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Summary. A uniformly valid linear viscoelastic rheology is described which 
takes the form of a ‘generalized’ Burgers’ body and which appears capable of 
reconciling the behaviour of the Earth’s mantle across the complete spectrum 
of geodynamic time-scales. This spectrum is bracketed by the short time- 
scales of body wave and free oscillation seismology on which anelastic effects 
are dominant, and the long time-scale of mantle convection on which the 
Earth behaves viscously. The parameters of the model which control the 
viscous response are fixed by post-glacial rebound data whereas those which 
govern the anelasticity are to be determined by fitting the model to obser- 
vations of seismic Q. The paper is concerned primarily with a discussion of 
the normal mode spectrum of the Earth as a generalized Burgers’ body. 
Focusing upon the homogeneous model, it includes an initial analysis of the 
accuracy of first-order perturbation theory as a method of calculating the 
respective Qs of the elastic gravitational free oscillations. Also considered are 
the quasi-static modes of relaxation which only exact eigenanalysis can reveal. 
The importance of these modes is assessed within the context of a discussion 
of the effect of viscoelasticity upon the efficiency of Chandler wobble 
excitation. 

1 Introduction 

One of the most controversial questions in geodynamics concerns the precise nature of the 
rheological law which governs the response of mantle material to an applied stress. On the 
one hand it has become generally accepted that linear anelastic processes are dominant on 
the time-scale appropriate to a seismic body wave or to an elastic gravitational free oscilla- 
tion. Several similar constitutive relations have been suggested to describe the recoverable 
deformation associated with such dissipative processes, including the modified Lommitz law 
preferred by Jeffreys (1972, 1973) and the closely related ‘absorption band’ models adopted 
by Liu, Anderson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kanamori (1976) and Minster & Anderson (1980,1981). On the other 
hand it is also, although perhaps less generally accepted, that on time-scales in excess of a 
few hundred years the Earth behaves viscously. This follows from the observed behaviour of 
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496 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the planet following melting of the large northern hemisphere ice caps which achieved their 
maximum extents c. 2x lo'yr BP (e.g. Peltier 1974; Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Andres 1976; Peltier 1981). 
That the complete rheological law should be one which exhibits such a transition from short- 
term anelastic to long-term viscous dominance is an hypothesis which is still strongly 
disputed in some quarters (eg. Jeffreys 1972, 1973) although such behaviour is a well- 
known characteristic of crystalline materials at high temperature (Nowick & Berry 1972). If 
such a transition did not occur then the mantle could not support thermal convection and 
the hypothesis of continental drift, lacking a rational physical explanation, might be less 
enthusiastically embraced. 

The fact that mantle material does support a steady state viscous mode of deformation 
has fortunately been very well verified in numerous high temperature creep experiments in 
the laboratory, mostly on single crystal olivine (e.g. Kohlstedt & Goetze 1974; Durham & 
Goetze 1977). Such controversy as continues to exist involves either the question of the 
time-scale over which the transition from anelastic to viscous behaviour occurs, or the issue 
as to whether the stress-strain relation is linear or non-linear in the visous regime. Both of 
these issues are of crucial importance in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso far as the interpretation of post-glacial rebound 
is concerned. The model developed in Peltier (1974) for this purpose consisted of a linear 
viscoeleastic Maxwell solid in which transient anelastic effects were ignored entirely. When 
this model is fit to the rebound data one obtains a value for the equivalent Newtonian 
viscosity of the mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv which is 0(1O2* poise, cgs units) and accordingly the mantle begins 
to deform viscously in response to an applied shear stress after a time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,,, = v / p  (the Maxwell 
time) which is on the order of a few hundred years. It has been variously suggested (e.g. 
Anderson & Minster 1979) that the time-scale of post-glacial rebound is sufficiently short zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA103yr) that it should be governed by transient anelasticity rather than the steady creep 
assumed in the Maxwell analogue. Peltier, Yuen & Wu (1980) have given several arguments as 
to why this is unlikely to be the case although the arguments are not completely definitive. 
One of the most telling concerns the fact that the steady state viscosity inferred by employ- 
ing the Maxwell model to invert post-glacial rebound data has just the value which is 
required by mantle convection models of the drift process (Peltier 1980). 

The second point of contention which remains in the attempt to achieve a consensus 
regarding a working model for the rheology of the mantle concerns the linearity of the 
constitutive relation in the steady state creep regime. Although the laboratory data for single 
crystal olivine clearly display non-Newtonian behaviour (Kohlstedt & Goetze 1974; Durham 
& Goetze 1977) at high stress levels, there is mounting evidence that at the low stress levels 
which are obtained in post-glacial rebound and convection (less than IJ lo2 bar) the creep 
mechanism may become linear. This might be understood as a consequence of the fact that 
grain boundary processes become important under these circumstances (the mantle is poly- 
crystalline) and such microphysical processes lead to a linear relation between stress and 
strain (Twiss 1976; Berckhemer, Auer & Drisler 1979). Recent theoretical studies by 
Greenwood, Jones & Sritharan (1980) indicate furthermore, that the transition stress which 
marks the boundary between linear and non-linear behaviour is not as sharply defined as has 
previously been believed. Laboratory experiments on sintered polycrystalline olivine 
(Relandeau 1981) have shown that the transition from non-linear to linear creep occurs at 
around 50 bar for 1600°C. Also germane to the issue of the linearity of the constitutive 
relation in the viscous regime is the recent review by Breatheau et al. (1979) on the flow 
properties of oxides which shows that a Newtonian creep mechanism cannot be ruled out 
for oxide assemblages in general. 

Given the plausibility that the rheology of the mantle might well be linear (for moderate 
stress levels) across the entire geodynamic spectrum, which includes the broad range of 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Diagram illustrating the relation of the characteristic time-scale for several geodynamic pheno- 
mena to the Maxwell time of the upper mantle. Long time-scale phenomena are goverened by u, , while 
short time-scale events are controlled by uI or a range of ul in the continuous relaxation spectrum (from 
Peltier ef d. 1981). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
phenomenological time-scales illustrated in Fig. 1, it is not at all unreasonable to enquire as 
to the form which a complete constitutive relation would then take. Peltier, Wu & Yuen 
(198 1) have suggested that the simplest linear viscoelastic model consistent with the obser- 
vations consists of a generalized Burgers' Body. This analysis shows that such a model 
behaves essentially as a Maxwell solid is so far as post-glacial rebound is concerned if the 
parameters which control the short time-scale response are constrained by fitting the model 
to the observed Qs of the elastic gravitational free oscillations. The purpose of this paper is 
to develop further the properties of this general linear viscoelastic model and to apply it to a 
detailed study of the normal modes of a homogeneous earth model, focusing particularly 
upon the free oscillations. Section 2 provides a brief discussion of the constitutive relation 
for the generalized Burgers' body. In Section 3 we give a sketch of the mathematical struc- 
ture of the free oscillations problem for models with viscoelastic rheology and a discussion 
of numerical methods. Numerical results for the free oscillations of two different versions of 
the anelastic component of the Burgers' body rheology are presented in Section 4. First- 
order perturbation theory for the viscoelastic models is reviewed in Section 5 and applied to 
infer the frequencies and Qs of the same free oscillations determined by exact eigenanalysis 
in Section 4. Comparison of these results enables us quantitatively to assess the magnitude 
of the error incurred through application of first-order perturbation theory. In Section 6 we 
consider the physical implications of the existence of the quasi-static poles in the anelastic 
normal mode spectrum. This is pursued within the context of a brief discussion of the 
effects of anelasticity upon the efficiency of Chandler wobble excitations. Our main conclu- 
sions are summarized in Section 7. 

2 The mantle as a generalized Burgers' body 

Linear viscoelastic constitutive relations may be represented in either differential or integral 
form with the latter being the more general. Although the conventional models which have 
simple spring and dashpot analogues may be represented in differential form, the integral 
representation is required for the more elaborate models necessary to describe the Earth's 
mantle. Since the simple models will also be employed in our discussion of normal modes 
we will begin with a brief sketch of their properties. 

