Å) were examined. A closed
circle denotes RMS differences between calculated and experimentally
observed atomic fluctuations for systems A and B (horizontal and vertical
axes, respectively). The diagonal line indicates that they are identical. The
proteins are classified into three groups by their sizes: yellow, green, and
red indicate that the protein size is less than 100, 100 to 300, and greater
than 300, respectively
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CAP is a homodimer (Fig. 3a). Although it is essentially
symmetric, the 3D structures of the two subunits are not ex-
actly identical in the PDB data. Minor differences between the
NMA results for the two subunits are given below. Each sub-
unit is composed of two domains: an N-terminal cAMP-bind-
ing domain (CBD; residues 1–136) and a C-terminal DNA-
binding domain (DBD; residues 139–209). The two domains
are linked by a short hinge region (residues 137–138). Of
seven helices termed A to F, C-helix in CBD (residues 111–
136 in 1g6n and 1j59 and 112–126 in 2wc2) forms an inter-
face between the two subunits; F-helix in DBD (180–192
in 1j59) are inserted into the DNA double-helix major groove.
These two helices are important to describe the cAMP-
mediated allosteric transition of CAP. The cAMP binding sites
are residues, 30, 49, 61, 71–73, 82–83, 124, and 127–128 in
CBD. According to the PDB data, it was found that the F-
helices in DBD are rotated by ~60° and translated ~7 Å to
insert into the DNA major groove upon cAMP binding to apo
CAP (Popovych et al. 2009).

Fluctuation of atoms

One of the major properties calculated in NMA involves
atomic fluctuations. Two types of atomic fluctuations are cal-
culated: displacement vectors of atoms of individual normal
modes and their average over all the normal modes and time
(RMS atomic fluctuations). As the RMS atomic fluctuations
can be estimated from temperature factors provided in the
PDB data, the calculated and experimentally observed atomic
fluctuations are compared for assessing NMA results. As tem-
perature factors can only provide information regarding the
magnitude of the atomic fluctuations in most of the PDB data,
it is generally problematic to compare the calculated and ex-
perimentally observed atomic fluctuations with respect to their
directional properties. Such a comparison is possible for the
PDB data with anisotropic temperature factors, and there is
some literature that discusses this method (Atilgan et al. 2001;
Eyal et al. 2007; Yang et al. 2009; Hafner and Zheng 2011).
However, we have not discussed this in our review.

C helix

F helix

CBD

CBD

DBD

DBD

c2 c3c1

a b

Fig. 3 Normal mode displacement vectors of atoms of 1j59. The
magnitude of the displacement vector is exaggerated for clarity but is
proportional to its actual value. It is presented as different colors for tail
and head halves. The lowest frequency normal mode is shown for the two
systems. a PDB conformation with protein, DNA, and cAMP. N-terminal
cAMP-binding domain (CBD) and C-terminal DNA-binding domain
(DBD) are in pink and magenta in chain A, and in cyan and blue in chain

B, respectively. b The displacement vectors of atoms for NMA of the
CAP-DNA-cAMP complex. c1–c3 The displacement vectors of atoms
for NMA of CAP only. Although the DNA is shown, it was not taken into
account in the NMA calculations. The displacement vectors shown in c1
are decomposed into the external and internal motions in c2 and c3,
respectively
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In contrast, the displacement vectors of atoms for individ-
ual normal modes provide significant information on protein
dynamics. The individual normal modes show characteristic
motions that differ frommode tomode, and it is suggested that
some of them are closely related to the functional movements
of proteins, as mentioned below. In particular, the low-
frequency normal modes show concerted motions of amino
acid residues, such as opening-and-closing motions and slid-
ing motion around the interfaces of domains and subunits.
Such information cannot be obtained by a simple visual in-
spection of the PDB structure without calculating the dynamic
properties by NMA (and MD).

Figure 3 presents the displacement vectors of atoms in the
lowest-frequency normal mode of CAP with and without DNA
and cAMP. The concerted motions of several groups of atoms,
i.e., CBD and DBD, are clearly observed in Figs. 3b and c1. In
the CAP-DNA-cAMP complex (Fig. 3b), the DBDdomain and
DNA are integrated and move together.

