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Abstract
Purpose of review—Bacterial colonization of the infant intestinal tract begins at birth. We are
at the forefront of understanding complex relationships between bacteria and multiple parameters
of health of the developing infant. Moreover, the establishment of the microbiome in the critical
neonatal period is potentially foundational for lifelong health and disease susceptibility. Recent
studies utilizing state-of-the-art culture-independent technologies have begun to increase our
knowledge about the gut microbiome in infancy, the impact of multiple exposures, and its effects
on immune response and clinical outcomes such as allergy and infection.

Recent findings—Postnatal exposures play a central role in the complex interactions between
the nearly blank canvas of the neonatal intestine, whereas genetic factors do not appear to be a
major factor. Infant microbial colonization is affected by delivery mode, dietary exposures,
antibiotic exposure, and environmental toxicants. Successive microbiome acquisition in infancy is
likely a determinant of early immune programming, subsequent infection, and allergy risk.

Summary—The novel investigation of the neonatal microbiome is beginning to unearth
substantial information, with a focus on immune programming that coevolves with the developing
microbiome early in life. Several exposures common to neonatal and infant populations could
exert pressure on the development of the microbiome and major diseases including allergy and
infection in large populations.
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INTRODUCTION
The intestinal microbiome has evolved with humans, and is described as creating with its
host a metabolic ‘superorganism’, comprised of millions of microbial genes [1]. The
complex symbiotic relationship between microbiome and host fills critical physiological
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roles, and growing evidence suggests a role in immune maturation, as well as diverse
metabolic functions [1,2▪]. The microbiome also may induce disorder, and a lengthening list
of diseases are now thought to derive from, or be exacerbated by, host–microbiome
interactions, including obesity, inflammatory bowel disease, and circulatory diseases.
Critical to the pediatric population, the microbiome also may be linked to infection and
allergy risk [2▪], as we begin to uncover the multifaceted relationship between bacteria and
various parameters of health of the developing infant. Indeed, accumulating data point to
establishment of the microbiome during this vulnerable developmental period as
fundamentally influencing later disease risk [3]. Potential implications of detailed
microbiome data in the neonatal period include informing newborn delivery decision-
making, further information regarding the physiology behind the lifelong health benefits of
breast-milk exposure in infancy, limiting or altering antibiotic regimens for common
infectious diseases, targeted use of specific probiotics to treat and prevent diseases, and
ultimately individualization of medication regimens for young children based upon
microbial profiles.

Until recently, investigation of serial intestinal colonization patterns and their relationship
with exposures in larger human cohorts have focused primarily on adults, whose microbiota
is considered to be relatively stable [4▪▪, 5,6▪,7,8▪▪]. In contrast, neonatal intestinal microbial
acquisition patterns have traditionally been examined by culture-based or targeted molecular
studies, which incompletely characterize the microbiome [9,10,11▪▪,12▪▪,13,14]. Many of
these studies focused on premature infant populations, and may reflect specific exposures to
this population, including antibiotic treatment, dietary factors, and pathogen-laden hospital
environments [13–16]. In healthy neonatal populations, bacterial colonization begins during
the process of delivery [3,9,11▪▪,17] and is primarily determined by mode of delivery,
gestational age, infant feeding, hospitalization, and antibiotic exposure [10,18,19]. Recent
work exploring micro-biome content in relation to age in 326 individuals ages 0–17 found
that, regardless of cultural or geographic environment, children evolve an ‘adult-like’
microbiome within the first 3 years of life, but this time period also marks the greatest
intrapersonal and interpersonal variation within these microbial communities, possibly
reflecting the differential development of the microbiome in relation to environmental
factors [8▪▪].

Complete investigation of the developing neonatal microbiome using massively parallel
deep sequencing permits an unbiased analysis of acquisition patterns [15,20–22]. Using this
technology has helped us to understand how the establishment of symbiotic bacteria can act
as a central stimulus for maturation of the immune system and may alter risk of developing
immune-mediated diseases [3,23–27] (Fig. 1). External factors, as opposed to genetics, drive
the development of the human microbiome; thus, elucidation of these factors will present
opportunities to inform decisions that could potentially impact health throughout a child’s
lifetime.

