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Abstract. Simple modifications of standard complex methods are used to obtain
a spectral theorem, a functional calculus and a multiplicity theory for normal operators
on quaternionic Hubert spaces. It is shown that the algebra of all operators on a
quaternionic Hubert space is a real C*-algebra in which (a) every normal operator is
unitarily equivalent to its adjoint and (b) every operator in the double commutant
of a hermitian operator is hermitian. Unitary representations of locally compact
abelian groups in quaternionic Hubert spaces are studied and, finally, the complete
structure theory of commutative von Neumann algebras on quaternionic Hubert
spaces is worked out.

Introduction. Recent years have witnessed renewed interest in linear problems
involving quaternions, due mainly to the physicists who are studying the possibili-
ties of a quaternionic quantum mechanics [2]. From the mathematical point of
view this interest has resulted in spectral theorems for unitary and skew-hermitian
operators on quaternionic Hubert spaces (the theory of hermitian operators poses
no difficulties and is entirely similar to the standard complex theory) [2], [3], the
study of unitary representations of groups in quaternionic Hubert spaces [1], [4],
[8], [12] and some additional theorems closer to quantum mechanics [11]. So far as
the present author is aware a systematic study of operators on quaternionic Hubert
spaces is not available in the literature.

In this article we study the central area of problems featuring normal operators
and their structure. It is a little surprising that by slight modifications of standard
complex methods one can obtain a theory nearly as complete as in the complex
case. There are some algebraic complications because of the noncommutativity
of the quaternions but the basic geometric nature of the arguments is unchanged
and we can obtain a spectral theorem (§3), an analogue of the SNAG theorem
expressing an arbitrary representation of a locally compact abelian group as an
integral of irreducible ones in a unique fashion (§4: cf. [1]), a multiplicity function
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which determines a normal operator to within unitary equivalence (§5), a functional
calculus (§6) and the complete structure theory of commutative H/*-algebras (§7).
While it is true that much of this theory is but a reflection of the "complex" theory
there are nevertheless differences which make the "quaternionic" theory interesting.
For example, the set of all operators on a quaternionic Hilbert space is a Banach
*-algebra only over the reals (since multiplication by a scalar is not a linear trans-
formation in a vector space over a division ring unless the scalar belongs to the
center of the division ring) and in this Banach *-algebra every normal operator is
unitarily equivalent to its adjoint! There are other interesting algebras of operators
on a quaternionic Hilbert space and it is likely that these might prove to be useful
models for a general theory of real Banach algebras. (There is much similarity
between our theorems in the last section and some of the theorems on real C*-
algebras in [6].)

The author is grateful to Dr. K. R. Parthasarathy who suggested the present
study, to Dr. V. S. Varadarajan for many valuable suggestions and to Dr. J. K.
Ghosh for numerous discussions which were very helpful.

1. Quaternionic Hilbert spaces. Let ô = {a = o0+fli' + fl2./+<73^} be the division
ring of real quaternions. q*=q0—q¿—q-ij—Izk will denote the conjugate of a and
|?| = V(?o+ql+q2+qî) the absolute value of q. R={q : <h=a2=a3 = 0} will be
identified with the real field and C={q : a2=a3 = 0} with the complex field. Then
every quaternion is uniquely of the form a + kß = a + ßk. a is called the complex
part of q.

Let "V be a (left) vector space over Q. An inner product on ~t~ is a map
( • I ■ ) : y x T -+ Q with the properties,

(i) ix\y) = iy\x)*,
(ii) ipx+qy\z)=pix\z)+qiy\z),

(ii') ix\py+qz) = ix\y)p* + ix\z)q*, and
(iii) (x|.r)^0, =0 if and only if x = 0,

for all x, y,ze~t~ and p,q e Q.
If (-|-) is an inner product on "f, then ||x|| = \/ix\x) is a norm on "f. A left

vector space over the quaternions together with an inner product on it which makes
the resulting normed linear space complete is called a quaternionic Hilbert space.

The geometry of quaternionic Hilbert spaces is entirely similar to that of complex
Hilbert spaces. In particular the projection theorem is valid and every bounded
linear functional is of the form x -*■ ix\y) for a unique y.