Figure 4 shows the residue-by-residue fluctuation profiles
of atoms of apo CAP and CAP-DNA-cAMP complex, togeth-
er with those calculated from the temperature factors in the
PDB data of the CAP-DNA-cAMP complex. As the ampli-
tudes of normal modes cannot be determined in ENM-NMA,
the calculated fluctuation profiles were adjusted so that their
mean values would coincide with those of the experimentally
observed profiles. Figure 4 illustrates that the experimentally

observed fluctuations are well reproduced, including DNA, by
ENM-NMA.

In Fig. 4, large fluctuations are found around DNA and F-
helices (180–192) bound to the DNA. The irregularly struc-
tured region in DBD (153–162), which is remote from the
interface between the two subunits and is not involved in
DNA binding, and B-helices in CBD, which is the most re-
mote from the DNA, also fluctuate on a large scale. However,
the fluctuations of the residues involved in cAMP binding and
C-helices (111–136) forming the interface of the two subunits
are relatively small. Generally speaking, the residues on the
exterior fluctuate considerably, whereas those in the interior
fluctuate to a much lesser extent.

It should be noted that the low-frequency normal modes
dominantly contribute to the time-averaged properties (Gō
1990). In addition, the movements of some low-frequency
normal modes are observed in the conformational change
from apo and holo forms of an enzyme protein, as described
later.

Correlation between atomic movements

The coordinated movements of atoms are one of the most
important characteristics to be examined in protein dynamics
studies. The correlation of motions is calculated as an inner
product of displacement vectors of two atoms, and usually

a

C

b

Fig. 4 Fluctuations of atomswith
and without DNA. The black and
red solid lines represent
fluctuations of the CAP-DNA-
cAMP complex and apo CAP,
respectively. The cyan dashed line
indicates fluctuations calculated
from the temperature factors in
the PDB data (1j59). The A and B
chains are subunits of the protein
dimer, the C-F and D-E chains are
DNA double helices. Panel b is an
enlargement of the DNA regions
in panel a
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normalized by their magnitudes. These values are calculat-
ed for individual normal modes, and then averaged over all
normal modes and time. The averaged property is referred to
as the correlation coefficient (CC). The CC has values be-
tween − 1 and 1.

The large positive CC indicates that the atoms move in
the same direction. If an atom pair is spatially close, this
suggests that the atoms form strong interactions. In the
protein structure network analysis, the clusters of residues
with large positive CCs are considered to play structurally
and functionally important roles. The communication of
distant residues through such residues is discussed in sub-
sequent sections.

Conversely, a large negative CC indicates that the two res-
idues move in the opposite direction. Because such residue
pairs are found around active sites, and interface areas be-
tween domains and between subunits, such information is
important for relating protein dynamics to protein function.

Figure 5 shows a correlation map for the CAP-DNA-
cAMP complex, which reveals the CC values of residue
pairs. Each residue is represented by one specific atom:
Cα and C4’ atoms for protein and DNA, respectively. The
correlation map highlights clusters of residues with large
positive CCs between them, which correspond to second-
ary structures and domains. The large negative CCs be-
tween the clusters suggest their repulsive movements. In
Fig. 5, the two domains, CBD and DBD, appear as clus-
ters of residues with large positive CCs. Positively

correlated residue pairs are also found in the following
pairs of regions: DNA strands forming double helices
(region a in Fig. 5), DNA and F-helix (regions b and c),
the C-helices of the A and B chains (region z), and the C-
helix and CBD (regions x and y). Negatively correlated
residue pairs are found in the following pairs of regions:
CBD and DBD in the same chain (regions p and q) and
CBDs in the A and B chains (region s). The correlation
coefficients between DBDs in the A and B chains (region
t) are mixed; some residue pairs are positively correlated,
but others are negatively correlated. These observations
help create a global image of the dynamic structure of
the CAP-DNA-cAMP complex.

Correlation maps can be created for individual normal
modes. These are significantly different from the correlation
map for the average CC (Fig. 5) and between themselves, as
shown in Fig. S2 in the supplementary material. This is an-
other representation of the individual normal modes, different
from the displacement vectors shown in Fig. 3.

