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Abstract Let A be a proper independence algebra of finite rank, let G be the group of automorphisms
of A, let a be a singular endomorphism and let aG be the semigroup generated by all the elements
g−1ag, where g ∈ G. The aim of this paper is to prove that aG is a semigroup generated by its own
idempotents.
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1. Introduction

Let X be a finite set. We denote by T (X) the monoid of all (total) transformations on
X and by Sym(X) the symmetric group on X. An element a ∈ T (X) \ Sym(X) is said
to be singular.

Howie proved in 1966 [5] that every singular transformation a ∈ T (X) can be expressed
as a product of idempotents of T (X).

This result was generalized by Fountain and Lewin [3] for the case of independence
algebras as follows. Let A be an independence algebra of finite rank and let End(A) and
Aut(A) be the monoid of endomorphisms and the group of automorphisms of A, respec-
tively. Given an element a ∈ End(A) we define the rank of a, rank(a), as rank(im(a)).
An endomorphism a ∈ End(A) is said to be singular if rank(a) < rank(A). Fountain
and Lewin proved that every singular endomorphism a ∈ End(A) can be expressed as a
product of idempotents of End(A).

In a different direction, Levi and McFadden [7] extended Howie’s result proving that
given a singular transformation a ∈ T (X), the semigroup generated by all its conjugates
g−1ag, with g ∈ Sym(X), is generated by its own idempotents.

In fact, Levi and McFadden proved something more. As usual, if S is a semigroup,
E(S) denotes the set of idempotents of S, and if ∅ �= T ⊆ S, by 〈T 〉 we denote the
semigroup generated by T . Levi and McFadden proved the following theorem.
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Theorem 1.1. Let a ∈ Tn \ Sym(X) and S = 〈{g−1ag | g ∈ Sym(X)}〉. Then

S = 〈{a} ∪ Sym(X)〉 \ Sym(X) = 〈E(S)〉.

Our aim is to generalize this result to the case of independence algebras. We would
like to have a result reading as follows: let A be a finite-rank independence algebra and
let a ∈ End(A) be a singular endomorphism. Then the semigroup generated by the set
{g−1ag | g ∈ Aut(A)} is generated by its own idempotents.

However, this result is not true. To see this consider X = {0, 1, 2} and the independence
algebra A = (X, 0), an algebra with only one operation which is constant. Let a be the
endomorphism of A defined by 0a = 1a = 0 and 2a = 1. Then a ∈ End(A) \ Aut(A) but
we have∗

〈Aut(A) a Aut(A)〉 ∼= 〈S2 (21] S2〉.

The latter is an inverse semigroup and has elements that are not idempotents, so it is not
generated by idempotents and hence 〈Aut(A) a Aut(A)〉 is not generated by idempotents
either.

In the sequel we consider a particular class of independence algebras—proper indepen-
dence algebras—in which a result corresponding to that of Levi and McFadden holds.
This class of algebras is broad enough to contain the most important examples of inde-
pendence algebras, namely, sets, free G-sets and vector spaces.

In § 2 we introduce proper independence algebras and prove some basic results. In
§ 3 we prove that, for any singular endomorphism a ∈ End(A), the semigroup 〈{a} ∪
Aut(A)〉 is generated by its own idempotents. As a corollary we derive the Fountain and
Lewin theorem for proper independence algebras. As sets and vector spaces are proper
independence algebras, the result is general enough to contain, as particular cases, both
Howie’s [5] and Erdos’s [2] classical theorems.

Finally, § 4 is devoted to the study of semigroups generated by the set {g−1ag : g ∈
Aut(A)}, where a ∈ End(A) \ Aut(A) and Aut(A) is a periodic group. The main result
of this section generalizes Theorem 1.1.

2. Preliminaries

We assume that the reader has a basic knowledge of both the theory of independence
algebras and the theory of semigroups. For independence algebras we recommend [3]
and [4] as references, and for general semigroup theory we recommend [6].

The first step in the definition of independence algebras is the introduction of a notion
of independence valid for universal algebras. A subset X of an algebra is said to be
independent if X = ∅ or if, for every element x ∈ X, we have x �∈ 〈X \ {x}〉; a set is
dependent if it is not independent.

Lemma 2.1. For an algebra A, the following conditions are equivalent.

∗ In a notation that is now standard, the partial one-to-one mapping on the set {1, 2} which sends 2
to 1, is represented by (21].
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(1) For every subset X of A and all elements u, v of A, if the element u ∈ 〈X ∪ {v}〉
and u �∈ 〈X〉, then v ∈ 〈X

⋃
{u}〉.

