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Abstract 

In this article, normal paracontact metric space forms are investigated on 𝑊0 −curvature tensor. 

Characterizations of normal paracontact space forms are obtained on 𝑊0 −curvature tensor. Special 

curvature conditions established with the help of Riemann, Ricci, concircular curvature tensors are 

discussed on 𝑊0 −curvature tensor. Through these curvature conditions, some important 

characterizations of normal paracontact metric space forms are obtained.  
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1. Introduction 

The study of paracontact geometry was initiated by Kenayuki and Williams [1]. Zamkovoy [2] 

studied paracontact metric manifolds and their subclasses. Recently Welyczko [3],[4] studied curvature 

and torsion of Frenet Legendre curves in 3-dimensional nnormal paracontact metric manifolds. In the 

recent years, contact metric manifolds and their curvature properties have been studied by many authors 

in [5],[6],[7]. 

In this article, normal paracontact metric space forms are investigated on 𝑊0 −curvature tensor. 

Characterizations of normal paracontact space forms are obtained on 𝑊0 −curvature tensor. Special 

curvature conditions established with the help of Riemann, Ricci, concircular curvature tensors are 

discussed on 𝑊0 −curvature tensor. Through these curvature conditions, some important 

characterizations of normal paracontact metric space forms are obtained. 

 

2. Preliminary  

 

Let’s take an 𝑛 −dimensional differentiable 𝑀 manifold. If it admits a tensor field 𝜙 of type 

(1,1), a contravariant vector field 𝜉 and a 1-form 𝜂 satisfying the following conditions; 

 

 𝜙2𝑋 = 𝑋 − 𝜂(𝑋)𝜉, 𝜙𝜉 = 0, 𝜂(𝜙𝑋) = 0, 𝜂(𝜉) = 1, (1) 

 and 

 𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌), 𝑔(𝑋, 𝜉) = 𝜂(𝑋), (2) 

 

Özet 

Bu makalede, normal parakontak metric uzay formlar 𝑊0 −eğrilik tensörü üzerinde çalışılmıştır. 

𝑊0 −eğrilik tensörü üzerinde normal parakontak metrik uzay formların karakterizasyonları elde 

edilmiştir. 𝑊0 −eğrilik tensörü üzerinde, Riemann, Ricci, concircular eğrilik tensörleri ile kurulan 

özel eğrilik koşulları araştırılmıştır. Bu eğrilik koşulları yardımıyla, normal parakontak metrik 

uzay formların önemli karakterizasyonları elde edilmiştir. 

 

Anahtar Kelimeler: 𝑊0 −Eğrilik Tensörü, Semisimetrik Manifold, Normal Parakontak Uzay 

Form 
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 for all 𝑋, 𝑌, 𝜉 ∈ 𝜒(𝑀), (𝜙, 𝜉, 𝜂) is called almost paracontact structure and (𝑀, 𝜙, 𝜉, 𝜂) is called almost 

paracontact metric manifold. If the covariant derivative of 𝜙 satisfies  

 

 (∇𝑋𝜙)𝑌 = −𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 + 2𝜂(𝑋)𝜂(𝑌)𝜉, (3) 

 

 then, 𝑀 is called a normal paracontact metric manifold, where ∇ is Levi-Civita connection. From (3), 

we can easily to see that 

 𝜙𝑋 = ∇𝑋𝜉, (4) 

 for any 𝑋 ∈ 𝜒(𝑀) [1]. 

Moreover, if such a manifold has constant sectional curvature equal to 𝑐, then it is the 

Riemannian curvature tensor is 𝑅 given by 

 

 

𝑅(𝑋, 𝑌)𝑍 =
𝑐+3

4
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] +

𝑐−1

4
[𝜂(𝑋)𝜂(𝑍)𝑌

−𝜂(𝑌)𝜂(𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 + 𝑔(𝜙𝑌, 𝑍)𝜙𝑋

−𝑔(𝜙𝑋, 𝑍)𝜙𝑌 − 2𝑔(𝜙𝑋, 𝑌)𝜙𝑍],

 (5) 

 for any vector fields 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) [5]. 