Throughout the rest of the article ¿f will denote a quaternionic Hilbert space
and 38 the set of all operators (i.e. bounded linear transformations) on #F. The
existence of adjoints is proved in the usual way and the definitions of hermitian,
unitary and normal operators follow. 38 is then a Banach *-algebra only over the
reals since, for q e Q, the map x -> qx is not linear unless a is in the center of Q, i.e.
is real.
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1.1. Example. Let (X, Sf, p) be a measure space with ß nonnegative. Then
L%(p), the space of all (equivalence classes of) quaternion-valued measurable
functions with square integrable absolute values considered as a left vector space,
together with the inner product (f\g) = ¡fg* dp,, is a quaternionic Hubert space.
For any quaternion-valued, essentially bounded measurable function h on X, the
operator of right multiplication by h, Rh:f^-f-h, is normal. Rh is hermitian if and
only if h is essentially real and Rh is unitary if and only if \h\ = 1 a.e. We shall
prove in §5 that every normal operator on Jf is built up of operators of the form Rh.

What can we say about eigenvalues and eigenvectors for an operator A on ¿tf"l
Suppose for xe Jf and q e Q, Ax=qx. If y=px,pe Q, then Ay=pqp'1y^qy in
general, so that while a multiple of an eigenvector is again an eigenvector it need
not correspond to the same eigenvalue ! The invariant object is therefore not the
individual eigenvalue but the eigenclass: the conjugacy class of the eigenvalue [2].
However, we may retain the flavor of the complex theory and recover the indi-
viduality of the eigenvalues by considering a "cross section" of the conjugacy
classes which contains exactly one element from each class and restricting ourselves
to eigenvalues from this cross section. Since the conjugacy class of a quaternion is
determined by its real part and norm [11] such a cross section is given by
C+ ={q : qx^0,q2=q3=0}, the set of complex numbers with nonnegative
imaginary part.

This means that if Ax=qx then there is a unique A e C + , and a y=px such that
Ay = \y. (p is arbitrary if q is real and unique up to complex (left) multiples if a
is nonreal.) If z=(a+ßk)y is any vector in the ray S spanned by y (or x), then
Az = (a-T-kß)\y=(\a + Xß)y. If we define J to be the unique linear map on 5" for
which Jy = iy, and let X = a + ib (a, b real), then Az = (a+Jb)z for all ze S. Thus in
the quaternionic case the "imaginary" operator J (note thatJ2 = - 1) replaces the
multiplication by i in the complex case. We shall prove in §3, that every normal
operator on 3tP is an integral of operators of the form a+Jb.

2. The symplectic image. In this section we study the relation between J*i?
and its underlying complex structure and introduce the notion of an imaginary
operator.

Since we have identified the complex field with a subfield of Q, 2? may be
considered to be a complex vector space as well. Let us call this ¿Fs. ¿Fs is a complex
Hubert space with respect to the inner product <x|j>> = the complex part of (x\y)
and is called the symplectic image of Jf [3], [8]. The basic relations between ¿? and
3^s are summarized in the six statements below (x, y e ^fs) :

(1) The norms on ¿f and J^s are identical. More generally (x\y) = (x\y}
+ <x\ky}k = <x\y}-k(kx\y>.

(2) Let K denote the map x -> kx on Jf?s. Then K is conjugate linear and K2
= -/, where / is identity operator (on <?f or 3Vs equivalently). Further <Ajc|ä»
= (y\x>- In particular <x|Ajc>=0 and ||Ajc]| = ||;c||.
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(3) If {er} is a basis for 3^, then {er, Ker} is a basis for ¿P*.
(4) Every operator A on 3tiP may be considered to be an operator As on #Ps.

The map A —> As is an injective norm and adjoint preserving real homomorphism.
It is not surjective. In fact, noticing that if Asx = \x (A e C) then A%kx) = \ikx),
it is easy to see that the spectrum of As is symmetric about the real axis.

(5) If B is an operator on 3>?s then so is KBK~1 = K~1 BK and iKB K'1)*
= KB* K'1. Bis of the form As for some operator A on ^f if and only if 5 com-
mutes with K.

(6) Let /> be the projection in ¿fs on the subspace S of ^fs. Then ATP AT"1 is the
projection in ¿P* on the subspace K[S]={kx : xeS} of 3tf\ If S and K[S] are
orthogonal in ^fs and Jis their direct sum then Tis in fact a subspace of 3tf and a
basis for S in Jfs is also a basis for T in Jf. (For if x, y e S and <[x\y}=0, then
fcjeATS'] and O|&y>=0 so that ix\y) = 0 because of (1) above.) Further if Q is
the projection in ¿f on Tthen QS=P+KPK~1.