In a comparative study (Wako et al. 1996) of homologous
proteins that show essentially the same folding characteristics
but have a slight difference in amino acid sequences and local
structures, the correlations calculated by the full-atom NMA
are found to be useful to detect their differences in static and
dynamic structures. Differences can be difficult to detect by
simple visual inspection of static structures, whereas these can
be revealed because a change in the interactions is definitely
reflected in the NMA correlations between atoms.
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Fig. 5 Correlation map for the
CAP-DNA-cAMP complex.
Mean correlation coefficients
over all normal modes and time
for the representative atoms, Cα
for the protein and C4’ for the
DNA, are plotted. The residue
pairs are ranked according to their
correlation coefficients and
shown by the different colors
indicated in the legend
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Internal and external motions of individual subunits in an

oligomeric protein

NMA has been applied to oligomeric proteins such as hemo-
globin (Seno and Gō 1990a, b), G-protein coupled receptors
(Niv and Filizola 2008), membrane proteins (Bahar et al.
2010), and immunoglobulins (Wako and Endo 2012). It has
also been applied to multimeric structures such as subtilisin-
eglin c complexes (Ishida et al. 1998), protein-DNA com-
plexes (Yang et al. 2006), and protein-RNA complexes
(Wako and Endo 2013) to reveal the structure–function rela-
tionships, with particular attention to the influence of
oligomerization and complex formation with other molecules.

In these studies, Ishida et al. (1998) proposed an approach
to investigate the mutual motions between the constituent sub-
units andmolecules. In anNMA of oligomeric and complexed
proteins, translational and rotational motions of the whole
protein are eliminated by the Eckart condition (Eckart 1935).
Accordingly, all motions considered are attributed to the inter-
nal degrees of freedom of the whole system. However, when
these internal motions are further broken down into motions of
the constituent subunits and molecules, we have two motions
characteristic to the oligomer and complex, i.e., internal and
external motions of individual subunits and molecules. The
internal motion is a deformation motion, and the external one
is a rigid-body motion of each constituent changing its mutual
disposition. They may be referred to as tertiary and quaternary
movements, respectively. The external motion is considered
key to understanding the dynamics of oligomeric and com-
plexed proteins.

A simple formula for the decomposition ofmotions into the
internal and external components is possible in NMA in DAS,
and given in Ishida et al. (1998). Eventually, the mean-square
fluctuation of atom α, <(Δrα)

2>, is decomposed into three
terms: internal motion, <(Δrα

int)2>, external motion,
<(Δrα

ext)2>, and their cross-correlation, <Δrα
intΔrα

ext>:

< Δrαð Þ2 >¼< Δrint
α

� �2
> þ < Δrext

α

� �2
> þ2

< Δrint
α
Δrext

α

� �

>; ð6Þ

where <…> denotes an average over all the normal modes and
time.

These values for CAP of apo and complex forms are plot-
ted against the residue numbers in Fig. 6. The internal motions
are considerably larger than the external motions for both
forms. However, this depends on the specific system consid-
ered. We have other examples in which both motions are
comparable to each other (Wako and Endo 2012). Figure 6
indicates that the internal motions of individual components,
i.e., subunits and DNA, determine the sum ofmotions of CAP.
However, as far as the low-frequency normal modes are con-
cerned, the internal and external motions are comparable to

each other, as shown in Fig. 7. Because the motions of low-
frequency normal modes are presumably related to biological
function, this fact should be noted. In other words, the external
motions have the potential to play an important role in protein
dynamics related to function.

In the internal motions in Fig. 6a, the differences between
apo and complex forms are distinctive around DBD; the inter-
nal motions in the apo form are much larger than in the com-
plex form because of the absence of the interactions with
DNA.

The third term on the right-hand side of Eq. 6, i.e., the
cross-correlation between internal and external fluctuations,
is plotted in Fig. 6b. For the apo-form CAP, large positive
values around DBD suggest that the deformative fluctuations
and the rigid-body ones of DBD are concerted and they am-
plify the total fluctuations (see large fluctuations of DBD in
the apo-form CAP in Fig. 6a). In contrast, large negative
values around C-helices of the two subunits, which form the
interface between them, suggest that the internal motions have
an almost inverse phase with the external motions to attenuate
the total motions. These types of behavior in the interface
region are found in other examples (Ishida et al. 1998; Wako
and Endo 2012). Similarly, in CAP complexed with DNA,
negative values of DNA and F-helices, i.e., interface of the
DNA and protein, are found, suggesting the same situation. In
addition, much larger negative values of the cross-correlation
term of DNA are remarkable. This reflects the flexibility of
DNA. When DNAmoves away from the protein, DNA easily
changes its conformation to resist such movement.