In a normal paracontact metric space form by direct calculations, we can easily to see that 

 

 𝑆(𝑋, 𝑌) =
𝑐(𝑛−5)+3𝑛+1

4
𝑔(𝑋, 𝑌) +

(𝑐−1)(5−𝑛)

4
𝜂(𝑋)𝜂(𝑌), (6) 

 which implies that 

 𝑄𝑋 =
𝑐(𝑛−5)+4𝑛+1

4
𝑋 +

(𝑐−1)(5−𝑛)

4
𝜂(𝑋)𝜉, (7) 

 for any 𝑋, 𝑌 ∈ 𝜒(𝑀), where 𝑄 is the Ricci operator and 𝑆 is the Ricci tensor of 𝑀. 

 

Lemma 1 Let 𝑀 be an 𝑛-dimensional normal paracontact metric manifold. In this case, the 

following equations hold. 

 𝑅(𝜉, 𝑋)𝑌 = 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋, (8) 

 

 𝑅(𝑋, 𝜉)𝑌 = −𝑔(𝑋, 𝑌)𝜉 + 𝜂(𝑌)𝑋, (9) 



Mert T., Atçeken M., Uygun P., (2023). Normal Paracontact Metric Space Form on W0- Curvature Tensor, 
Journal of Amasya University the Institute of Sciences and Technology, 4(1), 53-64 

 

 

 
 

 

 𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌, (10) 

 

 𝜂(𝑅(𝑋, 𝑌)𝑍) = 𝑔(𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋, 𝑍) (11) 

 

 𝑆(𝑋, 𝜉) = (𝑛 − 1)𝜂(𝑋), (12) 

 

 𝑄𝜉 = (𝑛 − 1)𝜉, (13) 

 where 𝑅, 𝑆 and 𝑄 are Riemann curvature tensor, Ricci curvature tensor and Ricci operator, respectively.  

 

Tripathi and Gunam [8] described a 𝜏 −curvature tensors of the (1,3) type in an 𝑛-dimensional 

(𝑀, 𝑔) semi-Riemann manifold. One of these tensors is defined as follows. 

 

Definition 1 Let 𝑀 be an 𝑛 −dimensional semi-Riemannian manifold. The curvature tensor 

defined as  

 𝑊0(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛−1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] (14) 

 is called the 𝑊0 −curvature tensor.  

 

For the 𝑛 −dimensional normal paracontact metric space form, if we choose 𝑋 = 𝜉, 𝑌 = 𝜉, 𝑍 =

𝜉 respectively in (14), then we get 

 𝑊0(𝜉, 𝑌)𝑍 =
(𝑛−5)(𝑐−1)

4(𝑛−1)
[−𝑔(𝑌, 𝑍)𝜉 + 𝜂(𝑍)𝑌], (15) 

 

 𝑊0(𝑋, 𝜉)𝑍 = 0, (16) 

 

 𝑊0(𝑋, 𝑌)𝜉 =
(𝑛−5)(𝑐−1)

4(𝑛−1)
[𝜂(𝑋)𝑌 − 𝜂(𝑋)𝜂(𝑌)𝜉]. (17) 

 

 

Definition 2 Let 𝑀 be a paracontact manifold. If its Ricci tensor 𝑆 of type (0,2) is of the form  

 𝑆(𝑋, 𝑌) = 𝑎𝑔(𝑋, 𝑌) + 𝑏𝜂(𝑋)𝜂(𝑌), 

then 𝑀 is called 𝜂 −Einstein manifold, where 𝑎, 𝑏 are smooth functions on 𝑀. Also, if 𝑏 = 0, then the 

manifold is called Einstein.  
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Definition 3 Let (𝑀, 𝑔) be a semi-Riemannian manifold and the two-dimensional subspace 𝛱 of the 

tangent space 𝑇𝑝(𝑀). If 𝐾(𝑋𝑝, 𝑌𝑝) is constant for each 𝑝 ∈ 𝑀 and 𝑋𝑝, 𝑌𝑝 ∈ 𝑇𝑝(𝑀), then 𝑀 is called a 

real space form, where 𝐾(𝑋𝑝, 𝑌𝑝) is the section curvature of the 𝛱 plane.  