2.1. Definition. An operator J on 3tf is said to be imaginary if there exists a
basis {er} of Jf such that /er = ier or 0 for all r.

The proof of the proposition below illustrates in embryo the way in which the
symplectic image is used to study operators on 3C.

2.2. Proposition. Let J be an operator on ¿f. Then the following statements are
equivalent.

(i) J is imaginary.
(ii) J* = —J and I—JJ* is the projection on the null space of J.

(iii) / is normal and —J2 is a projection.
(iv) J is normal andJ2+J*=0.
(v) Js = iP—iKPK~1for a unique projection P in 3^s.

Proof, (i) => (ii) => (iii) => (iv). Trivial.
(iv) => (v). It is easy to see that the spectral measure of Js is concentrated at

{±i}- Since Jx = ix if and only if Jikx)= -iikx), it follows from (6) above that /
has the required form.

(v) => (i). If {er} is a basis for the range of P in 3tf*, then by (6) above {er} is a
basis for the range of P+KP K ~1 in ^f. If now {/J is a basis for the null space ofJ
in Jif then {er,fs} is a basis for Jf such that Jer = ier and Jf$=0 for all r, s.

3. The spectral theorem. Let iX, if) be a measure space and E a spectral meas-
ure defined on iX, if) with values in Jf, i.e. E is a countably additive set function
defined on ^ whose values are projections on ^f and EiX) = I. Let/be a real valued
¿■-essentially bounded measurable function on X. Then the map

(x,y)^jfd(E{)x\y)

is a hermitian-symmetric bounded sesquilinear form on ¿F and hence there exists
a unique hermitian operator A such that iAx\y)=¡fdiEi-)x\y). As usual we
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write A=\fdE. The theory of hermitian operators follows as in the complex
case.

The nonhermitian case cannot be handled in a similar fashion because the spectral
integral jfdE is not meaningful if/is not F-essentially real. For in such a case we
can find a quaternion q for which/a¥=q-f on a set of nonzero F-measure, so that
the integral above as a function of x and y is no more linear in x. We circumvent
this difficulty by introducing integration with respect to "spectral systems."

3.1. Definition. An imaginary operator / is said to be admissible with respect
to the spectral measure E if (i) J commutes with E(M) for all M e y and (ii) there
is an X0 e Sf such that I—JJ* = E(X0) (i.e. E(XQ) is the projection on the null
space of J). The pair (E, J) where F is a spectral measure and J is an admissible
imaginary operator is called a spectral system.

It is evident that X0 is unique up to F-null sets. When we associate canonical
spectral systems with normal operators we shall take X= C + and XQ = R. For the
present we assume that we have chosen and fixed an X0.

Let Jt denote the real Banach *-algebra (with the F-essential supremum norm)
of all equivalence classes of complex-valued F-essentially bounded measurable
functions on X, whose restrictions to X0 are real.

3.2. Definition. If f=fx + if2 e J( (fx,f2 real), then \fdE (given /) is the
operator on <?f defined by

jfdE=^fxdEyj^f2dEJ.

The map/^ \fdE has all the usual properties (see §§37, 38 in [5]) and they may
be proved in much the same way. We illustrate with one proof.

3.3. Proposition. If A = \ f dE, then \Ax\2=J |/|2 d(E(-)x\x) for all x e M>'.

Proof. Let/=/! + i/2, B=$fx dE and C=\f2 dE. Then noticing that B, C, J are
mutually commuting, that JJ*C=C and recalling that J* = — J, it is easy to prove
that ||/ix||2= ||Ax||2-l- ||Cx||2 for all x eJt?. Since the proposition is true when/is
real, the proof is complete.

The spectral theorem for normal operators on a quaternionic Hubert space can
now be stated.

3.4. Theorem (Spectral Theorem). Let A be a normal operator on a quater-
nionic Hilbert space JF. Then there exists a unique spectral system (E, J), where E is
a spectral measure on the Bor el sets ofC+ and J satisfies I—JJ* = E(R), such that
A=\ XdE (given J), A being the identity function on C + .

Proof. Let Fs be the spectral measure of As on Jfs. We observed earlier that if
S is the eigen subspace of As corresponding to the eigenvalue A, then K[S] is the
eigen subspace of As corresponding to the eigenvalue Ä. More generally we may
prove, using the Stone-Lengyel characterization of spectral subspaces (§§41, 42 in
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[5]), that for all compact sets M, EsiM) = KEsiM)K~1. Since E„ is regular this
relation must be true for all Borel sets M. It follows (see §2) that if M=M, then
EsiM) must in fact be the symplectic image of a projection on Jf and consequently
that if EiM) is defined for all Borel M contained in C+ by EiM)s=EsiM)
+KEsiM)K~1, then £ is a spectral measure in Jf based on C + . Note that we then
have EiM)s = EiM u M) and in particular EiR)s=EsiR).