Whenwe turn our attention to the individual low-frequency
normal modes, it is interesting to characterize the external
motions of the individual subunits and molecules. For this
purpose, we defined translational and rotational vectors for
the external motions of the individual subunits in the λth nor-
mal mode as follows (Wako and Endo 2012):

Tλ ¼ ∑
α

mαΔrext
α;λ

� �

=∑
α

mα ð7Þ

Rλ ¼ Γ
−1 ∑

α

mα ra−r
G

� �

�Δrext
α;λ ð8Þ

where rα and rG are coordinate vectors of atom α in the
minimum-energy conformation and the center of mass of the
subunit, respectively, and mα is a mass of atom α. The sum-
mation is taken over the atoms in the subunit. The inertia
tensor Γ is given as:

Γ ¼ ∑
α

mα

y2
α
þ z2

α
−xαyα −xαzα

−xαyα z2
α
þ x2

α
−yαzα

−xαzα −yαzα x2
α
þ y2

α

0

@

1

A; ð9Þ

where (xα, yα, zα) = (rα − rG). The dimensions of the two
vectors, Tλ and Rλ, are Å and radians, respectively. The two
vectors are useful for characterizing mutual movements of
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subunits.
The translational and rotational vectors of the three lowest-

frequency normal modes defined for individual subunits for
CAP are shown in Fig. 8. The lengths of vectors are exagger-
ated, but proportional to their absolute values. Although the
sizes of the translational vectors cannot be compared with the
rotational vectors directly, the rotational motions of atoms
distant from the center of mass are usually more dominant
than the translational motions. Interestingly, these vectors of
the three normal modes are perpendicular to each other in
general, although it is not necessarily true between the trans-
lational vectors of modes 1 and 3 in this illustration. This

suggests that various motions are easily generated by a com-
bination of them including opening-and-closing and sliding
motions. As the external motions are comparable with the
internal motions in the low-frequency normal modes as men-
tioned above, it is plausible that the external motions may

Fig. 6 Decomposition of
fluctuations of atoms into internal
and external motions for the
CAP-DNA-cAMP complex and
apo CAP. a The internal and
external motions are plotted by
solid and dashed lines,
respectively. b The correlation
term of the internal and external
motions. The black and red lines
are for the CAP-DNA-cAMP
complex and apo CAP,
respectively

1

1

1

13

2
3

3

2

2
2

3

A chain

B chain

Fig. 8 Translational and rotational vectors of the three lowest-frequency
normal modes for the subunits A and B. These are shown by the blue and
red arrows with the normal mode numbers, respectively. The original
points of the vectors are centers of mass of the individual subunits. The
vector lengths are exaggerated, but are proportional to their absolute
values

Fig. 7 The mean magnitudes of displacement vectors of atoms of
internal and external motions for the 50 lowest-frequency normal
modes. The red and blue lines show internal and external motions,
respectively
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contribute significantly to a correlative motion of distant res-
idues, such as allosteric movement.

Ligand-induced conformational change

Ligand binding to a protein is an essential process in many
biochemical phenomena. A conformational change to either a
larger or a smaller size plays an important role in the ligand-
binding mechanism. In fact, conformational changes of the
side chains of a binding site (Najmanovich et al. 2000;
Zavodszky and Kuhn 2005), small movements and/or defor-
mation of loops (Malkowski et al. 1997; Karthikeyan et al.
2003), large-scale domain motions (Kraft et al. 2002;
Magnusson et al. 2004; Amemiya et al. 2012), and quaternary
movements of subunits (Xiong et al. 2002; Benison et al.
2008) have been observed during the binding of a ligand to
proteins. The intrinsic thermal motion of proteins is consid-
ered responsible for the conformational changes upon ligand
binding. It has been found that the observed conformational
changes upon ligand binding correlate well with the confor-
mational change of some low-frequency normal mode vibra-
tions (Tama and Sanejouand 2001; Krebs et al. 2002;
Alexandrov et al. 2005; Tobi and Bahar 2005; Dobbins et al.
2008; Wako and Endo 2011).

Following Wako and Endo (2011), we will illustrate how
the conformational change vectors of atoms from the apo to
holo forms of a protein can be represented by a linear combi-
nation of the displacement vectors of atoms in the apo form
calculated for the lowest-frequency m normal modes (m = 50
in this paper).