2.1 DIFFERENTIAL CONSTITUTIVE RELATIONS 

Fig. 2 shows a sequence of standard one-dimensional spring and dashpot analogues of the 
simplest linear viscoelastic rheologies. The solid described by the analogue shown in Fig. 2(c), 
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498 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A. Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPb -Pz'S)-Pz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+--pp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 v; --v,ts,--v; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IC) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI d )  

Figure 2. One dimensional springand-dashpot mechanical models for the four linear viscoelastic solids 
discussed in the text: (a) Maxwell, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) standard linear solid [SLS], (c) Burgers' body with single Debye 
peak, (d) generalized Burgers' body with a continuous spectrum of relaxation times. 

which was first introduced by Burgers' (1935), is the simplest linear model which exhibits 
the transition from short-term anelastic to long-term viscous behaviour which we expect to 
be characteristic of the Earth's mantle. It consists essentially of the superposition of a 
Maxwell element (Fig. 2a) and a standard linear solid (Fig. 2b). Three-dimensional tensor 
forms for the constitutive relations of these rheological models may be obtained using 
standard differential methods, which are discussed for example in Eringen (1967). For the 
Burgers' body the relation between the stress tensor ukl and the strain tensor ekl is (Peltier 
el al. 1981) 

In (1) the dot denotes differentiation with respect to time, p l ,  and X are the unrelaxed 
(elastic) Lam6 parameters, and p2 is the shear modulus associated with the Kelvin-Voigt 
element (see Fig. 2). For this model the modulus defect A = p l / p 2 .  The two viscosities v1 
and v2 are respectively the long and short time-scale parameters and it is clear from Fig. 2(c) 
that there is only a' single relaxation time associated with the Kelvin-Voigt element. The 
constitutive relations for the simpler Maxwell and standard linear solids may be derived 
from the general expression (1). Taking the limit v2 + Q) in (1) yields 

which may be integrated once in time to give the Maxwell constitutive relation 

which was employed by Peltier (1974) in developing the viscoelastic model for glacial 
isostasy. If in (1) we take the opposite limit vl  + 00 then we obtain 
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Normal modes of the viscoelastic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA499 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
which can also be integrated once to yield the constitutive relation for the standard linear 
solid as 

If in ( 2 )  we take the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--* = or in (3) the limit v2 + = then we obtain the well-known 
constitutive relation for the Hookean elastic solid 

okl=2C(1eklt Alekk6kl. (4) 

The Burgers' body described by (1) is completely specified by the five parameters (A,, p l  , 
v, ,  p2,  v2).  Two of these parameters (Al, p, )  are in common with the Hookean elastic solid 
and for the Earth are reasonably well-known functions of radius determined by the syste- 
matic inversion of free oscillations data. In addition the long-term viscosity v l ,  has been 
determined by the inversion of post-glacial rebound data. The remaining variables p2 and v2 
are to be determined by fitting the model to observations of short time-scale anelastic 
processes, principally the observed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQs of the elastic gravitational free oscillations. 

As we shall show explicitly in Section 4, however, it is probably not possible to fit the 
single Debye peak model, embodied within the standard linear solid part of the general 
constitutive relation, to the observed free oscillations. The observed dependence of Q upon 
frequency is far too weak to be explicable by the simplest model which must consequently 
be generalized. In this respect the Earth's mantle bears a strong resemblance, rheologically, 
to amorphous polymers which require for the correct description of their anelastic behaviour 
the superposition of a number of elementary molecular processes acting essentially indepen- 
dently of one another (Ferry 1980). This circumstance is illustrated schematically in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2(d) 
in which a chain of Kelvin-Voigt elements represents this superposition of distinct processes. 
Such models may be described most economically by introducing the notion of a continuous 
relaxation spectrum (Gross 1947; Zener 1948; MacDonald 1961; Liu et al. 1976). 

2.2 INTEGRAL CONSTITUTIVE RELATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As the number of Kelvin-Voigt elements in the generalized Burgers' body of Fig. 2(d) 
approaches infinity, the relaxation spectrum becomes continuous. This in turn necessitates 
the use of the integral representation of the constitutive relation which follows from the 
Boltzmann superposition principle. Although the differential constitutive relations have 
obvious mechanical interpretations in terms of springs and dashpots they are not completely 
general. Although' every differential law may be written in terms of Boltzmann hereditary 
integrals, the converse is not true (Fluegge 1975). In linear theory the most general func- 
tional form of an anelastic relation between stress q j  and strain eij may be written 

in which Cij, is a fourth-order tensor function for stress relaxation (Christensen 1971) and 
the convolution integral in T is to be regarded as a Stieltjes integral. 

For an isotropic material, ( 5 )  reduces to 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are the two stress relaxation functions required to describe an isotropic linear 
viscoelastic solid. If the anelasticity of the mantle were felt only in shear and not in compres- 
sion, then (6) could be rewritten zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A. Yuen and W. R. Peltier 

where 

K = X + - p  

is the bulk modulus. Although dislocation theory provides no simple rationale for the 
existence of bulk dissipation in crystalline solids there is some evidence from both free 
oscillation and body wave data (Anderson 1980; Cormier 1981) that it could be important 
in the liquid core. 

Restricting ourselves first to a description of the anelastic component of the visco- 
elasticity it is useful to introduce the notion of a normalized relaxation function by expres- 
sing the time dependent modulus p ( f )  as 

2 

3 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApR is the relaxed shear modulus of the generalized Burgers' body, A = ~ ~ - / . I R ) / P R  is 
the modulus defect or relaxation strength, and $(f) is the normalized relaxation function. 
This relaxation function, following standard works on linear viscoelasticity (Gross 1953; 
Christensen 1971), may be expressed in terms of the equivalent relaxation spectrum R 
through the following integral transform, 

General thermodynamic considerations (Christensen 197 1 )  require @(t) to decrease from 
unity to zero as time tends to infinity. 

In their studies of transient wave propagation in an absorption band solid, Minster 
(1978a, b) and Chin (1980) employed a relaxation spectrum which was hyberbolic in shape 
This model was 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, the relaxation time at constant strain and B a normalization constant. For this 
relaxation spectrum we may obtain a simple analytic form for p(s) by substitution in (9) 
and (8) and direct Laplace transformation. This process gives (Minster 1978a, b) 

where Q, is a parameter which determines the relatively constant quality factor Q within 
the absorption band (Kanamori & Anderson 1977). The modulus defect A for this model 
is related to Q, by 
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Normal modes of the viscoelastic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

with the approximation obtaining with reasonable accuracy for geophysically plausible 
parameters such as those employed by Minster (1978b). Using Minster's values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 250, 
T2 = 104s, T1 = lO-?s) we obtain A = 0.03 [i.e. 0(10-2)]. Models such as (10) are commonly 
employed in analyses of the viscoelastic behaviour of polymers (Ferry 1980) and we shall 
restrict our attention to it since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( s )  is known analytically from (1 1) and since it does seem 
to suffice as a good first approximation to mantle anelasticity. 

This model is not, of course, capable of describing the phenemenon of post-glacial 
rebound or of mantle convection since it is purely anelastic in character. In order to describe 
such phenomena we require a rheology whose eventual behaviour is viscous. Some assistance 
in obtaining an appropriate transformed shear modulus for such material is available by 
inspection of the forms of the transformed moduli for the simple differential constitutive 
relations discussed in Section 2.1. These were derived by Peltier et al. (1981) and for the 
Burgers' body shown in Fig. 2(c) are 

The transformed moduli for the standard linear solid with the one dimensional analogue 
shown in Fig. 2(b) can be obtained from (1 3a, b) in the limit v1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 as 

Whereas the moduli for the Maxwell solid employed by Peltier (1974) in the model of glacial 
isotasy can be obtained from (13a, b) in the limit v2 + 00 as 

PlS 

= s+llllv, 

It is now clear that if we replace the term in square brackets in (13a) by the term in square 
brackets in (1 1) we will have an expression for the transformed shear modulus of a material 
which behaves on a short time-scale like an anelastic solid if the Maxwell time vJpl = T, is 
much longer than time-scales in the anelastic regime [i.e. T, > (T1, T2)]. Since the shear 
modulus (1 1) or a simple variant of it provides quite a good fit to the available seismic data, 
so will the generalized Burgers' body constructed in this fashion. Furthermore this new 
rheological law (stated in Peltier et ul. 1981) also reconciles the data of post-glacial rebound 
since the material it describes behaves like a Newtonian viscous fluid for times in excess of 
the Maxwell time. The transformed shear modulus for our simple version of the generalized 
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Burgers' body is then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A. Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier 

The shape of the relaxation spectrum for such a model may be obtained following the 
methods outlined in Gross zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1953) or Ferry (1980, chapter 4). Theoretically it may be feasible 
in the future to invert for the relaxation spectrum from laboratory experiments, as is 
commonly done in polymer dynamics (Ferry 1980). When this inverse procedure is followed 
one finds that the relaxation spectrum consists of the superposition of a continuous part and 
a discrete peak associated with the eventual plastic response. Gross zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Pelzer (1951) demon- 
strated that the incorporation of plasticity always produces this effect on the spectrum 
which therefore has the schematic form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T ~ )  = A's (7, - T,) + R (T€). 