 

3. Normal Paracontact Metric Space Forms On 𝑾𝟎 − Curvature Tensor  

In this section, the characterization of normal paracontact metric space form under special 

curvature conditions created by 𝑊0 −curvature tensor with Riemann, Ricci, concircular curvature 

tensors will be given. Let us state and prove the following theorems. 

 

Theorem 1 Let 𝑀 be a 𝑛 −dimensional normal paracontact metric space form. If 𝑀 is 𝑊0 − 

flat, then 𝑀 is an Einstein manifold.  

 

Proof. Let’s assume that manifold 𝑀 is 𝑊0 −flat. From (14), we can write 

 𝑊0(𝑋, 𝑌)𝑍 = 0, 

for each 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀). Then from (14), we obtain 

 𝑅(𝑋, 𝑌)𝑍 =
1

𝑛−1
[𝑆(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌], (18) 

 for each 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀). If we choose 𝑍 = 𝜉 in (18) and using (10), (12), we obtain 

 𝜂(𝑋)𝑄𝑌 = (𝑛 − 1)𝜂(𝑋)𝑌. (19) 

 If we first choose 𝑋 = 𝜉 in (19) and we take inner product both sides of the last equation by 𝑍 ∈ 𝜒(𝑀), 

then we get 

 𝑆(𝑌, 𝑍) = (𝑛 − 1)𝑔(𝑌, 𝑍) 

It is clear from the last equation that 𝑀 is Einstein manifold.  

 

 

Theorem 2 Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 is 

𝑊0 −semisymmetric, then 𝑀 is an Einstein manifold.  

 

 

Proof. Let’s assume that 𝑀 is 𝑊0 −semisymmetric. This means 

 (𝑅(𝑋, 𝑌) ⋅ 𝑊0)(𝑈, 𝑉, 𝑍) = 0, 
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for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). So, we can write 

 

𝑅(𝑋, 𝑌)𝑊0(𝑈, 𝑉)𝑍 −𝑊0(𝑅(𝑋, 𝑌)𝑈, 𝑉)𝑍

−𝑊0(𝑈, 𝑅(𝑋, 𝑌)𝑉)𝑍 −𝑊0(𝑈, 𝑉)𝑅(𝑋, 𝑌)𝑍 = 0.
 (20) 

 If we choose 𝑋 = 𝜉 in (20) and make use of (8), we get 

 

𝑔(𝑌,𝑊0(𝑈, 𝑉)𝑍)𝜉 − 𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 − 𝑔(𝑌, 𝑈)𝑊0(𝜉, 𝑉)𝑍

+𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 − 𝑔(𝑌, 𝑉)𝑊0(𝑈, 𝜉)𝑍 + 𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

−𝑔(𝑌, 𝑍)𝑊0(𝑈, 𝑉)𝜉 + 𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0.

 (21) 

 If we use (15), (16), (17) in (21), we obtain  

 

𝑔(𝑌,𝑊0(𝑈, 𝑉)𝑍)𝜉 − 𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

−𝐴𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 + 𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 + 𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

−𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 + 𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉)𝜉 + 𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0,

 (22) 

 where 𝐴 =
(𝑛−5)(𝑐−1)

4(𝑛−1)
. If we choose 𝑈 = 𝜉 in (22) and use (15), we get 

 𝑊0(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑉, 𝑍)𝑌 − 𝐴𝑔(𝑌, 𝑍)𝑉 = 0. (23) 

 Putting (14) in (23), we have 

 

𝑅(𝑌, 𝑉)𝑍 −
1

𝑛−1
𝑆(𝑉, 𝑍)𝑌 +

1

𝑛−1
𝑔(𝑌, 𝑍)𝑄𝑉

+𝐴𝑔(𝑉, 𝑍)𝑌 − 𝐴𝑔(𝑌, 𝑍)𝑉 = 0.