First, two conformations of the apo and holo forms of a
protein, which are represented by atomic coordinates sets {xα}
and {yα}, respectively, were best-fitted. The NMA of the apo
form provides a displacement vector of atom α in the jth
normal mode, bα,j (j = 1, 2,…, m). As temperature cannot be
defined in the ENM-NMA, bα,j is normalized such that
Σbα,j

2 = 1 for any normal modes, j. It is assumed that the
conformational changes of the apo form can be expressed by
a linear combination of the displacement vectors with a proper
set of weighting factors for the jth normal mode, {wj} (j = 1,
2,…, m), as follows:

qα ¼ xα þ ∑
m

j¼1
w jbα; j ð10Þ

Then, we estimated the set of weighting factors to best-fit
{qα} to {yα} by minimizing the following objective function
by the least-squares method:

F ¼ ∑
α

yα−qαð Þ2 ð11Þ

The conformation generated with the estimated weighting
factors is referred to as a least-squares fitting (LSF)

conformation.
For CAP, three cases were examined: (a) from the apo form

to cAMP binding form (2wc2→ 1g6n), (b) from the apo form
to cAMP andDNA binding form (2wc2→ 1j59), and (c) from
cAMP binding form to cAMP and DNA binding form
(1g6n→ 1j59). The notation, X→ Y, in parentheses, means
that X is changed based on its displacement vectors of atoms
obtained from its NMA calculation to best-fit to Y by the
least-squares method with respect to weighting factors.
Figure 9 shows superimposed conformations for the cases
(a) and (c). The RMS differences between the superimposed
conformations are shown in Table 1. The regions with large
deviations in the LSF conformations from the target are shown
in Fig. S3 in the supplementary material. Figure 10 shows the
sets of weighting factors obtained using the least-squares
method for the three cases.

These results show that a few low-frequency normal modes
mainly contribute to their conformational changes: (a) the
third, (b) the first and third, and (c) the first and second
lowest-frequency normal modes according to Fig. 10. In the
case of (a), however, the LSF conformation still differs from
the targets. Significant deviations are found in the C-terminal
regions of C-helices (Fig. S2). The comparison between the
PDB conformations indicates that the key conformational
change induced by cAMP is a coil-to-helix transition of the
segment of residues 126–136 in the C-helices. This kind of
large conformational change cannot be predicted by NMA.

Nonetheless, the LSF and target conformations are globally
very similar. The molecular motions of the first, second, and
third lowest-frequency normal modes can be observed in the
figures of atomic displacement vectors and GIF animations
presented in the ProMode-Elastic database at PDBj. In these
motions, four domains, i.e., two CBDs and two DBDs in two
subunits, A and B, vibrate in a repulsive manner to one anoth-
er but in various directions, depending on the modes. The
basic conformations of the individual domains are retained
in these modes; the two subunits exhibit the same behavior.
The above results show that apo-to-holo conformational
changes are undergone in combination of these motions.
Consequently, even if two residues are distant from each other,
they can move in a coherent manner.

This fact suggests that it might be incorrect to attribute
the conformational change upon ligand binding entirely to
the coil-to-helix transition of the C-terminal segment of the
C-helices. It is emphasized above that the external motions
are dominant over, or comparable to, the internal motions in
the low-frequency normal modes. Therefore, a possible ex-
planation of the real-world scenarios in CAP is a combina-
tion of global and local, or quaternary and tertiary, confor-
mational changes.

Twenty-two paired proteins in the holo and apo forms,
which undergo relatively large conformational changes,
were examined previously, and similar results were
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obtained (Wako and Endo 2011). The results showed that,
in most cases, the conformational change was reproduced
well by a linear combination of the displacement vectors
of a small number of low-frequency normal modes.
Although the conformational change around an active site
was reproduced as well as the entire conformational
change in these cases, it was not successful for some
proteins that underwent significant conformational chang-
es around active sites.

In the above study, we supposed a situation that con-
formations around the apo form of a protein are generated
by the linear combination of the displacement vectors of
low-frequency normal modes obtained by ENM-NMA by
varying the weighting factors in Eq. 10. This may help to
solve the flexible-docking problem of a protein with an-
other molecule because the results presented here suggest
that they have a relatively high probability of being in-
volved in an actual conformational change (Meireles
et al. 2011).