EXTERNAL FACTORS AND THE IMPACT ON NORMAL NEONATAL GUT
MICROBIOME DEVELOPMENT: MODE OF DELIVERY

A healthy human gestation involves a primarily sterile environment, and birth presents the
infant’s first encounter with microorganisms that rapidly populate the gut, forming its initial
microbiome. Recent studies of infants’ first bacterial gut colonizers after vaginal or cesarean
(C-section) delivery suggest that these primary assemblages may be dictated by delivery
mode in that vaginally delivered infants more likely become colonized by the organisms
comprising the maternal vaginal microbiome, including Lactobacilli and Prevotella,
whereas infants delivered by C-section more frequently acquire bacteria present on the
mother’s skin and in the surrounding hospital environment, such as Staphylococcus,
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Propionibacterium, and Corynebacterium [28,29▪▪]. A cross-sectional study of 84 women
found that during pregnancy the vaginal microbial community undergoes a decrease in
diversity, while becoming simultaneously enriched with Lactobacilli species, which may
relate to the vertical transmission that occurs at birth [30▪▪]. Although infants may only
retain a portion of the bacteria from the initial colonization, birth can have long-term
impacts on the composition of the microbiome [12▪▪,31▪]. In a longitudinal study of 605
infants from five European countries, repeated profiling of the gut microbiome at 6 weeks of
age and post-weaning found mode of delivery and preweaning feeding method had
persistent effects on microbial composition [31▪]. If early shifts in the development of the
microbiota, as may occur with C-section delivery, have lasting health consequences, this
would impact a substantial number of children in the United States and elsewhere. An
estimated one-third of all births in the United States occur by C-section, many of which are
elective [US Centers for Disease Control report – http://www.cdc.gov/nchs/data/databriefs/
db35.htm].

There have been some indications within the literature that C-section delivery may be
associated with adverse health outcomes and greater susceptibility to infections. For
example, babies delivered by C-section appear to have a higher risk of methicillin resistant
Staphylococcus aureus (MRSA) infection [32▪,33]. This could be linked to the role of
pioneering colonizers in immune development or a lack of protection against pathogenic
colonization normally conferred by vaginally transmitted microflora [29▪▪,32▪,33]. However,
further studies are warranted, as this has yet to be epidemiologically investigated.

EXTERNAL FACTORS AND THE IMPACT ON NORMAL NEONATAL GUT
MICROBIOME DEVELOPMENT: BREASTFEEDING AND DIET

Early life events, such as transitions from breastmilk to formula and the introduction of solid
foods, appear to influence bacterial succession in the gut [12▪▪,31▪,34]. In a randomized
study, breastfed infants tended to have lower levels of potentially pathogenic Clostridium
difficile than their formula-fed counterparts, who also tended to have had higher proportions
of Bacteroides and Prevotella [35▪]. Although healthy infants often carry C. difficile
asymptomatically in their gut in early infancy, its presence can alter community composition
[36▪].

Breastfeeding is associated with a lower risk of childhood and adult-onset obesity (reviewed
in [37▪]). This may be due, in part, to the effects of breastfeeding on the development of the
microbiome, as early diet guides colonization. Bacteria possess varying abilities to extract
nutrients and energy from food; consequently, the microbiome can shift an infant’s energy
storage potential [38▪]. Further, oligosaccharides in breastmilk can selectively promote
Bifidobacterium growth in the gut, shown by combinatorial genomic and culture approaches
with parallel glycoprofiling [39▪▪]. A study of 56 mother–infant pairs found that high
maternal BMI during pregnancy is associated with lower levels of key immunomodulators
in breast-milk and infant gut Bifidobacterium counts [40▪], which may in turn contribute to
long-term health and weight management in breastfed infants [41▪]. A study of 30 children,
enrolled in an ongoing longitudinal study, found that at age 10 overweight children had
lower levels of gut Bifidobacterium as infants, compared with their normal-weight
counterparts [41▪]. However, epidemiological longitudinal studies assessing the
microbiome–obesity relation are lacking.
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EXTERNAL FACTORS AND THE IMPACT ON NORMAL NEONATAL
GUTMICROBIOME DEVELOPMENT: ENVIRONMENTAL TOXICANTS AND
THE MICROBIOME

Although microbial transformations may increase bioavailability of some nutrients, these
same processes can produce more toxic forms of contaminants. Using an in-vitro model of
the human gut microbiome, Diaz-Bone and van de Wiele [42] found that normal human
intestinal bacteria metabolize environmental contaminants, turning polycyclic aromatic
hydrocarbons into bioactive estrogen-like molecules and transforming metals into volatile,
and sometimes toxic, products [43] that can affect the gut’s species balance and function, a
condition known as dysbiosis. One study found that dysbiosis can potentially result from
bismuth exposure, commonly found in cosmetics and Pepto-Bismol, when
Methanobrevibacter smithii, a normal gut inhabitant, transforms bismuth into a form that is
toxic to Bacteroides thetaiotaomicron, a beneficial resident that mediates infant dietary
transition from breastmilk to starches, and aids the formation of the intestinal mucosal
barrier that protects against pathogens [44▪]. Hence, early-life toxicant exposure could shift
the microbial balance, potentially affecting both immune and microbiome development.