 (24) 

 If we choose 𝑍 = 𝜉 in (22) and use (10), (12), we get 

 
1

𝑛−1
𝜂(𝑌)𝑄𝑉 + 𝐴𝜂(𝑉)𝑌 − 𝐴𝜂(𝑌)𝑉 = 0. (25) 

 In (25), if we choose 𝑌 = 𝜉 first, and then we take inner product both sides of the equation by 𝑍 ∈

𝜒(𝑀), we have 

 𝑆(𝑉, 𝑍) =
(𝑛−5)(𝑐−1)+4(𝑛−1)

4
𝑔(𝑉, 𝑍) −

(𝑛−5)(𝑐−1)

4
𝜂(𝑉)𝜂(𝑍). 

Thus, the proof of the theorem is completed.  

 

Theorem 3 Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies 

the curvature condition 𝑊0 ⋅ 𝑅 = 0, then 𝑀 is a real space form with constant scalar curvature.  
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Proof. Let’s assume that 

 (𝑊0(𝑋, 𝑌) ⋅ 𝑅)(𝑈, 𝑉, 𝑍) = 0, 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). So, we can write 

 

𝑊0(𝑋, 𝑌)𝑅(𝑈, 𝑉)𝑍 − 𝑅(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍

−𝑅(𝑈,𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑅(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0.
 (26) 

 If we choose 𝑋 = 𝜉 in (26) and make use of (15), we get 

 

−𝐴𝑔(𝑌, 𝑅(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑅(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑅(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑅(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑅(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑅(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑅(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑅(𝑈, 𝑉)𝑌 = 0.

 (27) 

 If we use (8), (9), (10) in (27), we obtain  

 

−𝐴𝑔(𝑌, 𝑅(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑅(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

−𝐴𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑅(𝑌, 𝑉)𝑍 − 𝐴𝑔(𝑌, 𝑉)𝑔(𝑈, 𝑍)𝜉

+𝐴𝑔(𝑌, 𝑉)𝜂(𝑍)𝑈 − 𝐴𝜂(𝑉)𝑅(𝑈, 𝑌)𝑍 − 𝐴𝜂(𝑍)𝑅(𝑈, 𝑉)𝑌

+𝐴𝑔(𝑌, 𝑍)𝜂(𝑉)𝑈 − 𝐴𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 = 0.

 (28) 

 If we choose 𝑈 = 𝜉 in (28) and use (8), we get 

 −𝐴[𝑅(𝑌, 𝑉)𝑍 − 𝑔(𝑉, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑉] = 0. (29) 

 Thus, the proof of the theorem is completed.  

 

 

Theorem 4 Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies 

the curvature condition 𝑊0 ⋅ 𝑊0 = 0, then 𝑀 is an 𝜂 −Einstein manifold.  

 

 

Proof. Let’s assume that  

 (𝑊0(𝑋, 𝑌) ⋅ 𝑊0)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). So, we can write 
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𝑊0(𝑋, 𝑌)𝑊0(𝑈, 𝑉)𝑍 −𝑊0(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍

−𝑊0(𝑈,𝑊0(𝑋, 𝑌)𝑉)𝑍 −𝑊0(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0.
 (30) 

 If we choose 𝑋 = 𝜉 in (30) and make use of (15), we get 

 

−𝐴𝑔(𝑌,𝑊0(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑊0(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑊0(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑊0(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0.