Define J on <?f by Js = iEsiC+ -R)-iEsiC-C+). J is then imaginary and com-
mutes with E since Js commutes with Et. Further JJ*=I—EiR) so that the null
space of y is the range of £(/?) and J is admissible with respect to E. Consequently
(£, J) is a spectral system with the required properties.

We have now to prove that A = B+JC where B=j" Re (A) dE and C=J Im (A) dE.
It is easy to prove that

f Re (A) d{Esi-)x\y-) = f Re (A) d(E%-)x\y} = <B°x\y}
J Jc+-R

and that

i f Im (A) d(Esi-)x\ j> = f        Im (A) d(Esi-)x\J*sy} = (Csx\J*sy}
J Jc+-R

by splitting the integrals on the left-hand side into three integrals on R, C+—R
and C— C + respectively and reassembling them suitably, remembering the defini-
tions of E and J. These equalities imply that AS = BS+JSCS and hence that A = B
+JC. Uniqueness of the spectral system may be deduced from the uniqueness of
the spectral measure in the complex case using the symplectic image. The details
are omitted.

3.5. Corollary. Every normal operator A on ¿F can be written uniquely in the
form B+JC where B, J, C are mutually commuting, B is hermitian, C is positive, J
is imaginary andJx = 0 if and only if Cx = 0.

3.6. Corollary. An operator B commutes with A if and only if B commutes
with E and J.

4. Unitary representations of LCA groups. Let G be a second-countable locally
compact abelian group. We wish to prove that every (unitary) representation of G
in #C is an integral of irreducible representations in an essentially unique way.

Using the spectral theory in the previous section we may prove as in the complex
case that the irreducible representations of G can be identified with the continuous
homomorphisms of G into \Q\, the unit quaternions. However, unlike in the
complex case two distinct homomorphisms hx and h2 can still be conjugate to each
other ihx =qh2q~1 for some q e \ Q\) and thus give rise to equivalent representations.
Consequently in decomposing an arbitrary representation of G in terms of irre-
ducible ones, the "correct" support of the spectral measure is not the space of
homomorphisms but the set of conjugacy classes of such homomorphisms or (as in
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the case of the eigenvalue problem) a "cross section" of such conjugacy classes.
If this point of view is not adopted, the spectral measure will not be unique [1].

How can we choose a nice cross section? Observe first that since every maximal
abelian subgroup of \Q\ is conjugate to \C\, the unit complex numbers, given any
homomorphism A of G into \Q\ we can find aq e \Q\ such that X(g)=qh(g)q~1 is a
(complex) character of G. A need not be unique since on replacing q by kq we see that
Ä is also conjugate to h. But this is the extent of nonuniqueness. For if Xx and A2
are characters such that Xx = qX2q "1 then A2 = Xx or Xx. To see this let a = a + kß, a, ß
complex. Then

Xx = H2A2+|/3|2A2 + Ä:äß(A2-Ä2).

Since the left-hand side of the equation is complex the coefficient of A: on the right-
hand side must be 0. Therefore either A2 is real or one of a or ß must be 0. In any
case X2 = XX or Xx.

Let X denote the (complex) character group of G and X0 the subgroup of all
real characters of G. By a Borel section for X we mean a Borel subset A of X
containing X0 which has the property that if A ̂  A'o then exactly one of A and Ä
belongs to A. Since we have assumed G to be second countable, an application of
the Federer-Morse lemma [11] shows that Borel sections exist. Further it is easy to
see, using the methods of [7], that if A and B are two Borel sections endowed with
the relativised Borel structures then the natural one-one correspondence between
their points is a Borel isomorphism.

Any Borel section A for Xis a "cross section" for the equivalence classes of the
irreducible quaternionic representations of G.

4.1. Theorem (The SNAG Theorem). Let U be a unitary representation of the
locally compact, second countable abelian group G in a quaternionic Hilbert space JF.
Then given any Borel section A of X (the character group ofG), there exists a unique
spectral system (E,J) based on A and acting in 3? with I—JJ* = E(X0) such that
Ug = § X(g) dE(X) (given J). Moreover, the spectral measure E is defined indepen-
dently of the section A in the sense that given any two sections, the natural Borel
isomorphism between them preserves E.