(2) For every subset X of A and every element u ∈ A, if X is independent and u �∈ 〈X〉,
then X ∪ {u} is independent.

(3) For every subset X of A, if Y is a maximal independent subset of X, then 〈X〉 =
〈Y 〉.

(4) For subsets X, Y of A with Y ⊆ X, if Y is independent, then there is an independent
set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.

Proof. See [9, Exercise 6, p. 50]. �

An algebra A is said to have the exchange property or to satisfy [EP] if it satisfies the
equivalent conditions of Lemma 2.1. A basis for A is a subset of A which generates A

and is independent. It is clear from Lemma 2.1 that any algebra with [EP] has a basis.
Furthermore, for such an algebra, bases may be characterized as minimal generating
sets or maximal independent sets, and all bases for A have the same cardinality [4,
Proposition 3.30]. This cardinal is called the rank of A and is written rank(A). If A is
an algebra satisfying [EP] and α ∈ End(A), then rank(α) is the rank of the image of α,
that is, rank(α) = rank(im(α)).

We observe that part (4) of Lemma 2.1 tells us that any independent subset of A can
be extended to a basis for A. We also remark that if A satisfies [EP], then so does any
subalgebra of A.

Throughout this paper A will always denote an independence algebra of finite rank with
at most one constant. Thus, in the algebras under consideration, Con = ∅ or Con = {0},
where Con denotes the set of constants of A.

Let A be an independence algebra and let X, Y be two disjoint and independent
subsets of A. Then A is said to be strong if 〈X〉 ∩ 〈Y 〉 = Con implies that X ∪ Y is an
independent set. From now on we restrict our study to the case of strong independence
algebras.

Lemma 2.2. Let B and C be subalgebras of A. If B is a basis for B ∩ C, B ∪ C is a
basis for B and B ∪D is a basis for C, then B ∪C ∪D is a basis for the algebra generated
by B and C.

Proof. See [3, Lemma 1.6]. �

Definition 2.3. Let I be a set and for a symbol 0 �∈ I, let I0 = I ∪ {0}. Moreover, let
A be an independence algebra and let (Ai)i∈I be a partition of a basis of A. Consider the
endomorphism α ∈ End(A) defined by Aiα = {ai}, for i ∈ I, where the set {ai : i ∈ I} is
an independent set (and hence a basis for im(α)), and let A0α = {0}. An endomorphism
α ∈ End(A) under these conditions is represented by the following matrix[

A0 Ai

0 ai

]
i∈I

.
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This matrix is said to be a fundamental representation of α. The set A0 in the funda-
mental representation is said to be the constant component.

If the algebra has no constants, then the constant component is the empty set and
then the endomorphism can be defined by[

Ai

ai

]
i∈I

.

The importance of this concept lies in the following fact.

Theorem 2.4. Every endomorphism of a strong independence algebra admits a fun-
damental representation.

Proof. This follows from Lemma 2.8 and the observations following Corollary 2.10
of [3]. �

It is worth observing that the previous theorem does not imply that given a ∈ End(A)
and a basis B of A, there is a partition of B, say (Ai)i∈I0 , such that[

A0 Ai

0 ai

]
i∈I

is a fundamental representation of a. What the previous theorem implies is that for every
a ∈ End(A) there exist a basis B of A and a partition of that basis, say (Ai)I∪{0}, such
that [

A0 Ai

0 ai

]
i∈I

is a fundamental representation for a. In fact we can say more. For every a ∈ End(A)
and every basis C of im(a), there is a basis of A, say B = ∪I0Ai, such that[

A0 Ai

0 ai

]
i∈I

is a fundamental representation for a. In short, not every basis of A induces a fundamental
representation of a given a ∈ End(A), but, given any a ∈ End(A), every basis of im(a)
induces a fundamental representation for a.

We observe that if e ∈ E(End(A)), then e has a fundamental representation as follows[
A0 Ai

0 ai

]
i∈I

,

where ai ∈ Ai, for all i ∈ I. Moreover, if C is a basis for im(e) and C0 = C ∪ {0}, then
there is a basis of A, say B =

⋃
c∈C0

Ac, such that Ace = c, for all c ∈ C0. Thus, e can
be represented as (and is defined by) [

Ac

c

]
c∈C0

.
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Lemma 2.5. Let α ∈ End(A), g, h ∈ Aut(A) and suppose that[
A0 A1 · · · An

0 a1 · · · an

]

is a fundamental representation for α (where A0 may be empty). Then[
A0g A1g · · · Ang

0 a1h · · · anh

]

is a fundamental representation for g−1αh.