In analysing the mechanical behaviour of an earth model composed of material with 
rheology described by (14) we intend to employ the correspondence principle in the same 
way it was employed in Peltier (1974) to develop the viscoelastic theory of glacial isostasy. 
This requires the Laplace transform domain representation of the constitutive relation which 
we may write as 

6ij = X(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZkk 6 j j  + 2p(s) i i j  

in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( s )  is given by (14) and 

2 
X(s) = K 3 P(S)  

with K the elastic bulk modulus in order to ensure that the model has no bulk dissipation. 

3 Viscoelastic normal modes 

Our preliminary analysis will be restricted to consideration of a spherical, non-rotating, 
viscoelastic and isotropic continuum which is perturbed from its hydrostatic equilibrium 
configuration by oscillations of infinitesimal amplitude. Such self-gravitating motions satisfy 
the following linearized momentum and Poisson equations (see Gilbert 1981, for a recent 
discussion). 

v.a-V(pgU.6,) - p v ~ + g v . ( p u ) ~ , = - p s ~ u  (16) 

V2@ = -4nGV*(pu) (17) 
which have been written in the domain of the Laplace transform variable s. The scalar fields 
p( r ) ,  g(r )  represent the variation of density and gravitational acceleration with radius in the 
unperturbed sphere (we will take p ( r )  = po since our discussion will be restricted to homo- 
geneous models), u is the stress tensor, @ the associated perturbation of the gravitational 
potential, and G is the gravitational constant. i, is a radial unit vector and s = s, t isi is the 
(complex) Laplace transform variable. Since s is complex so is the shear modulus (14) as is 
the second Lame parameter X(s) which is required to represent the stress tensor in terms of 
the strain tensor. In attacking the viscoelastic free oscillations problem in this fashion, by 
solving an equivalent elastic problem with complex moduli, we are employing the so-called 
Correspondence Principle and in so doing following the same approach as in Peltier (1974) 
for the post-glacial rebound problem. A similar approach to the analysis of the vibration 
spectrum of polymers has been exploited by Hunter (1969, Christensen (197 l), Rabotnov 
(1980). 
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N o d  modes of the viscoehtic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA503 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We lose no important generality by seeking solutions to (16) and (17) in the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAke and k, are unit vectors in the directions of increasing latitude and longitude 
respectively and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI is the Legendre polynomial of degree I. Substitution of (18) into (16) 
and (17) leads to two decoupled sets of first-order ordinary differential equations of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
form 

d x  
- = B X  
dr 

dY 
-=AY 
dr 

where X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (Wl, T&l)T, Y = (Ul, V,, Trl, Tel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41, and A and B are the 2 x 2 and 6 x 6 
matrices given explicitly in Gilbert (1980). The parameters TrI, Tor, and T6, are the coeffi- 
cients in the spherical harmonic expansions of the urr, ore and or+ components of the stress 
tensor and the t 

(It l)$/r t 4nGpur. The systems (19a) and (19b) respectively govern the toroidal and 
spheroidal free oscillations. The spheroidal system with I = 0 describes motion which is 
purely radial so that Vo = TO, = 0 and (@o, Qo) decouple from Uo, Tro leading to a simplifi- 
cation of (19b) for radial modes which may be written as 

are the coefficients in the expansion of the auxilliary variable q = 

dZ 

dr 
cz - =  

n is the index used to label the radial eigenstates, and C is the 2 x 2 matrix given in Gilbert 
(1980). 

The present study will be restricted to an analysis of the effect of viscoelasticity upon the 
vibration spectrum of the homogeneous earth model with elastic properties listed in Table 1 
which are appropriate to the average earth. Solutions for the elastic free oscillations of a 
homogeneous sphere are well known and have been discussed by Love (191 l), Pekeris & 

Table 1. Model parameters of a homogeneous earth model. 

Parameter Symbol Value 

Volumetrically averaged density p o  

Volumetrically averaged h 

Lam6 constants I.rl 

Gravitational acceleration g 
Earth's radius a 
Long-term viscosity V1 

SS17kg m-) 
3.5288 X1O"N m-a 
1.4S19X1011N m-* 
9.82 m s-* 
6.371 X lo6 m 
101'P 
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504 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jarosch (1958), and Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Backus (1968), among others. These solutions are also quoted 
in the recent texts by Garland (1979) and Aki & Richards (1980). For convenience of 
numerical comparison we have adopted here the notation of Takeuchi & Saito (1972). 

D. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier 

3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASECULAR FUNCTIONS A N D  N U M E R I C A L  METHODS FOR C O M P L E X  

Complex eigenvalues of the homogeneous systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 9) are determined from simultaneous 
zero crossings of the real and imaginary parts of the secular functions Dks, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )  associated with 
each set of equations. The secular functions are determined by the boundary conditions at 
the Earth’s surface. For the toroidal system (1 9a) the explicit form of the secular function 
is (Takeuchi & Saito 1972) 

EIGENVALUES 

Dl(s, O=U-1)h&a) -k lah+ l (k~a)  (204 

where the complex wavenumber 

and po is the constant density of the ‘average’ earth model. For the spheroidal system (19b) 
the characteristic equation is of the form 

G I  G I  G I  
D2(s, I )  = det T:I (20b) 

( Q i  Q: 

where the superscripts 1, 2, 3 denote the three linearly independent solutions which are 
regular at the origin, each of which consists of a combination of two spherical Bessel func- 
tions jl(z) with different complex arguments and a polynomial in r of degree 1 .  Explicit 
forms will be found in Takeuchi & Saito (1972). The secular function for the radial system 
(1 9c) is simply 

where k2(s) = :PO [16nCp,/3 - s2]/[A(s) + 2p(s)]} 1’2. 

The values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs for which both real and imaginary parts of a secular determinant vanish 
constitute the discrete eigenvalues for that class of viscoelastic normal mode. This approach 
to the forward calculation of complex eigenspectra is exact and simple, yet has not been 
pursued previously. It should be contrasted with the phenomenological approach employed 
by Liu et al. (1976), Kanamori & Anderson (1977), Minster (1980), and Minster & Anderson 
(1980, 1981) in which Q, for example, is calculated directly from the Fourier transform of 
a given creep function. The differences between these two approaches will be discussed in 
detail in following sections. 

All of the eigenspectra to be reported have been determined using double precision 
complex arithmetic on an IBM 3300 system and are accurate to the number of figures stated 
in the attached tables. The crucial constraint on the accuracy of the calculations concerns 
the evaluation of spherical Bessel functions with complex arguments. These calculations have 
been performed using an algorithm based upon continued fractions due to Lentz (1976) 
which was found to be at least five funes faster than the traditional method using downward 
recursion (e.g. Luke 1977). Because of the efficiency of the numerical computations for the 
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Normal modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAviscoelastic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA505 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
homogeneous model we can afford to do a preliminary reconnaisance of the complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs- 
plane on a 30x30 (or so) mesh to obtain preliminary zero crossings of the real and 
imaginary parts of a given secular function. The procedure is commonly employed in hydro- 
dynamic stability problems which have the same mathematical structure as the free oscil- 
lations case (e.g. Davis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Peltier 1976, 1977). Further refinement of these approximate 
eigenvalues is achieved by employing the Muller iteration scheme (Traub 1964) which is 
interrupted when accuracies of 1 part in lo8 have been achieved. The Muller scheme requires 
no derivative evaluation and has the desirable property of nearly quadratic convergence. We 
found the alternative Newton-Raphson scheme with damping for systems of equations 
(Dahlquist & Bjorck 1974) to fail in situations in which the topography of the Df(s) surface 
is sufficiently rugged. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2 EIGENSPECTRA FOR THE HOMOGENEOUS VISCOELASTIC EARTH 

Our first purpose in this section is to contrast the eigenspectra of the homogeneous earth 
model for the two different anelastic rheologies discussed in Section 2. The first model we 
shall employ is the standard linear solid (SLS) whose relaxation spectrum consists of a single 
Debye peak. The second is the absorption band recently popularized by Liu et ul. (1976) 
and Kanamori & Anderson (1977). For the SLS the shear modulus p(s) is given by (13c), 
while 