Proof. Consider Us on2tfs. Let Fs be the unique spectral measure on Xassociated
to Us on 3tfs by the standard complex SNAG theorem. Then one can check that

J" X(g) d(KEi\)K-*x\y) = j X(g) d<Es(X)x\y>

so that á'Fs(A/)á:-1-Fs(M) for all Borel M. Consequently if for all Borel N
contained in A we define E(N) by E(N)S = ES(N u A'), then F becomes a spectral
measure based on ,4 acting in Jf. And if7is defined by Js = iEs(A — X0)-iES(X—A),
then (F, J) is the required spectral system. The details are omitted.

The very definition of F shows that it is defined independently of the section.
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5. Multiplicity theory. In this section we show that every normal operator is
determined up to unitary equivalence by a multiplicity function based on C+ and
deduce two corollaries which are not true in the complex case.

Let (A', Sf) be a measurable space and X0 an arbitrary but fixed set in if. All
spectral systems (£, J) we consider will satisfy I—JJ* = EiX0).

Let (£, J) be a spectral system. Let 38 denote the class of all projections on Jf
which commute with S, the range of E. Let 2 denote the set of projections in 0>
which commute with /. 38 and 2 are then complete lattices and 3Pj= 2 in general.
(It is a consequence of our results that 38 = 2 if and only if EiX— X0) is a row.)
In the standard theory of spectral measures one decomposes S in terms of a3. This
is not sufficient for our purposes because if (£, J) is the canonical spectral system
associated to a normal operator A, then the family of subspaces reducing A is not
3?, but 2. We have therefore to decompose S in terms of 2.

Two spectral systems (£, /) and (F, L) acting in quaternionic Hilbert spaces
3tf and Jf respectively are said to be isomorphic if there exists a unitary operator
y from JP onto Jf such that yEiM) = FiM)y for allMeif and yJ=Ly.

5.1. Definitions, (a) If p is a finite nonnegative measure on iX, if) the canon-
ical spectral system (£„, Ju) associated to ß is defined by the equations

(i) E,iM)f=f-XM and
(")JJ=f-U-Xx0)-i

for allfeL%ip) and Meif, where yM denotes the characteristic function of the
set M.

(b) A subspace 5" of df is said to be of type p for the spectral system (£, J) if
Se 2 and the restriction of (£, J) to S is isomorphic to the canonical spectral
system (£a, Ju).

For the rest of this section we identify a projection with its range. S e 38 is called
a cycle if there exists an x e S such that S=Z(x), the subspace spanned by
{EiM)x : M e £f}. For xeJ^f, p,x will denote the measure on iX, if) defined by
pxiM) = iEiM)x\x) for all Meif.

5.2. Proposition, (a) The following are equivalent:
if) Se 2 and is a cycle.

(ii) There is a vector xeS such that S is of type ßx for (£, J).
(iii) There is an xe S such that Jxe S and S=Zix).
(b) Every S e 2, in particular 28?, is a direct sum of mutually orthogonal cycles

belonging to 2.

Proof, (a) (i) =*■ (ii). We are told that S=Ziv) for some v e S and Z(t>) e 2.
Let y=EiX~ X0)v and z=EiX0)v. Then v=y + z and y and z are very orthogonal
so that Ziv)=Ziy)©Ziz). Since Z(y)=Z(v)E(X-X0) and Z(z)=Z(v)E(X0),
Ziy) and Ziz) are in 2.

Let Js=iP + -iP~ be the canonical representation of/s on J^s. (See 2.2.) We
first prove that there is a v0eP+ such that Ziy0)=Ziy). Suppose y$P+. Let
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y=y++ky~ with y + , y~ e P+. Since Z(y) e J>, Jy = iy+ —iky~ eZ(y). Also,
iy = iy+ +iky~ eZ(y). Consequently, y + ,y~ eZ(y) and Z(y+)<=Z(y). Let now
yx=y~ —Z(y + )y~. Then yxeP+ and yx is orthogonal to Z(y + ). Hence Z(yx) is
orthogonal to Z(y+). On the other hand Z(yx) and Z(y+) are both contained in
Z(y)and by the well-known properties of cycles, if y0=y+ +Ji> thenZ(y0)=Z(y+)
+Z(yx). It is now easy to check that y0eP+ and Z(y0)=Z(y).