Network analysis

One of the important dynamic aspects obtained from NMA is
coordinated movements of atoms and residues. The concerted
motions of a cluster of residues described above are one of
such phenomena to be noted. Another interesting aspect is a
network of residues where the remote residues communicate
with each other via other residues. Recently, a network anal-
ysis based on graph theory, which is popular in social sciences
and in complex-system studies, has been applied to a protein
structure to elucidate structurally and functionally important
residues, intra- and inter-protein communication, and allostery
(Vendruscolo et al. 2001; Amitai et al. 2004; Böde et al. 2007;
Tang et al. 2007; Chennubhotla and Bahar 2007;
Vishveshwara et al. 2009; Papaleo et al. 2012; Raimondi
et al. 2013). This kind of network is referred to as a protein
structure network (PSN). PSN is analyzed for not only static
but also dynamic structures of proteins. In the PSN analysis,
various properties are calculated to characterize the network:
shortest communication pathways, various centrality mea-
sures to elucidate important residues such as degree, close-
ness, and betweenness, a cluster of residues, and so on. In this
review, we tentatively applied a network analysis method to
the NMA results of CAP, particularly with respect to the be-
tweenness centrality, and demonstrated its application.

The PSN of CAP was individually defined for the ten
lowest-frequency normal modes, in addition to the static struc-
ture (i.e., the PDB structure). The network is composed of
vertices and edges. A Cβ atom is assigned to a vertex for

Table 1 Root mean square (RMS) differences between conformations

X→ Y X and Y (Å) LSF and Y (Å)

(a) 2wc2→ 1g6n 5.15 (4.53) 3.16 (2.11)

(b) 2wc2→ 1j59 4.79 (4.01) 3.35 (2.19)

(c) 1g6n→ 1j59 2.73 (2.34) 1.63 (0.90)

RMS difference between two conformations is calculated for all atoms
and only for main-chain atoms. The latter value is shown in parentheses

a1

c1

a2

c2

Fig. 9 Superimposed
conformations before and after
applying the least-squares
method. a1 apo form (2wc2; red)
and cAMP binding form (1g6n;
yellow) conformations, and a2

LSF (green) and cAMP binding
form conformations are
superimposed. c1 cAMP binding
form (1g6n; red) and cAMP and
DNA binding form (1j59; yellow)
conformations, and c2 LSF
(green) and cAMP and DNA
binding form conformations are
superimposed
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representing a residue (a Cα atom for a Gly residue). For the
PDB structure, spatially neighboring residues were connected
by an edge; i.e., if at least one atom pair between two residues
was located within a given cutoff distance (5.0 Å in this
study), they were connected by an edge. For the network
based on the normal mode, two residues were connected by
an edge, if they were spatially neighboring and moved in a
coherent manner; i.e., one more condition that the inner prod-
uct of displacement vectors of two Cβ atoms is greater than a
given cutoff value (0.8 in this study) was added for the edge
definition. This condition means that the two connected Cβ
atoms move in the similar direction. The networks defined for
the individual normal mode vibrations are ‘subgraphs’ of the
network defined for the PDB structure.

We calculated the betweenness centrality for every residue
(i.e., vertex) in these networks. For every pair of residues in a
network, there exists a shortest path between them. The be-
tweenness for a residue is defined as the number of these

shortest paths that pass through the residue. A residue with
higher betweenness would have more control over the net-
work because more residues communicate with each other
passing through that residue.

Figure 11a shows the betweenness values of individual
residues for the PDB conformation and ten lowest-frequency
normal modes. The betweenness is normalized by dividing by
the total number of residue pairs. The betweenness profiles for
the ten normal modes differ frommode tomode, and from that
for the PDB structure. In the profiles for the normal modes,
compared to that for the PDB structure, there are residues
whose betweenness values are significantly larger than those
of others. In Table S1 in the supplementary material, the res-
idues with higher betweenness (> 0.12) are shown with the
mode numbers. These residues are indicated in the space-
filling model in Fig. 11b. Interestingly, these residues continue
from the cAMP binding site (residues in green in Fig. 11b)
into the DNA binding site, F-helix, via C-terminal of C-
helices and the interface region between CBD and DBD, par-
ticularly E-helices.

Moreover, we analyzed certain enzyme proteins with this
method (results not shown here). The residues with higher
betweenness in some normal modes were found at ligand
binding sites. These results suggested that the ligand binding
sites are located in the central part of the residue–residue com-
munications. This also implies that network analysis is useful
in characterizing the individual normal modes.