2 

3 
X(S) = K - - M(S) 

as in (13d) ensures zero bulk dissipation. p(s) for the absorption band is defined in (1 1) and 
in the prototype of this rheology we shall employ Tl = 10-2s, T2 = 2 x 104s, and Q, = 250, 
all of which are within the range of values employed by Minster (1978b) in his study of 
transient wave propagation. Again 

2 
X(S) = K - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 P(S) 

to ensure no bulk dissipation. 
In Fig. 3 we show the location of the spheroidal modes .S2(0 G n < 5) in the complex 

s-plane for both the SLS and absorption band rheologies with parameters fKed to the values 
shown. The first effect of anelasticity is to displace the elastic modes from their locations 
on the imaginary saxis into the second quadrant where the eigenvalues s have negative real 
part. The individual modes therefore consist of exponentially decaying sinusoids. The second 
effect of anelasticity is to introduce a separate feature into the spectrum which has no elastic 
counterpart. In the case of the SLS this new feature consists of a single pole on the negative 
real s-axis corresponding to a mode whose temporal behaviour consists of exponential decay. 
With v2 = lo" poise the relaxation time for this mode which accompanies the .S2 free 
oscillations is 15.94hr. Such quasi-static modes, which play a crucial role in the theory of 
glacial isostasy within the context of the Maxwell model, are viscous%ravitational in nature. 
For a homogeneous model in which density is constant everywhere there is only one such 
spheroidal mode for each value of 1 and this is supported by the density contrast across the 
free outer surface of the model. For the absorption band rheology no such isolated quasi- 
static mode exists; rather the negative real s-axis has branch points at s =-1/T1 and 
s = - l/Tz and must be cut to ensure that functions dependent upon s (such as the secular 
function) remain single valued. The importance of the discrete quasi-static modes for the 
SLS rheology or of the equivalent quasi-static continuum for the absorption band model will 
be illustrated in Section 5 in the context of a brief discussion of Chandler wobble excitation. 
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f i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Our main purpose here is to explore the manner in which anelastic rheology modifies the 
eigenspectra of the free vibrations. For the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASLS the single anelastic parameter is the short 
time-scale viscosity v2. In Fig. 4 we show the variation of the periods of a few fundamental 
modes (expressed as a fraction of the elastic period T ~ )  and their quality factors Q as a 
function of u2. For Q we employ the definition q =sR/2sI which has a simple interpretation 
as the inverse of the width of a resonance line at half-maximum height in the theory of 
weakly damped linear systems. Inspection of Fig. 4 shows that the normal mode period is 
increased by anelasticity, as is well known, and that the magnitude of the shift in period 
maximizes for sufficiently small u2. The most rapid change of period TA occurs for the same 
value of v2 for which the Q of the mode is minimized. Inspection of the figure shows that 
the critical value u2 for these few modes is in the vicinity of 1015P and this is the value of 
v2 for which the relaxation time is on the order of the period of the oscillation. For a given 
v2 the Q of the radial mode oSo is higher than the Q of the spheroidal mode oS2 and this in 
turn is higher than the Q of the toroidal mode oT2.  This is of course, a consequence of the 
relative partitioning of shear and compressional energy among the different modal types. 

-10’ -los -lo5 -10‘ -10’ -102 -10 iy -2 -I o I 2 

(day-‘ 1 

Figure 3. Spectrum of a uniform anelastic earth for spheroidal modes with I = 2. (a) and (b) represent 
SLS and absorption band rheologies respectively. Arrows denote the nature of the analytic continuation 
of the elastic poles. Eigenvalues occur in pairs u = SR + is1 and u* = SR - iq. Only one is displayed here. 
Note the single quasi-static pole on the negative real s-axis for (a). In (b) the branch cut betweeen 
s = - (l/T,) and s = - (l/T2) arises from the multi-valued nature of the shear modulus p(s) in the absorp- 
tion band model. 
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Normal modes of the viscoehtic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA507 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lag zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA??(PI Lag *(PI 

Figure 4. Shift zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin eigenperiod (a) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ@) for SLS model as a function of v2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Since the SLS rheology described through the moduli (13) has no bulk dissipation, it is clear 
that for fixed v2 the Q of a mode will be higher the larger the ratio of compressional to shear 
energy. The curves in Fig. 4 are reminiscent of the frequency dependence of the complex 
moduli themselves (Zener 1948). 

In order to fit the single Debye peak SLS rheology to the observed Qs of the Earth's free 
vibrations, which are on the order of a few hundred, and at the same time introduce a 
negligible shift in normal mode periods away from their elastic values one must clearly be 
on the high v2 side of the Q minimum at v2 = 1015P. The choice v2 = O(1017P) yields a Q 
for 0S2 of a few hundred and for the fundamental radial mode oSo of a few thousand. These 
Qs are near the observed values for the real radially stratified Earth. A value of u2 on this 
order for the SLS was previously obtained by Scheidegger (1957) in an analysis of the 
damping of the Chandler wobble. Smith & Dahlen (1981) have recently reanalysed this 
datum in terms of an absorption band rheology. 

Fig. 5 shows dispersion diagrams for the free vibrations of a homogeneous earth with 
either of the prototype SLS or absorption band rheologies. Since the period shifts away 
from the elastic values are small the rheologies cannot be distinguished from one another 
qualitatively through this effect. We should note here that our exact complex eigenvalue 
calculations were checked on the non-dissipative limit against the tables previously published 
for the homogeneous model by Sit0 & Usami (1962). In Table 2 we have listed period and 
Q for a representative set of spheroidal and toroidal modes for the prototype absorption 
band model. 

The Q data for the two rheological models (prototype SLS and absorption band) are 
shown in Fig. 6 for the same representative set of modes. In terms of these data the two 
rheologies are clearly distinguished from one another. For the SLS with v2 = 1017P, Q 
increases monotonically with I (and therefore from Fig. 5 ,  with frequency) such that Q 
becomes proportional to frequency at high frequencies. This is precisely the behaviour to be 
expected from the single Debye peak model. The monotonic order of magnitude variation in 
Q for the first 25 fundamental spheroidal modes is not compatible with the observed weak 
frequency dependence of Q for the real Earth. Although this might be compensated to some 
extent by radial heterogeneity of v2,  the required heterogeneity would likely be so extreme 
as to make the model implausible from a microphysical point of view. This conjectur 
deserves to be investigated in the context of calculations with a realistic stratified earth 
model. Also of interest for the SLS rheology is the non-monotonic behaviour of Q with I for 
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508 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A. Yuen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 2. Periods and Q of uniform earth model for a representative set of 
toroidal and spheroidal modes. The parameters of the anelastic model are 
Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 250, T, = lO-’s, T2 = 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 10‘s. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mode 

0’2 

0’8 

0’10 

0’12 

0’4 

0’6 

0’14 

0’16 

0’18 

0’20 

1’2 

1’4 

1’6 

1% 

1’10 

1’12 

1’14 

1’16 

1’18 

IS20 

lS4 

4’8 

4’2 

4’6 

4’10 

4’12 

4’14 

4’16 

4’18 

4’20 

5’2 

5’4 

5’8 

5’12 

5’6 

5’10 

5’14 

5’16 

5’18 

5’20 

7 (min) 

44.39896 

24.29450 

17.60728 

13.91895 

11.53770 

9.86332 

8.6 I851 

7.65543 

6.88754 

6.26063 

26. I9460 

15.55849 

11.32725 

9.12235 

7.74594 

6.77891 

6.04863 

5.47158 

5.00 I 33  

4.60938 

10.55482 

7.79216 

6.31281 

5.59749 

5.0 I684 

4.54916 

4.16119 

3.83402 

3.55563 

3.31734 

8.46778 

7. I0043 

5.90683 

5.004 7 I 

4.47407 

4.08914 

3.77322 

3.5046 I 

3.27224 

3.06913 

rA(min) 