Let x=y0 + z. Then Z(x)=Z(j0)+Z(z)=Z(j)-l-Z(z)=Z(y) = S' and Jx = iy0
= iE(X-X0)x.

For convenience, let us write ß=ßx and A"0= Y. By standard methods [5] we can
find an isomorphism <p from L%(p) to Z(x) such that <p(l) = x and <pEll = E-(p. For
this same <p,

•MXxm) = <p(xm-Xx-x0-í) = i<pEu(M n (X- Y))-l
= Œ(M)E(X- Y)<p(l) = Œ(M)E(X- Y)x = JE(M)x

= J<p(xm),

for all Me¥, and it follows that <pJ~JJ)=J<p(f) for all feL%(p). Consequently
S=Z(x) is of type ßx for (F, J).

(ii) => (iii). Trivial.
(iii) => (i), y leaves S invariant because JE(M)x = E(M)Jx e Z(x) for all M.

Since J*=-J, Sea.
(b) It is sufficient to prove that if 0 / S e 1, then there exists a cycle S0 ̂  5 and

belonging to 2.. If SF^n^O then for any nonzero x e SE(X0), Jx=0 and Z(x)
= S0 will do, by (a)(iii) above. If SE(X- X0) + 0, then (with notation as in (a))
SP + ̂  0 and for any x e SP +, Jx = ix so that Z(x) = S0 will do.

The proposition above shows that there exist sufficiently many cycles in 2.
Knowing this it is an easy matter to proceed with the decomposition of S in terms of
projections in J, and show that, if for any finite nonnegative measure p. on (X, Sr°)
we define u(p), the multiplicity of p., to be the power of any maximal family of
mutually orthogonal subspaces of type p. for (F, J), then u(p.) is a well-defined
multiplicity function, and prove the theorem below. We omit the details.

5.3. Theorem. Let (E, J) and (F, L) be two spectral systems based on (X, Sf) and
acting in quaternionic Hubert spaces 3? and CAT respectively with JJ* = E(X— X0)
and LL* = F(X— X0) for some X0 e S. Then (E, J) and (F, L) are isomorphic if and
only if they have the same multiplicity function.

It is a little surprising that even though the multiplicity function u is defined in
terms of both F and J it really depends only on F. This is noticed in the proof of
the corollary below.

5.4. Corollary. Let Ebea spectral measure andJ andL two imaginary operators
admissible with respect to E such that JJ* =LL*. Then (F, J) and (E, L) are isomor-
phic. In particular (E, J) and (E, J*) are isomorphic.
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Proof. It is clearly sufficient to prove that the multiplicity function u of (£, J)
is the same as the multiplicity function u0 of E (or (£, 0)). If piX—X0)=0, then,
trivially, a subspace is of type p. for (/s, /) if and only if it is of type p for E, so that
uiß) = u0iß). It is therefore sufficient to consider the case when JJ*=I. Let ipr)
be a basis for u and let (S„) be a maximal family of mutually orthogonal subspaces
of type pr for (£, /) such that 0r 0S Srs=¿8?. Each 0S Srs is then a primitive column
of uniform multiplicity [10]. But then uipr) = u0ipr) and ipr) is a basis for u0 too.
Hence u=u0.

Let now A be a normal operator on // and (£, J) the associated spectral system.
5.5. Definition. Let p be any finite nonnegative measure with compact support

in C + . The canonical operator Au associated to p is the operator on L%ip) defined
by(^/)(A)=/(A)-A,AeC + .

It is easy to check that the spectral system of Au is (£„, Jß). Further if we define
a subspace S of Jf to be of type p for A if S reduces A and A restricted to S is
unitarily equivalent to Au, then 5 is of type ß for /I if and only if S is of type p
for iE, J). We then have the following theorem.

5.6. Theorem (Multiplicity Theorem). Let A be a normal operator on a
quaternionic Hilbert space ¿P. For every finite nonnegative measure p with compact
support on the Borel subsets of' C+ define uip) to be the cardinality of any maximal
family of mutually orthogonal subspaces of type p. for A. Then u is a well-defined
multiplicity function. Two normal operators are unitarily equivalent if and only if
their multiplicity functions are the same.

We now deduce two corollaries of this theorem which have no analogues in the
complex case.