THE NEONATAL MICROBIOME, IMMUNITY, AND ALLERGY
Several seminal studies in germ-free animals demonstrate that absence of microbial
colonization results in altered gut epithelialization, growth, and immune function [45].
Interestingly, specific bacteria have been associated with early-onset allergy (herein defined
as any exaggerated immune response to a foreign antigen regardless of mechanism) and
atopy (defined as exaggerated immunoglobulin E-mediated immune response or type I
hypersensitivity disorders), including C. difficile and Escherichia coli in humans [46,47]. In
studies of infants, decreased microbial diversity in the first weeks of life was related to risk
of allergy and atopy in infancy and at school age [48,49▪▪]. Correspondingly, in a study of
infants exposed to antibiotics, gut microbes appeared to influence the maturation of T helper
cells (Th1) immune responses, CD4+ T-cell phenotype, Th1/Th2/Th17 development and
activity, and regulatory T-cell function [50].

Targeted investigation of neonatal microbial colonization patterns with Bifidobacterium
found associations between enhanced maturation of protective mucosal immunoglobulins
and early intense colonization with Bacteroides fragilis might downregulate immune
responsiveness in infancy [27]. Moreover, a novel evaluation of diet-dependent interactions
within the relationship between the microbiome and host transcriptome identified not only
differences in specific bacteriology between breastmilk and formula exposed infants by 3
months, but also metabolic function, immunity, and defense genes, which were more readily
upregulated in the breastfed infants [51▪].

THE NEONATAL MICROBIOME, ANTIBIOTIC EXPOSURE, AND INFECTION
Despite advances in sanitation and immunization programs, infectious diseases remain the
leading cause of illness in children in the United States, and the primary cause of childhood
death in developing countries [52,53]. Public health implications of common infections, for
example, otitis media or influenza in the under-5 US population, include antibiotic overuse
and resistance, transmission of common infections to pregnant women and their fetuses, or
widespread transmission of infectious diseases in unimmunized populations. The average
US child is exposed to 10–20 courses of antibiotics before age 18, and this may have far-
reaching implications for future disease risk, secondary to the effects on the microbiome
[54▪].
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Perinatal antibiotic use and antibiotic resistance
Perinatal and early-life antibiotic usage, as well as illnesses themselves, have the potential to
influence the establishment of microbial communities and cause large shifts in taxonomic
groups, altering overall diversity [12▪▪,31▪,34,55▪]. One study of 31 amoxicillin-treated
infants with acute respiratory infection identified complete elimination of Bifido-bacterium
adolescentis species, as well as a significant decrease in Bifidobacterium bifidum in the gut,
with no change in overall counts of Bifidobacterium but profound shifts in the microbiota at
the species level [56]. Indeed, life-threatening complications of empiric antibiotic use in
premature neonates, including necrotizing enterocolitis and sepsis, have been observed in a
large National Institute of Child Health and Human Development cohort study [57].
However, when early fecal samples from antibiotic-exposed infants were compared with a
later post-weaning sample, antibiotic resistance was reduced, and overall diversity had
increased [31▪]. This may have been due to the plasticity and rapid rate of change within the
gut microbiota in the first year of life, suggesting that effects of early antibiotic usage in
infants may be diminished over time [12▪▪,31▪]. Potential long-term effects on the
microbiome from early-life antibiotic exposure still may occur, including childhood
overweight and obesity associated with antibiotic use [58▪▪]; but these effects remain to be
elucidated.