44.88788 

24.561 17 

17.80037 

14.07015 

11.66260 

9.96925 

8.71031 

7.73632 

6.95915 

6.32578 

26.49103 

15.13126 

11.45458 

9.22584 

7.83367 

6.85511 

6.11597 

5.53 190 

5.05594 

4.65925 

10.66386 

7.83494 

6.4 3226 

5.65501 

5.06870 

4.59588 

4.20359 

3.87287 

3.59156 

3.35083 

8.56511 

7.17467 

5.94308 

5.04202 

4.51709 

4.13001 

3.81108 

3.53965 

3.30481 

3.09955 

Q 

310.341 

291.664 

2111.993 

216.4 14 

272.787 

270.239 

268.353 

266.YOl 

265.149 

264.815 

248.318 

274.464 

262.120 

253.660 

249.489 

247.598 

246.700 

246.239 

245.988 

245.844 

286.338 

514.628 

292.513 

264.008 

259.442 

258.203 

257.486 

256.409 

254.797 

252.901 

248.269 

269.046 

453.896 

352.195 

273.688 

261.564 

258.252 

256.915 

256.026 

255.050 

Mode 

2’2 

2% 

2’10 

2’12 

2’4 

2’6 

2’14 

2’16 

2’18 

2’20 

3’4 

3’8 

3’10 

3’2 

3’6 

3’12 

3’14 

3’16 

3’18 

3’20 

OT2 

OT4 

OT6 

OT8 

OTIO 

OT12 

OT18 

OT20 

I T2 

OT 14 

OT16 

1 T4 

IT6 

IT8 

I T 1 0  

IT12 

IT14 

IT16 

lT18 

IT2O 

T (min rb(min) 

15.05375 15.22837 

11.45600 11.58526 

9.20507 9.30558 

7.66033 1.74258 

6.56755 6.63801 

5.77465 5.83681 

5.17762 5.23339 

4.70968 4.76027 

4.33000 4.37627 

4.01356 4.05618 

11.59225 11.65618 

8.90743 Y.00174 

7.50368 7.58458 

6.49478 6.56392 

5.72074 5.78071 

5.10796 5.16109 

4.61585 4.66374 

4.21683 4.26060 

3.88914 , 3.92951 

3.61554 3.65303 

52.03158 52.76394 

25.54420 25,87962 

17.51766 17.19916 

13.52644 13.69267 

11.03607 11.16872 

9.33307 9.44927 

8.10411 8.19822 

7.16315 7.24511 

6.42136 6.49396 

5.82100 5.88605 

18.23679 18.46811 

13.39900 13.56350 

10.69650 10.82463 

8.94514 9.05018 

7.70861 7.79762 

6.78485 6.66205 

6.06644 6.13451 

5.49058 5.55152 

5.01798 5.07308 

4.62213 4.61299 

Q 

261.692 

261.308 

263.353 

262.505 

258.198 

253.598 

250.263 

248.212 

247.018 

246.325 

527.073 

269.869 

260.64 7 

259.781 

259.684 

258.532 

256. I42 

253.326 

250.85 I 

249.003 

246.750 

245. I78 

244.815 

244.679 

244.623 

244.604 

244.605 

244.615 

244.631 

244.651 

244.841 

244.615 

244.618 

244.603 

244.608 

244.622 

244.642 

244.665 

244.690 

244.715 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
overtone number n > 2. The local Q maxima along each overtone branch occur for modes in 
which the ratio of compression to shear energy is largest. Such Q determinations as have 
been made for the spheroidal overtones (Anderson & Hart 1978) very clearly show the same 
non-monotonic behaviour as predicted by even the simple homogeneous model considered 
here (eg. the measurements for & and &). Recent inversions of the free oscillations data 
to obtain intrinsic Q as a function of depth which employ only the fundamental mode data 
(Stein, Mills & Geller 1981) show that these data offer very little in terms of depth resolu- 
tion. In view of the poor quality of the toroidal Q measurements simultaneous inversion of 
the spheroidal and toroidal fundamental mode data (e.g. Deschamps 1977) cannot be 
expected to resolve the problem. The overtone data must clearly play an important role in 
future analyses. 

Inspection of the Q results in Fig. 6 for the absorption band model shows that this model 
reconciles the gravest difficulty with the SLS rheology which was its prediction of a monotonic 
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Normal modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the viscoehtic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OVERTCUE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANllMBER (n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA509 

ANGUAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAORDER (1)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5. Eigenfrequencies for radial, spheroidal and toroidal modes of a homogeneous anelastic earth. 
Rheological parameters for the absorption band model are (Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 250, T, = 1O-'s, T, = 2 X 10's). 
Differences in eigenfrequencies between anelastic and elastic normal modes are too small to be discernible 
in the fgure. See Table 2 for a detailed listing of the eigenfrequencies belonging to the elastic and 
anelastic modes. 

increase of Q with frequency (or Z) for fixed overtone number. The toroidal mode Qs are all 
constant (panel f )  and equal to the parameter Q, of the absorption band model. For the 
spheroidal modes (panel d) there exists a single local Q maximum which is developed across a 
sequence of three or four modes and which exists for overtone numbersii > 2. The height of this 
maximum is, however, a decreasing function of overtone number n. Otherwise the normal 
mode Qs all cluster about the constant Q, of the absorption band. Fig. 7 further illustrates 
the variability of Q with n for fixed I = 2, 16. For the absorption band, the trend Q (I) for 
the radial modes of the homogeneous model (panel b) also resembles real data (eg. Sailor 
& Dziewonski 1978; Buland, Berger & Gilbert 1979) in that there is a sharp drop in Q 
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510 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 10 15 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 

T2=2x104rc 

o m  8250 

nSm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 5 0 1 5 2 0 2 5  

om=250 

t 
0 15 20 25 

ANGULAR ORDER ( L )  

Fv 6. Q corresponding to the eigenfrequencies of Fig. 6. Ftheological parameters of the SLS and 
absorption band model are given in the f i i re .  See Table 2 for a detailed listing of representative Q values 
associated with the absorption band model. Dashed curves for radial modes are derived from a vim- 
elastic rheology proposed by Rundle (1978). 
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Normal modes of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAviscoelastic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
511 

I do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4 6 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 12 14 16 
OVERTONE NUMBER ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 7. Q as a function of overtone number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn for .S, and $,,. The eigenfrequencies of ,,S, are given at 
the top of the f i r e  for convenience. 

between oSo and with relatively little variation thereafter. The sharpness of this drop is 
a consequence of the assumption that the viscoelastic model has no bulk dissipation. The 
viscoelastic model employed by Rundle (1978) in his analysis of post-seismic rebound in 
contrast, is an example of a viscoelastic rheology which has non-zero bulk dissipation. We 
have done calculations of Q(1) using his rheology for the radial modes and these are shown 
as the dashed lines in panel (a) and (b) for a single Debye peak and absorption band versions 
of this physical model. For the absorption band version the ratio of Q(oSo) to Q(lSo) is 
very much smaller than in the model with no bulk dissipation (and in the Earth) so that the 
rheology is untenable. 

Similar calculations to those presented here were carried out previously for the torsional 
mode sequence by Akopyan, Zharkov & Lyubimov (1978a, b). These authors also employed 
the correspondence principle and considered torsional free vibration spectra for several 
viscoelastic rheologies. However, they restricted their analysis to the real part of the complex 
secular function and used this to determine the complex eigenfrequencies. Our exact analysis 
shows that this procedure is highly inaccurate, even for the toroidal modes to which their 
attention was confined, and leads to errors in Q as large as 20 per cent. Their approximation 
cannot be employed at all for the spheroidal modes. 

3.3 B O U N D S  UPON THE ABSORPTION B A N D  PARAMETERS FROM THE HOMO- 

G E N E O U S  MODEL 

Although we cannot expect to constrain the absorption band parameters precisely by fitting 
the homogeneous model to a small subset of the observed complex vibration frequencies of 
the real Earth we can nevertheless illustrate the manner in which radical changes in the 
model parameters might serve to make it untenable. This is the purpose of the present sub- 
section. Fig. 8 illustrates the effect upon the complex eigenfrequency of oSz of separately 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
9
/2

/4
9
5
/7

6
5
7
4
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A. Yuen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b)-= 
340 oT2 T2 =2a104rec a T2 =2xIO2rec ' (a) 

. 0,=250 
%=250 0% 

0 

0 300 0 
10-4 162 I I02 lo4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2 I 

TI (sec) TI (w) 

(CL- TI =lx102rec oT2 OS2 . TI = I x 102sk 

G.250 0 =250 

- 

(d)-4000 

1000 

: a  

varying each of the three parameters (T1, T z ,  Q,) of our absorption band. Inspection of 
(Fig. 9a, b) shows that Tl cannot exceed 10's without dramatically increasing the Q of &. 
Excessively small values of T1 2 lO-"s are likewise unacceptable since such would result in a 
noticeable shift (> 1 per cent) of the eigenfrequency. This would of course further compli- 
cate the issue of the baseline correction (Jeffreys 1965; Carpenter & Davies 1966; Davies 
1967). From Fig. (8c-d) we see that Tz is similarly constrained; T Z 2  5 0 0 s  is implausible 
since this would effect a drastic rise in the Q of oSz. No upper bound on Tz can be obtained 
from the seismic data alone. If we were to take T1 = 0.1 s as suggested by Lundquist &Cormier 

Qm Qm 
Figure 8. Shifts in eigenfrequencies and Q from variations in T , ,  T2 and Qm of the absorption band 
model. Parameters which are held constant are displayed in the figure. 
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Normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodes of the viscoelaptic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA513 

(1980) on the basis of body wave spectra and T2= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (the minimum allowed) we obtain an 
absorption bandwidth of almost four decades. Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Anderson (1981) have suggested 
a somewhat narrower bandwidth of 2-3 decade. The effect of varying Q, is illustrated in 
Fig. (8e-f). Reducing Qm(=2/nA) causes a dramatic shift in period and a precipitous 
decrease in Q. These data certainly require Q, > 10' which implies A 7 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo-'. This con- 
servative bound is nearly equal to the relaxation strength A = 8 x lo-' suggested by Minster 
& Anderson (1981) from their microphysical model based upon dislocation glide. 