Proof. Clearly,
⋃

(Aig : i ∈ {0, . . . , n}) is a basis for A and {a1h, . . . , anh} is an inde-
pendent set. Moreover, (Aig)g−1αh = aih, for all i ∈ [n], and (A0g)g−1αh = 0, whenever
A0 is non-empty. The lemma is proved. �

Let α ∈ End(A). If the algebra has no constants, then the constant component in
every fundamental representation of α is the empty set and then the endomorphism can
be defined by [

A1 · · · An

a1 · · · an

]
,

where (Ai)i∈[n] is a partition of a basis.
Let α be an endomorphism of A. We say that α is proper if it has a fundamental

representation with empty constant component. That is, α can be defined by[
A1 · · · An

a1 · · · an

]
,

where
⋃

i∈[n] Ai is a basis for A. A proper endomorphism is said to be reductive if its
rank is less than the rank of A but greater than zero.

Definition 2.6. A strong independence algebra is said to be proper if all endomor-
phisms of rank at least 1 are proper.

Clearly, an endomorphism of a proper algebra is reductive if and only if it is neither
an automorphism nor the null endomorphism.

We observe that strong independence algebras without constants are examples of
proper independence algebras. In addition we have the following lemma.

Lemma 2.7. Let V be a vector space over a field F . Then V is a proper independence
algebra.

Proof. Let B be a basis for V , B1 ⊂ B and b ∈ B \ B1. It is an easy exercise to show
that (B1 + b) ∪ B \ B1, where B + b = {a + b | a ∈ B}, is a basis for V .
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Consider the following fundamental representation of α:[
A0 Ai

0 ai

]
i∈I

.

As rank(α) > 0 it follows that for some i ∈ I we have (Ai)α = {ai} �= {0}. Suppose
a1 �= 0. Then α has a fundamental representation as follows:[

A0 A1 Ai

0 a1 ai

]
i∈I\{1}

.

Let a ∈ A1. Then B = (Ao + a) ∪ (∪i∈IAi) is a basis for V .
Now α acts on the basis B in the following way:[

A0 + a A1 Ai

a1 a1 ai

]
i∈I\{1}

.

As C = {ai | i ∈ I} generates the image of α, it follows that
[
(A0 + a) ∪ A1 Ai

a1 ai

]
i∈I\{1}

is a fundamental representation of α with empty constant component. �

In what follows we restrict our study to the case of proper independence algebras of
finite rank. Thus A will always denote an algebra of this kind (we keep assuming that A
has at most one constant).

We now prove a technical lemma which will be very useful in what follows.

Lemma 2.8. Let {b1, . . . , bn} be an independent set in A where n < rank(A). Suppose
that a belongs to the subalgebra 〈b1, . . . , bn〉 \Con. Then there exist two bases as follows

B = {b1, . . . , bn, y, d1, . . . , dk},

C = {b1, . . . , bi−1, a, bi+1, bn, y, e1, . . . , ek}.

Proof. As n < rank(A) there is an element y ∈ A such that the set {b1, . . . , bn, y} is
independent. Hence there is a basis B = {b1, . . . , bn, y, d1, . . . , dk}. Take the minimum i ∈
[n] such that a ∈ 〈b1, . . . , bi〉. Then, as a �∈ 〈b1, . . . , bi−1〉, it follows that {b1, . . . , bi−1, a}
is an independent set and, by [EP], we can say that bi ∈ 〈b1, . . . , bi−1, a〉.

We claim that {b1, . . . , bi−1, a, bi+1, . . . , bn} is independent. In fact, if a ∈ 〈b1, . . . , bi−1,

bi+1, . . . , bn〉, then we have

bi ∈ 〈b1, . . . , bi−1, a, bi+1, . . . , bn〉 = 〈b1, . . . , bi−1, bi+1, . . . , bn〉,
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a contradiction as {b1, . . . , bi−1, bi, bi+1, . . . , bn} is an independent set. It now follows that
{b1, . . . , bi−1, a, bi+1, . . . , bn, y} is independent. In fact,

〈b1, . . . , bi−1, a, bi+1, . . . , bn〉 ∩ 〈y〉 ⊆ 〈b1, . . . , bi, . . . , bn, a〉 ∩ 〈y〉
= 〈b1, . . . , bi, . . . , bn〉 ∩ 〈y〉
= Con.