Discussion

NMA is useful to analyze both local fluctuations and global
motions. In local fluctuations, not only the mean fluctuations
average over all the normal modes and time, but also the
displacement vectors of atoms in the individual normal modes
are examined (Figs. 3 and 4). It is also important to notice that
the structure of a specific region is flexible or rigid-body-like.
For this analysis, fluctuations of dihedral angles and a decom-
position of the fluctuation of the specified region into internal
and external motions can provide useful information (Hirose
et al. 2010). For global motions, the concerted motions
appearing in the low-frequency normal modes play a signifi-
cant role. To inspect such motions, the correlation map shown
in Fig. 5 and translational and rotational motions of the indi-
vidual subunits shown in Fig. 8 are helpful for visualizing the
global behaviors of a protein. Thus, NMA can create vivid
pictures of mutual motions between the secondary structures,
between the domains, between the subunits, and between the
proteins and other molecules.

In this review, we have demonstrated NMA by applying it
to an allosteric protein, CAP. The mechanism of allostery is
still controversial. Several theoretical possibilities have been
proposed (Laskowski et al. 2009; Townsend et al. 2015).

Fig. 10 Contributions of the 50 lowest-frequency normal modes in the
least-squares fitting (LSF). The normalized weighting factor,wi

2/W (i = 1,
2,…, 50), where W = Σwi

2, is shown. a 2wc2→ 1g6n, b 2wc2→ 1j59,
and c 1g6n→ 1j59
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One possibility is that a change of a local structure upon an
effector molecule binding induces a change in conformation
or orientation of the remote active site to fit a ligand, irrespec-
tive of the fluctuation patterns of the low-frequency normal
modes. This type of description is typically provided in a
comparative study of static structures. In fact, the comparative
study of the PDB structures of apo and complexed CAP re-
vealed differences in the C-termini of C-helices, and, thus,
they are attributed to allosteric conformational changes
(Popovych et al. 2009).

Another possibility is that conformational changes related
to the low-frequency normal modes make it possible for an
active site to respond to the effector molecule binding at the
remote position. In the CAP study, it was shown that the
ligand-induced conformational change can be reproduced
with a combination of several low-frequency normal modes,
at least to some extent. The low-frequency normal modes are

characterized by the long-range correlation distance. In oligo-
meric proteins, the rigid-body-like motions of individual sub-
units are also possible candidates to induce correlative mo-
tions of remote regions.

The third possibility is that the communications among
positively correlated residues carry an allosteric signal and
then cause some response of the active site on effector mole-
cule binding. In the CAP, the residues located from the cAMP
binding site to the DNA binding site have relatively higher
betweenness centrality values. However, at this point, this
explanation is interesting, but plausible in a conceptual sense.
Nothing is revealed about what kind of signal might be carried
through these residues to trigger an allosteric response on
effector molecule binding.

The above study suggests that the actual events occurring
in CAP seem to be a mixture of these possibilities. We have
demonstrated that NMA can be utilized to overview protein

F-helixF-helix

a

b

Fig. 11 Betweenness of residues
for the PDB structure and ten
lowest-frequency normal modes
of CAP. aBetweenness values are
plotted and are shifted upward by
0.3× (normal mode number) for
clarity. The bottom line is the
betweenness of the PDB
conformation. b Residues with a
high betweenness value are
represented by a space-filling
model on a cartoonmodel of CAP
(see also Table S1 in the
supplementary material). Of the
residues with a high betweenness
value, those that are bound to
cAMP are shown by a green
space-filling model. CBD and
DBD in the A chain are colored
pink and magenta, respectively,
and those in the B chain cyan and
blue, respectively
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dynamics at various levels of structures, i.e., atoms, residues,
secondary structures, domains, and subunits. The comparison
of the same protein in different states, e.g., apo and holo con-
figurations, and free and complexed states, as well as compar-
isons between homologous proteins provide useful
information.

In general, it is difficult to arrive at rigorous theoretical
explanations for protein dynamics only employing NMA
due to the approximations that are introduced. Additional
measures such as MD is necessary to complement NMA.
Nevertheless, many researchers have shown that NMA can
provide appropriate results consistent with MD simulations.
Rapid computation and calculation of analytically well-
defined properties are key advantages under NMA, which
allows systematic analyses of many proteins. NMA should
be a useful first step toward the study of protein dynamics
and can be utilized to facilitate the understanding of protein
dynamics.
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