In Fig. 9 we address more closely the issue concerning the lower bound for T2 by com- 
paring Q(l) for representative spheroidal overtones and Q(n) for the radial modes for T2 = 
lo's and T2 = 2 x 104s. For ,-,So Q increases from 2086 to 8452 as T2 is decreased from the 
upper to the lower value. Although the highest value for QcoS0) is not outrageous (Buland 

(01 : 
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. I  
. I  

I 
' I  
, I  

lo4- 

n% 

':-----+-)+*; ccu- - - < 

. --- T z . l 1 i u ~ U c  

- Tz.211G4 sac 

1, .I.idrC 

4n' 250 

5 iu 109 

10 

0 

Is 

Qnl 

P i  10. Q as a function of Q, for a range of values in Tl. T, is held constant at 10- l~ .  

w w #.I a 

OMRTOEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANUMBER (n) “3 0Rom 0 )  

F i  9. Changes in Q from variations of T2 for spheroidal and radial modes. The number adjacent to 
each curve in (b) represents the overtone number. Dashed and solid curves denote Tl = 10’ and 2 X lo‘s 
respectively. T, is held f ied at 1O-’s and Qm is set to 250. 
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514 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A. Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAund zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 3. Comparison of period and Q of the mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,S, for the generalized 
Burgers' body rheology (SB, QB) with those for the absorption band 
rheology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r,, Q,). The parameters of the absorption band are Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 250, 
TI = lO- 's ,  and T, = 2 XlO's.  

Y ,  (poise) (QB -Qo)/Qo (per cent) (rg -Z,)/T~ (per cent) 

10" -6 X10-' 1 x 
10" -1  x 10-3 3 x 
10'0 -2 x 10-3 7 X lo - '  
1019 -8  X10- 4 x lo-' 
lo1* -3x10-1 6 X 
1017 4 x 1 0  2 x 10-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

et ul. 1979; Knopoff et ul. 1979) the decrease of Tz simultaneously effects an increase of 
Q(oSz) from 310 to 2104. This effect on the modes 4Sl is not so extreme. That a value of 
Tz as low as 10's is unacceptable is reinforced in Fig. 8(d) where we see that such a change 
increases the Q of oTz from 247 to 1953. Fig. 10 shows Q(oSo) as a function of Q, for a 
range of values of Tz from 10' to 2 x lo4 s and confirms our stated preference of T2 = 500s 
as a lower bound on the parameter. 

One final point which we wish to establish concerning the eigenvibration spectra of the 
anelastic absorption band model discussed in this section is that these complex spectra do 
not depend upon the existence of the transition in the complete model from anelastic to 
viscous behaviour. The transformed shear modulus for the generalized Burgers' body advo- 
cated here is given in (14) in which the Maxwell time Tm = v1/pR. So long as Tm exceeds a 
few days or equivalently v1 exceeds about lO"P, the presence of the transition to viscous 
behaviour produces no effect upon the complex eigenspectra. This is demonstrated in Table 
3 where we show the variation of Q and period for oSz between the complete generalized 
Burgers' body model and that for the prototype absorption band. The value of v1 required 
by the post-glacial rebound data is of the order of 1O"P (Peltier 1981) and inspection of 
the table shows that the long time-scale viscous behaviour of the complete model then 
contributes negligibly to the free vibration frequencies and Qs.  

4 The accuracy of first-order perturbation theory 

The complex eigenfrequencies for the anelastic normal modes discussed in the last section 
were computed exactly using the correspondence principle approach. Although this is 
relatively straightforward it is not the approach normally taken in conventional normal 
mode theory. In such analysis one normally exploits the fact that the dissipation is weak 
and employs the form of first-order perturbation theory embodied in Rayleigh's principle 
in order to correct the elastic vibration frequencies in such a way as to approximate their 
exact anelastic counterparts. Here we wish to assess the magnitude of the error which one 
might make in applying this approximation to the Earth. 

Rayleigh's principle (Rayleigh 1877) has been employed in several forms for appli- 
cation to spherically symmetric elastic models (Pekeris & Jarosch 1958; Backus & Gilbert 
1967) and to their anelastic counterparts (Gilbert 1980; Woodhouse 1980). Dahlen (1981) 
has recently extended the formalism to include the effects of lateral variations of anelasti- 
city. The principle is based upon the fact that in the following relation (Backus & Gilbert 
1967) 

r 
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N o m l  modes of the viscoelastic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA515 

the quotient for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsz is stationary under arbitrary allowable variations in the solution vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&) if and only if (u, &) is an eigenfunction with squared eigenfrequency -5’. In (21) 
t$o is the ambient gravitational potential, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY the volume of the sphere, and E is the whole 
space. The other quantities in (21) are as defined in Backus & Gilbert (1967) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c= I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv . u  IZ 

We follow Peltier (1976) in using (2 1) to determine the sensitivity of the eigenvalue s against 
small changes of the shear modulus p ,  effected here by the introduction of anelasticity. 
Since the models in which we are interested have no bulk dissipation, the first variation of 
(2 1) yields 

in which so is the unperturbed (purely imaginary) elastic eigenvalue and the displacement 
vector u is constructed of the corresponding eigenfunction. Since s in (23) is complex, so is 
6s. Separating (23) into real and imaginary parts we obtain the following expressions for the 
shift of frequency (6 ’) and the Q of the mode as: 

in which 

and 

T = I v p u . u d u .  

In terms of the scalar function W in (18) the integrals D and T for toroidal modes are 

Dt = /oa6p(s, r )  [(a,W - r)’ t (I t 2) ( I  -1) - r2 dr “ I  rz 

J o  

Equations (24a, b) were previously derived by Liu & Archambeau (1975) for toroidal modes 
using a RayleighSchrodinger perturbation expansion. For spheroidal modes the integrals D 
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and T in (24) may be expressed in terms of the scalars zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV which appear in (1 8) as 

D. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYuen and W. R. PeZtier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ p ( s ,  r )  M(r) rz dr 

T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

where 

p [ Uz t Z(Z t 1) V2]  rz dr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
M = -  2aru--  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2u t ( z t 1 ) -  I V Y  t z ( z t 1 )  [( arvt--- u r V r  r t ( Z - l y t 2 )  v 2 ] .  (27~)  

3 ' (  r r 

To determine Dt or D, for use in (24) we need Sp(s, r )  and this is clearly a function of the 
rheology through the shear modulus p(s, r).  

For the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASLS the transformed shear modulus is given in (13a). This may be written in the 
form p(s) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl t Sp where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 is the elastic modulus so that 

6p=- [(s; t AB) t i(B -A)so] 
( sa t  B2) 

in which we have taken s = iso in evaluating 6p since the dissipation is weak. The constants 
A and B in the above expression are 

A = (111 tP2)IVZ (28b) 

B = P z I V z  a (2W 

For the absorption band rheology, on the other hand, the shear modulus is given by (14) 
which may similarly be written in the form p(s) = p1 t Sp where now 6 p  is given by 

,,=-In[ 2pl is,+ l/Tz 1 .  
nQ, iso+ l/Tl 

For the homogeneous earth models such as concern us here, which are subject to depth- 
independent imperfections of elasticity, 6 p  may be taken outside the integral in (25a) and 
expressions (24) are considerably simplified. This is particularly true for the toroidal modes 
since for them the total energy is equipartitioned between shear and kinetic. Equations 
(24) then become 

In general the integrals (25) which appear in (24) must be evaluated numerically and for this 
purpose we have employed the simple adaptive quadrature algorithm in Lyness (1969). Our 
purpose here is to compare the predictions of perturbation theory embodied in (24) to the 
exact results discussed in the last section. As a check on the accuracy of the quadrature 
required to evaluate the predictions (24) for radial and spheroidal modes we have evaluated 
an energy budget for each mode as 

F(u, u) = S(u, u) t C(U, u) t C(U,  u) (31) 
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Normal modes of the viscoelartic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA517 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 

- I  

1 I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, (c) -20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

r p  

1 - I 1 1 I I ,,I00 

oT2. OT2 

Y 

13 14 15 16 17 18 10 lo2 lo3 
Log u2 am.  