In the heuristic explanation of the properties of normal operators on complex
Hilbert spaces it is sometimes said that normal operators behave like complex
numbers. In a similar spirit we may say that normal operators on quaternionic
Hilbert spaces behave like quaternions! The two theorems below reflect the two
properties of quaternions that (i) every quaternion a is conjugate to q* and (ii) if a
is real and p commutes with every quaternion commuting with a then p is real.

5.7. Corollary. Every normal operator A on a quaternionic Hilbert space is
unitarily equivalent to its adjoint A*.

Proof. Observe that if the spectral system of A is (£, J), then the spectral system
of A* is (£, J*) and use Corollary 5.4.

5.8. Corollary. If A is a hermitian operator on a quaternionic Hilbert space and
B is an operator which commutes with every operator commuting with A, then B is
hermitian.

Proof. In view of our structure theory it is sufficient to prove this when A = Aß
where ß is a finite nonnegative measure with compact support contained in R.
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But then B commutes with Eu and hence there exists a bounded measurable
function h0 such that Bf=f-h0 for all f e L%(p.). (This may be proved as in the
complex case [10].) Since B has to commute with every operator of the form f^-fq
where q is any fixed quaternion, we must have q-h0=hoq a.e. [p.]. Therefore h0
is essentially real and B is hermitian.

6. Functional calculus. We propose now to define functions of a normal
operator A onJti? and to show that the set of all functions of A coincides with the
smallest commutative (real) H^-algebra containing A (and /).

Let (F, J) be the spectral system associated to A and let jM denote the real
Banach *-algebra (with the F-ess sup norm) of all complex-valued F-essentially
bounded measurable functions on C+ whose restrictions to R are real. Vox feJ(,
let/(/I) denote the operator j/oF (given J). (This implies that if A is hermitian
then so is every f(A)l)

Since the range of/e M need not be contained in C + , it is not obvious what the
spectral system of f(A) should be and whether a function of a function of A is
again a function of A. These questions are answered by the proposition below,
whose proof is omitted.

6.1. Proposition. LetfeM. Define f+ e J? by f+(X)=f(X) or (f(X))~ according
as /(A) e C+ or not.

(a) The spectral system (F,L) of f(A) is given by F(M) = E((f+)~1(M)) and
L=JE(f~1(C+ -Rjfi-JEif-^C-C*)).

(b) For f,geJi, let

N = {X: g(X) eC+-R andf(g(X)) eC-C+}
u {A : g(X) eC-C+ andf(g(X)) eC+-R}.

Define heJiby

A(A) = L/+(g+(A))]-    ifXeN,
= f+(g+W)       ifHN.

Thenf(g(A)) = h(A).

6.2. Theorem. Let Jf be separable. Let 3>(/l) denote the class of all functions of A,
[A], the smallest (real) W*-algebra of operators containing A (and I) and [A]", the
double commutant of A. Then <S>(A)=[A] = [A]".

Proof. Let (F, J) be the spectral system of A and S, the range of F
(i) <I>L4)c [A]. If/is real, then it is easy to see that/04) e [A]. To prove that

J e [A], note that (A — A*)/2=§ i Im (A) dE (given J), and define, for every natural
number «, a function /„ e M by

/n(A) = l/Im(A)   if Im (À) £ \/n,
= 0 if Im (A) < 1/n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



348 K. VISWANATH [December

Then/nL4) e [A] for all n and

JEi{\ : Im (A) = l/n}) = (A-A*)fn{A)/2 e [A].

Taking the limit as n -> co, we see that

/ = JEi{\ : Im (A) > 0} e [A].

It follows that ®(A)<=[A].
(ii) [A]^[A]". Trivial.

(iii) [A]" c <$iA). If Be [A]", then B is normal. Let (F, L) be the spectral system
of B and ^", the range of F. As in the complex case [10] we show that J^c^" and
hence that there exists a Borel map g: C+ -^C + such that F{M) = E{g~1{M)).
By Corollary 5.8, the restriction of B to £(Ä) is hermitian and hence £(ä)<=F(ä)
=£(g_1(Ä)). This means that g is /s-essentially real on R and we can assume
without loss of generality that g e Jl.

Now, L commutes with /. Further EiR)<=-FiR) implies that Lx=0 whenever
Jx=0. It is then not difficult to show, by studying Js and U on 388s, that L=JP-JQ
where P=%LiL*+J*) and Q=\LiL*-J*) are mutually orthogonal projections
which commute with every projection commuting with A and consequently belong
to S. Suppose Ô = £(A) and define feJl by/(A)=f(A) or g(A) according as
whether A e A or not. One may then verify that B=fiA). The details are omitted.