In two studies, a large fraction of healthy, non-antibiotic-treated infants in the first 3 months
of life harbored resistant and multiply resistant bacterial strains [59,60], perhaps through
maternal transmission [61▪]. Although it has yet to be evaluated epidemiologically, the
growing presence of resistant microbes may be due in part to more widespread contaminant
exposures from foods and the environment. For instance, several studies demonstrated that
individuals exposed to mercury were more likely to possess resistance to multiple
antibiotics, suggesting a coselection mechanism [62]. Children are regularly exposed to
arsenic, which can be found in well water and foods, such as rice and baby formula [63▪▪,
64▪,65]. Metals, such as arsenic, which was used historically as an antibiotic in humans [66]
and is currently added to animal feed, have contributed to the emergence of metal/antibiotic
coresistant strains arising in livestock, including MRSA isolates [67▪] transmittable to
humans via the environment and food supply. These multiresistant pathogens heighten risk
of adverse outcomes, especially in young children. Once antibiotic resistance genes are
selected for, they may persist within the microbiota for years [68].

Links with infection
A direct link between gut colonization and risk for infection has been described for high-risk
neonates [69,70▪]. Unlike full-term infants, many premature infants’ intestines are colonized
with pathogenic organisms at birth, likely related to maternal gestational infection and
prenatal antibiotic exposure [3,71]. Intestinal pathogenic bacterial predominance and lack of
microbial diversity are implicated in neonates with life-threatening infectious diseases
(sepsis caused by Enterobacteracea and Coagulase-negative Staphylococcus) [72,73], and in
one study with the predominant gut pathogen (Staphylococcus) [74▪]. The potential for
healthy term infants, who experience varying environmental exposures from antibiotics,
dietary choices, and mode of delivery, among others, to undergo shifts in microbial
colonization, altering their underlying risk of infection, clearly warrants epidemiologic
investigation.

FUTURE RESEARCH AND IMPLICATIONS FOR INTERVENTION
The neonatal microbiome is an area of emerging interest due to its relative simplicity at its
onset at birth, and its subsequent development, which has the potential to dramatically
influence lifelong health and disease risk. Culture-independent techniques have become
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more readily accessible to researchers, in terms of cost and ease of application, along with
emerging sophisticated bioinformatics techniques to analyze the high throughput data and
these research tools are being applied to neonatal populations. The use of these burgeoning
techniques in large prospective epidemiological studies of neonates to define the ‘healthy’
developing microbiome in infancy and the impact of specific exposures in infant life is
critical to promoting health. Thus, it will be imperative to study the relationship between
maternal, fetal, and the neonatal microbiome as we work to identify preventable causes of
premature delivery [30▪▪,75▪], and fetal basis of diseases, which may include fetalimmune
programming, as it relates to the microbiome in prenatal and postnatal life. Potential
translation to the clinical setting might include: informing newborn delivery decision-
making in favor of vaginal deliveries when possible, further reinforcing and illuminating the
physiology behind the lifelong health benefits of breastmilk exposure in infancy, limiting or
altering antibiotic regimens for common infectious diseases, targeted use of specific
probiotics to treat and prevent diseases, and ultimately individualization of medication
regimens for young children based upon microbial profiles.

CONCLUSION
Advances in nonculture-based approaches to characterize the microbiome have opened up
opportunities to embark on studies of the normal patterns of colonization of neonatal
populations and linking specific microbiome patterns to disease risk in pediatric populations,
specifically allergy and infection. Certain exposures may have profound effects on the
microbiome in early life, including delivery mode, diet, antibiotics, and potentially
environmental toxicants, many of which can be eliminated or moderated. Future
epidemiologic studies in large populations targeting investigation of the infant microbiome
beginning in fetal life will be extremely informative as we strive to define a ‘healthy’
microbiome in childhood to ameliorate disease risk.
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KEY POINTS

• The intestinal microbiome, beginning with the nearly sterile newborn, is shaped
over time by multiple exposures potentially including delivery mode, diet,
antibiotics and toxicants from the environment.

• The developing intestinal microbiome, beginning at birth, interacts in a complex
interplay with the developing immune system and the immune system, in turn,
likely shapes the developing microbiome.

• Defining a ‘healthy’ microbiome in the neonatal and infant period is becoming
more accessible with culture-independent sequencing technologies to fully
identify the microbes that make up the microbiome.

• Differences in the neonatal microbiome as they relate to short-term and long-
term disease, including infection and allergy/atopy, are being identified,
potentially highlighting opportunities for intervention and lifelong disease
prevention.

Madan et al. Page 12

Curr Opin Pediatr. Author manuscript; available in PMC 2014 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 1.
The developing intestinal microbiota beginning at birth. The human intestinal microbiota is
shaped by environmental exposures and interacts with the developing immune system.
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