Fmre 11. Breakdown of fust-order perturbation theory as a result of extreme reduction in u2 and Qm. 
Rheological parameters which are not varied are shown in the figure. Definitions of (Q' - Q,/Q,) per cent 
and (6 ' - 6 o) per cent are given in the text. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in which F, S, C and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG are respective bilinear forms in the displacement vector u which 
denote the kinetic, shear, compreskon and gravitational contributions to the energy in the 
mode. In all cases reported here the energy budget (31) is satisfied to at least one part 
in lo8. 

Fig. 11 illustrates the gradual breakdown of perturbation theory for both the SLS (panels 
a, c, e) and for the absorption band (panels b, d, f) as the strength of the anelasticity 
increases. Results are shown for the fundamental radial mode oSo, the spheroidal mode oSz, 
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518 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and the toroidal mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT2. The quantities compared on the figure are S1-GOand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Q1-Qo)/Qo 
where So zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(TA-TE) /TA with T E  the elastic and T A  the exact anelastic period of the mode 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQo the modal Q determined through exact eigenanalysis. Majda, Chin & Followill (1978) 
discussed the radius of convergence of first-order perturbation theory in connection with an 
analysis of Love wave propagation in an anelastic half-space. Our analyses appear to be the 
first to provide a direct investigation of this question for the normal modes. Inspection of 
Fig. 1 1  shows that for weak anelasticity the frequency shift is predicted much more 
accurately by the first-order theory than is modal Q (which is not unexpected). For the SLS, 
the largest errors for spheroidal modes are found with v2 in the neighbourhood of lO”P. In 
the case of the absorption band, decreasing Q, (or increasing A) such that Q, 2 lo2 the 
errors can be substantial indeed. It may be implied by this result that the inference of 
‘intrinsic’ Q in high attenuation zones within the mantle (such as exist beneath young 
oceanic lithosphere) using first-order perturbation theory could give rise to substantial error. 
In their explanation of the seismic low-velocity zone, for example, Minster & Anderson 
(1980) suggest a relaxation strength A - 0.08 which translates to a local Q, = 80 to 
account for the approximately 10 per cent decrease of seismic velocity. If Q, were this low 
it is not completely clear that it could be estimated accurately using first-order theory. 
Similarly, most present schemes for the inversion of surface wave dispersion and attenuation 
data (eg. Lee & Solomon 1978) are based upon the first-order perturbation theory of 
Anderson & Archambeau (1964) and such retrievals could be in error if significant low Q 
zones are present. 

A complete set of comparisons for toroidal and spheroidal fundamental modes with 
2 6 I 6 25 is shown in Fig. 12 for the absorption band rheology. The errors incurred in the 

D. A. Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier 

-15 4 

--- T2 x I d a O C  

0 15 20 25 -0.2 

ANGULAR ORDER ( 1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 12. Results for the accuracy of perturbation theory for the fundamental spheroidal and toroidal 
free oscillations. Solid and dashed curves represent T2 = 2 X 10.9 and lo’s respectively. Qm = 250 and 
T, = 1O-’s are held constant. 
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Normal modes of the viscoelustic earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA519 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0 rPlb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ovrtonr number (n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 13. Results showing the accuracy of Rayleigh's principle for the radial modes. Rheological para- 
meters are displayed in the fiiure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
first-order theory are generally smaller for toroidal than for spheroidal modes and of oppo- 
site sign. Maximum errors in (Q1-Qo)/Qo of FJ 10 per cent obtain for spheroidal modes of 
low angular order while the frequency shifts are predicted to an accuracy better than 0.2 per 
cent. The efficacy of perturbation theory is least for those spheroidal modes in which a 
significant fraction of the total energy is gravitational potential or compressional. Fig. 13 
shows the results of equivalent calculations for radial modes. Except for oSo for which the 
error in Q is - 1.5 per cent, the Q errors for the overtones are less than 1 per cent. Frequency 
shifts are predicted to an accuracy of lo-'. Results for the toroidal and spheroidal mode 
overtone sequences with 1 = 2 and 16 are shown in Fig. 14. Again errors for the toroidal 
modes are small with Q s  accurate to within a few per cent and frequency shifts accurate to 
0.01 per cent. For the spheroidal overtones with 1 = 2  the errors oscillate initially in the 

0-0.0 

z 

5, I , I , , , I , 

Figure 14. Results of first-order perturbation theory for the toroidal and spheroidal overtone sequence. 
The rheological constants for all calculations are Qm = 250, T, = lO-'s, and T2 = 2 X lo's. 
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range k10 per cent decreasing by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 16 (not shown) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk5  per cent. The errors for the 
spheroidal modes with angular order 16 are considerably smaller. 

Taken overall the analysis in this section is encouraging in that for the plausible range of 
parameters in the absorption band, perturbation theory predictions of Q are accurate at the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 per cent level with the exception of the lowest order spheroidal modes for which the errors 
may be somewhat in excess of 10 per cent. Even these errors, however, are smaller than the 
current observational uncertainties (Buland er al. 1979; Stein er al. 1981). It is important, 
though, to be cognizant of the fact that these errors could be substantially magnified by 
sharp radial variations of the anelastic parameters. We have not attempted to assess the 
possible importance of such error magnification here but intend to do so in the course of 
future work. As the quality of the observational data set improves it may become necessary 
to solve the viscoelastic normal mode problem in the self-consistent fashion described in the 
previous section. In the next section we shall address our attention to the quasi-static modes 
whose determination requires the exact eigenanalysis since they have no counterpart in the 
elastic spectrum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D. A. Yuen and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe quasi-static spectrum and viscoelastic polar motion induced by earthquakes 

In Section 3.2 we remarked on the existence in the complete viscoelastic spectrum for the 
homogeneous SLS model of discrete poles on the negative real axis in the complex s-plane 
and noted that since these modes had no elastic counterparts they could not be investigated 
using the methods of perturbation theory discussed in the last section. For the absorption 
band rheology and equivalent continuum of such modes exists with relaxation times extend- 
ing from TI to T2; mathematically this continuum manifests itself in the existence of branch- 
points of the secular function at s = - l/Ti and s = - 1/T2. Although the existence of these 
modes is of no consequence in so far as the free vibrations are concerned, they may play an 
important role in other geophysical phenomena. Indeed, for the generalized Burgers' body 
with p(s) given by (29) it is precisely the quasi-static modes supported by the long time- 
scale viscous behaviour of the rheological model which govern the phenomenon of glacial 
isostatic adjustment (Peltier 1974, 1976, 1980). Even in the absence of the viscous compo- 
nent of the response, however, similar quasi-static modes with much shorter relaxation times 
are supported by the anelasticity. These modes are the ones which concern us here and they 
will play an important role in the phenomenon of post-seismic rebound and similar tectonic 
processes. Half-space models with SLS rheology have been employed in the study of tran- 
sient tectonic movements following large earthquakes by Nur & Mavko (1974) and Yamashita 
(1979). These authors found that values of the short time-scale viscosity v2 which were 
required to fit their data had 1017P 7 v2 2 10'8P. It is important to note that this is the 
same value for the short time-scale viscosity which is required to explain the observed Qs 
of the free oscillations (Section 3.2). It seems clear therefore that if we fix v2 by fitting the 
rheological model to normal mode Qs the same linear model will also correctly predict the 
phenomenon of post-seismic rebound. This seems to be an important cross-check on the 
validity of the model itself. 