The proof of the theorem is complete.

7. Commutative H"*-algebras. In this section we obtain the complete structure
theory of (real) commutative IF*-algebras of operators (with identity) iCW*A's)
on a quaternionic Hilbert space. All results are stated without proof since they can
be obtained by combining the techniques of the preceding sections with the standard
complex methods of [9].

7.1. Definition, (a) A CW*A sé is called an /{-algebra if every A ese is
hermitian.

(b) A CW*A sá is called a C-algebra if there is an (imaginary) operator J esé
such that/2 =-/.

An example of an F-algebra (a C-algebra) is the set of all functions of a hermitian
operator (a skew-hermitian operator with 0 null space).

7.2. Theorem. If sé is any CW*A, then there exists a unique projection Pesé
such that séP is an R-algebra ithe "real part" of sé) and séil-P) is a C-algebra
ithe "complex part" of sé). Further two CW*Äs are algebraically isomorphic
{unitarily equivalent) if and only if their real and complex parts are separately
algebraically isomorphic iunitarily equivalent).

7.3. Definition. An .R-algebra (a C-algebra) is maximal if it is not strictly
contained in any .R-algebra (C-algebra).
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For any W*A sé, let íf(sé) denote the W*A of all hermitian operators in sé, sé',
the commutant of sé and let ^(sé) = sé n sé' be the center of sé.

7.4. Theorem, (i) An R-algebra sé is maximal if and only if sé = Sf (sé'). In this
case we also have sé=<£(sé').

(ii) A C-algebra sé is maximal if and only if sé = sé'.

7.5. Corollary. A CW*A is a maximal abelian selfadjoint algebra if and only
if it is a maximal C-algebra.

7.6. Definition. Let (X, Sf, ß) be a nonnegative measure space. Let séu be the
set of all operators on L%(ji) of the form f->f-g, for some quaternion-valued,
essentially bounded function g on X. The subcollection seRß (se%) of all operators
in séu with g essentially real (complex) is called the real (complex) multiplication
algebra of the measure space (X, ¿f, p.).

7.7. Theorem. Let sé be an R-algebra (a C-algebra). The following conditions are
equivalent.

(i) There exists a cyclic vector for sé.
(ii) sé is maximal and every projection P in sé has the property that every orthogonal

family {P¡} of nonzero projections in sé, such that P¡ á P for all j, is necessarily
countable.

(iii) sé is unitarily equivalent to the real (complex) multiplication algebra of a
finite measure space.

7.8. Theorem. Let sé be an R-algebra (a C-algebra) on 2?. For each cardinal
«ii dim (Jf ), there exists a projection Pn in si such that (i) Pn is either 0 or an n-fold
copy of a maximal R-algebra (C-algebra), (ii) the Pn are mutually orthogonal and
2n Pn — I end (iii) the map « ->• Pn of cardinals ^ dim Jf, to projections in sé with
properties (i) and (ii) is unique. Further, if the Boolean algebra B(n) of all projections
in séPn is called the measure algebra of sé of multiplicity n, then two R-algebras
(C-algebras) are unitarily equivalent if and only if their measure algebras for the
same multiplicities are isomorphic.

7.9. Theorem. Let Jt? be separable. If sé is any CW*A on 3^, then there exists a
normal operator Ae sé such that sé consists precisely of all functions of A. If sé is an
R-algebra (a C-algebra) then A is hermitian (skew hermitian with trivial null space).
In particular any commuting set of normal (hermitian) operators on ¿F can be
expressed as functions of a single normal (hermitian) operator.

7.10. Theorem. If sé is any CW*A, then sé=sé".

We conclude with a few remarks on nonabelian algebras. In the complex case an
algebra of operators is abelian if and only if it consists only of normal operators.
(If A and B are hermitian, then the normality of A + iB implies that AB=BA.)
But not so in the quaternionic case. E.g., the "quaternionic" multiplication algebra
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séu (Definition 7.6) is a noncommutative algebra of normal operators. (It is easy to
conjecture that an arbitrary "normal" algebra of operators on a quaternionic
Hilbert space is decomposable in terms of such séu.) It thus seems necessary to
distinguish the "diagonalizable" nonabelian algebras (owing their existence to
the noncommutativity of the quaternions) from the general "nondiagonalizable"
ones. The study of the latter seems to be difficult. Even the Double Commutant
Theorem, whose proof is quite elementary in the complex case, does not seem to be
available.
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