 (31) 

 If we use (15), (16), (17) in (31), we obtain  

 

−𝐴𝑔(𝑌,𝑊0(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑊0(𝑈, 𝑉)𝑍)𝑌 − 𝐴2𝑔(𝑌, 𝑈)𝑔(𝑉, 𝑍)𝜉

+𝐴2𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑊0(𝑌, 𝑉)𝑍 − 𝐴𝜂(𝑉)𝑊0(𝑈, 𝑌)𝑍

+𝐴2𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 − 𝐴2𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉)𝜉 − 𝐴𝜂(𝑍)𝑊0(𝑈, 𝑉)𝑌 = 0

 (32) 

 If we choose 𝑈 = 𝜉 in (32) and make the necessary adjustments using (15), we get 

 −𝐴{𝑊0(𝑌, 𝑉)𝑍 + 𝐴[𝑔(𝑉, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑉]} = 0. (33) 

 Putting (14) in (33)and if we choose 𝑍 = 𝜉, we obtain 

 −𝐴 [𝐴𝜂(𝑉)𝑌 − (𝐴 + 1)𝜂(𝑌)𝑉 +
1

𝑛−1
𝜂(𝑌)𝑄𝑉] = 0. (34) 

 If we choose 𝑌 = 𝜉 in (34), and then we take inner product both sides of the equation by 𝑍 ∈ 𝜒(𝑀), 

we have 

 𝑆(𝑉, 𝑍) =
(𝑛−5)(𝑐−1)+4(𝑛−1)

4
𝑔(𝑉, 𝑍) −

(𝑛−5)(𝑐−1)

4
𝜂(𝑉)𝜂(𝑍). 

This completes the proof.  

 

Corollary 1 Let 𝑀 be the n−dimensional normal paracontact metric space form. If 𝑀 satisfies 

the curvature condition 𝑊0 ⋅ 𝑊0 = 0, then 𝑀 is an Einstein manifold if and only if 𝑀 is a real space 

form with constant scalar curvature 𝑐 = 1.  

 

Definition 4 Let 𝑀 be an 𝑛 −dimensional Riemannian manifold. The curvature tensor defined 

as  

 𝑍(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
𝑟

𝑛(𝑛−1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] (35) 

 is called the concircular curvature tensor.  
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For the 𝑛 −dimensional normal paracontact metric space form, if we choose 𝑋 = 𝜉, 𝑌 = 𝜉, 𝑍 =

𝜉 respectively in (35), then we get 

 𝑍(𝜉, 𝑌)𝑍 = [1 −
𝑟

𝑛(𝑛−1)
] [𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌], (36) 

 

 𝑍(𝑋, 𝜉)𝑍 = [1 −
𝑟

𝑛(𝑛−1)
] [−𝑔(𝑋, 𝑍)𝜉 + 𝜂(𝑍)𝑌], (37) 

 

 𝑍(𝑋, 𝑌)𝜉 = [1 −
𝑟

𝑛(𝑛−1)
] [𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] (38) 

 

 

Theorem 5 Let 𝑀 be the 𝑛-dimensional normal paracontact metric space form. If 𝑀 satisfies 

the curvature condition 𝑊0 ⋅ 𝑍 = 0, then 𝑀 is a real space form with constant scalar curvature.  

 

Proof. Let’s assume that  

 (𝑊0(𝑋, 𝑌) ⋅ 𝑍)(𝑈, 𝑉, 𝑍) = 0 

for every 𝑋, 𝑌, 𝑍, 𝑈, 𝑉 ∈ 𝜒(𝑀). So, we can write 

 

𝑊0(𝑋, 𝑌)𝑍(𝑈, 𝑉)𝑍 − 𝑍(𝑊0(𝑋, 𝑌)𝑈, 𝑉)𝑍

−𝑍(𝑈,𝑊0(𝑋, 𝑌)𝑉)𝑍 − 𝑍(𝑈, 𝑉)𝑊0(𝑋, 𝑌)𝑍 = 0.
 (39) 

 If we choose 𝑋 = 𝜉 in (39) and make use of (15), we get 

 

−𝐴𝑔(𝑌, 𝑍(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑍(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝑔(𝑌, 𝑈)𝑍(𝜉, 𝑉)𝑍

−𝐴𝜂(𝑈)𝑍(𝑌, 𝑉)𝑍 + 𝐴𝑔(𝑌, 𝑉)𝑍(𝑈, 𝜉)𝑍 − 𝐴𝜂(𝑉)𝑍(𝑈, 𝑌)𝑍

+𝐴𝑔(𝑌, 𝑍)𝑍(𝑈, 𝑉)𝜉 − 𝐴𝜂(𝑍)𝑍(𝑈, 𝑉)𝑌 = 0.