In Table 4 we list the relaxation times T = l/s, for the homogeneous SLS sphere with 
v ~ = ~ O ' ~ P .  For each spherical harmonic degree I there is one toroidal mode and one 
spheroidal mode. The radial equation also supports a mode of relaxation. In the table we 
show the relaxation times for the quasi-static modes RSO, RS2,  RT2 where the letter R 
denotes quasi-static. The 15.94hr relaxation time for RS2 of the compressible models may 
be compared with the 15.91 hr relaxation time computed from the analytic expression for 
the incompressible homogeneous sphere given in Wu & Peltier (1982). As an example of the 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D = [ ~ o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA," i ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf =  

\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(C-A) (C-A) 

(C-A) (C-A) 

-AII30 S2AjBo 

- A133 0 

Table 4. E-folding times of quasi-static modes 
for standard linear solid rheology with u 2 =  

Mode E-folding time (hr) 

0 so 11.54 
0 s2 15.94 

1 0 1 7 ~  

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT* 9.59 

physical importance of these modes in a problem of global scale we shall proceed to sketch 
their influence upon the polar motion excited by an earthquake. 

5.1 POLAR MOTION FORCED BY A DISLOCATION SOURCE 

Two main mechanisms have been seriously considered as possibly being responsible for the 
continuous re-excitation of the Earth's free Eulerian nutation; the atmospheric circulation 
(Munk & Macdonald 1960; Munk & Hassan 1961; Wilson & Haubrich 1976), and earth- 
quakes (Mansinha & Smylie 1967; Ben Menahem & Israel 1970; Dahlen 1971,1973; Smylie 
& Mansinha 1971; Rice & Chinnery 1972; Mansinha, Smylie & Chapman 1979) or some 
combination of the two (O'Connell & Dziewonski 1976). It seems well established at this 
point that the atmospheric excitation is not in itself of sufficient intensity. The efficacy of 
the earthquake mechanism is difficult to establish since its determination requires knowledge 
of the seismic moment which must be determined empirically from the earthquake 
magnitude (eg. O'Connell & Dziewonski 1976) and the form which the relation between 
these two parameters takes is rather controversial (Kanamori 1976). Most current analyses, 
however, agree in concluding that the elastic excitation engendered in an earthquake is also 
an inadequate means of excitation. One way out of this dilemma is to invoke a substantial 
contribution to the excitation due to aseismic slip (Kanamori 1976) and there is some 
evidence to support this possibility. Recently Slade, Melosh & Raefsky (1979) have 
suggested that viscoelasticity might act in such a way as to enhance the elastic excitation and 
treat this process in terms of an assumed nowNewtonian rheology. Since such a rheology 
will behave to first order as a linear rheology with a different relaxation time we may 
employ the generalized Burgers' body which fits the seismic and post-glacial rebound data to 
assess the viability of their mechanism. 

Assuming that the earthquake induces a small perturbation Ah, to the inertia tensor of 
the undisturbed earth the resulting polar motion may be described in terms of the vector 
n = (nl, n2, n3)=.  The elements of n are the direction cosines of the displacement of the axis 
rotating with angular velocity s1 = (0, 0, which is the mean angular velocity of the 
Earth. In the absence of external torques, the Euler equations for the conservation of 
angular momentum are (Munk & MacDonald 1960) 

dn 
-- D . n = f  
dt 

where 

(33) 
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522 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in which C and A are respectively the axial and equatorial moments of inertia, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C-A/A)Q 
is the Chandler frequency for a rigid earth and the dots denote time differentiation. Intro- 
ducing the complex variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = n ,  t in2 and g =fi t ifi the first two elements of the vector 
equation (32) may be written as 

D. A. Yuen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArmu' W. R. Peltier 

dm 

dt 
ium = g. -- (34) 

To deduce the polar motion m we have only to determine the forcing A b  due to the earth- 
quake. For this purpose we can again invoke the Correspondence Principle. Elastic solutions 
for the Ari, due to a point dislocation in a uniform incompressible self-gravitating sphere 
were deduced by Rice 8c Chinnery (1972) from the principal of virtual work. This solution 
has the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAu is the slip on the surface of the fault plane of area Z and J,(Z), which has the 
dimensions of (mass/length) is a tensor function obtained from the geometrical projection of 
the shear stress on to the fault plane. We may determine the equivalent AZ,(t) for a visco- 
elastic rheology simply by substituting the appropriate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(s) in place of pl and inverting the 
resulting AI&) as 

where we have taken Au(t) = AuH(t) where H(t )  is the Heaviside function and where L is 
the Bromwich path. 

For the SLS rheology AI&) is obtained by substituting (1Sa) into (36). After some 
simplification the temporal behaviour AI(t) = AI,j(t)/Au ZJfj(A) may be written as 

where 

The Laplace inversion in (37) may be expressed analytically and the result is 

AfsLs(t)  = W 1 t - - 1 (1 - exp(-bt) . [ (urb ) 1 (39) 

The inverse relaxation time b =s, is just the relaxation time of the quasistatic pole in the 
viscoelastic spectrum RS2. The result of anelasticity is clearly to produce a very slight 
decrease with time of the wobble excitation. It will also of course endow the wobble with a 
finite Q. 

For a Maxwell rheology this decrease of excitation would tend towards a zero limit rather 
than to the finite limit which obtains for the SLS. This can be seen by substituting p(s) = 
pls/(s t pl/ul) for the Maxwell model (Peltier 1974) into (36). Inverting the transform then 
gives 

A& ( t )  = W exp(-ct) (40) 
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where the inverse of the relaxation time is 

2POaPg 

~ ~ ( 1 9 ~ ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2pogd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC =  

Since the excitation eventually vanishes this means that there is no net displacement of the 
spin axis as a consequence of the earthquake. Such a net offset would be produced by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SLS result (39). Since the Earth seems to be a generalized Burgers' body in which the slight 
anelastic relaxation of the SLS is followed by complete viscous relaxation of the Maxwell 
element there can never be any net polar wander effected by earthquakes in the internal 
body of the planet. Furthermore, because the strain field produced by the dislocation is of 
internal origin it cannot be enhanced by viscoelastic effects. Such effects can only decrease 
the efficiency of Chandler wobble excitation. This result will not be affected by the intro- 
duction of an absorption band description of the anelasticity, but might conceivably be 
altered for models with radial variations of the rheological parameters such as are produced 
by the presence of the lithosphere. 

6 Conclusions 

This paper has been concerned with a first assessment of the generalized Burgers' body 
representation of the viscoelasticity of the Earth's mantle which was introduced in Peltier 
et ul. (1981). Even though the frequency-dependent shear modulus for such material may 
be well approximated for most purposes by the simple analytic expression (14)' it never- 
theless seems possible with this expression to simultaneously reconcile all of the geodynamic 
phenomena noted on Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. These phenomena include the elastic gravitational free oscil- 
lations which are sensitive only to the anelastic component of the model and mantle con- 
vection, which is an entirely viscous phenomenon. The importance of post-glacial rebound 
is that it is simultaneously sensitive to both the elastic and viscous components of the 
response. When seismically determined elastic moduli are employed in the theory of post- 
glacial rebound (Peltier 1981a) then a viscosity of order 10"P (cgs units) is required to 
reconcile the observational data. This is the same viscosity which is required by convection 
models of the seafloor spreading process (Peltier 198 la). We are therefore in a good position 
to suggest the generalized Burgers' body as a uniformly valid representation of the rheology 
of the Earth's mantle. 

By direct numerical calculation of the complex vibration spectra for homogeneous 
earth models, we have established the generalized Burgers' body as an appropriate vehicle 
for the description of seismic Q. With characteristic time-scales less than the Maxwell time, 
geodynamic phenomena are essentially oblivious of the eventual viscous behaviour of the 
rheology. For the Earth, the Maxwell time appears to be several hundred years and this 
ensures that even the Chandler wobble will be governed entirely by anelastic processes. 

Our analysis of the viscoelastic free vibrations has established the first direct estimate of 
the errors incurred in the use of first-order perturbation theory as a means of calculating 
free oscillation Qs from a given model of intrinsic dissipation. Although such errors are not 
yet observationally significant they may exceed 10 per cent and are largest for the lowest 
order modes in the homogeneous models to which we have confined our attention. An 
equally important point which has emerged from the calculations discussed here concerns 
the existence of the quasi-static modes which are supported by the anelastic component of 
the complete rheology. These modes are the short time-scale counterparts of the viscous 
gravitational free decay modes in terms of which the postglacial rebound phenomenon is 
described. They too require exact eigenanalysis for their determination since they have no 
counterparts in the elastic spectrum. These modes play a crucial role in short time-scale 
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geodynamic phenomena such as a post-seismic rebound but have yet to be exploited in this 
context. 
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