 (40) 

 If we use (36), (37), (38) in (40), we obtain  
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−𝐴𝑔(𝑌, 𝑍(𝑈, 𝑉)𝑍)𝜉 + 𝐴𝜂(𝑍(𝑈, 𝑉)𝑍)𝑌 + 𝐴𝐵𝑔(𝑌, 𝑈)𝜂𝑔(𝑉, 𝑍)𝜉

−𝐴𝐵𝑔(𝑌, 𝑈)𝜂(𝑍)𝑉 − 𝐴𝜂(𝑈)𝑍(𝑌, 𝑉)𝑍 − 𝐴𝐵𝑔(𝑌, 𝑉)𝑔(𝑈, 𝑍)𝜉

+𝐴𝐵𝑔(𝑌, 𝑉)𝜂(𝑍)𝑈 − 𝐴𝜂(𝑉)𝑍(𝑈, 𝑌)𝑍 + 𝐴𝐵𝑔(𝑌, 𝑍)𝜂(𝑉)𝑈

−𝐴𝐵𝑔(𝑌, 𝑍)𝜂(𝑈)𝑉 − 𝐴𝜂(𝑍)𝑍(𝑈, 𝑉)𝑌 = 0

 (41) 

 where 𝐵 = [1 −
𝑟

𝑛(𝑛−1)
]. If we choose 𝑈 = 𝜉 in (41) and make the necessary adjustments using (36), 

we get 

 −𝐴{𝑍(𝑌, 𝑉)𝑍 + 𝐵[𝑔(𝑌, 𝑍)𝑉 − 𝑔(𝑉, 𝑍)𝑌]} = 0. (42) 

 If we substitute the (35) in (42) and we make the necessary arrangements, we obtain 

 −𝐴[𝑅(𝑌, 𝑉)𝑍 − 𝑔(𝑉, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑉] = 0. 

This completes the proof.  

 

Theorem 6 Let 𝑀 be the 𝑛 −dimensional normal paracontact metric space form. If 𝑀 satisfies 

the curvature condition 𝑊0 ⋅ 𝑆 = 0, then 𝑀 is an Einstein manifold.  

 

 

Proof. Let’s assume that  

 (𝑊0(𝑋, 𝑌) ⋅ 𝑆)(𝑈, 𝑉) = 0 

for every 𝑋, 𝑌, 𝑈, 𝑉 ∈ 𝜒(𝑀). So, we can write 

 𝑆(𝑊0(𝑋, 𝑌)𝑈, 𝑉) + 𝑆(𝑈,𝑊0(𝑋, 𝑌)𝑉) = 0. (43) 

 If we choose 𝑋 = 𝜉 in (43) and make use of (15), we get  

 

−𝐴(𝑛 − 1)𝑔(𝑌, 𝑈)𝜂(𝑉) + 𝐴𝜂(𝑈)𝑆(𝑌, 𝑉)

−𝐴(𝑛 − 1)𝑔(𝑌, 𝑉)𝜂(𝑈) + 𝐴𝜂(𝑉)𝑆(𝑈, 𝑌) = 0.
 (44) 

 If we choose 𝑈 = 𝜉 in (44), we have 

 
(𝑛−5)(𝑐−1)

4(𝑛−1)
[𝑆(𝑌, 𝑉) − (𝑛 − 1)𝑔(𝑌, 𝑉)] = 0. 

Thus, the proof of the theorem is completed.  
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4. Conclusion 

In this article, normal paracontact metric space forms are investigated on 𝑊0 −curvature tensor. 

Characterizations of normal paracontact space forms are obtained on 𝑊0 −curvature tensor. Special 

curvature conditions established with the help of Riemann, Ricci, concircular curvature tensors are 

discussed on 𝑊0 −curvature tensor. Through  these curvature conditions, important characterizations of 

normal paracontact metric space forms are obtained. 
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