Thus, 〈b1, . . . , bi−1, a, bi+1, . . . , bn〉∩〈y〉 = Con and this proves that the set {b1, . . . , bi−1,

a, bi+1, . . . , bn, y} is independent. Therefore it can be extended to a basis of A:

C = {b1, . . . , bi−1, a, bi+1, . . . , bn, y, . . . }.

�

3. The semigroup 〈α, G〉 \ G is idempotent generated

The aim of this section is the proof of the following theorem.

Theorem 3.1. If α ∈ End(A) is a reductive endomorphism, then 〈α, G〉 \ G is gener-
ated by its own idempotents.

For an α ∈ End(A) the semigroup 〈α, G〉 \ G will be denoted by αG. As an element in
the semigroup αG has the form g1αg2 . . . αgk, for some g1, . . . , gn ∈ G, we see that αG is
generated by its idempotents if and only if gαh is a product of idempotents in αG, for
all g, h ∈ G.

In [3, § 3] it is proved that there is an idempotent e ∈ End(A) and an automorphism
g such that α = eg. Thus we have α ∈ eG and e = αg−1 ∈ αG. Hence eG = αG.

Now it remains to prove that the semigroup eG is generated by its own idempotents.
To see this we fix the following fundamental representation of e:[

A1 · · · An

x1 · · · xn

]
,

where xi ∈ Ai, for all i = 1, . . . , n. This is possible because α is proper and thus, by
Lemma 2.5, e is proper as well.

If, for all g, h ∈ G, we have geh ∈ 〈E(eG)〉, then eG = 〈E(eG)〉. Thus one only has to
prove that, for all g, h ∈ G, the element geh belongs to 〈E(eG)〉. Let a = geh. Then it
follows from Lemma 2.5 that the following matrix[

A1g
−1 · · · Ang−1

x1h · · · xnh

]

is a fundamental representation for a. Let Aig
−1 = Zi, xih = ai. Thus a fundamental

representation of a is given by the matrix[
Z1 · · · Zn

a1 · · · an

]
.
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We observe that geg−1 is idempotent and has a fundamental representation as follows[
A1g

−1 · · · Ang−1

x1g
−1 · · · xng−1

]
.

As Aig
−1 = Zi, for i = 1, . . . , n, it follows that E(eG) contains an element (namely,

geg−1) with the following fundamental representation:
[

Z1 · · · Zn

x1g
−1 · · · xng−1

]
.

We introduce now what will be the main tool in our proof. Let u ∈ 〈E(eG)〉 with
fundamental representation[

Zσ1 · · · Zσk Zσ(k+1) · · · Zσn

a1 · · · ak bk+1 · · · bn

]
,

where σ is a permutation of [n]. Moreover, suppose that if there is v ∈ 〈E(eG)〉 and
ς ∈ Sym([n]) such that Zςiv = ai, for i ∈ [j], then j � k. Roughly speaking, u is a
maximal element with respect to the property ‘coinciding with a twisted a in the first j

image elements’.
We claim that k = n.
We start by introducing some notation. Let β ∈ End(A) and let the following matrix

be a fundamental representation for β:[
Y1 · · · Yn

w1 · · · wn

]
.

Moreover, let Y =
⋃

i∈[n] Yi and for all i ∈ [n] let yi be an element in Yi. Then we
represent Yi as [yi]Y , and hence the given fundamental representation for β becomes[

[y1]Y · · · [yn]Y
w1 · · · wn

]
.

If one of the sets (Yi)i∈[n], say Y1, has more than one element, say w1, v1, we can represent
Y1 as [w1]Y or as [v1]Y or as [w1, v1]Y . The same applies for a set having more than two
elements. The aim of this notation is just to isolate one or more elements of a set in order
to make it easier for the reader to follow composition of fundamental representations.

With this notation, the fixed fundamental representation of e with respect to the basis
Z =

⋃
Ai is [

[x1]Z · · · [xn]Z
x1 · · · xn

]
.
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Lemma 3.2. Let B = {b1, . . . , bn} be contained in a basis C. Then, there exists in
eG an idempotent ε defined by [

[b1]C · · · [bn]C
b1 · · · bn

]
.

Moreover, we can choose ε in such a way that |[bi]C | = |[xi]Z |, for all i ∈ [n].

Proof. Consider a partition (Bi)i∈[n], of C, such that

(1) bi ∈ Bi, for all i ∈ [n]; and

(2) |[xi]Z | = |[bi]C |, for all i ∈ [n].

Now, consider any bijection g : (
⋃

[xi]Z : i ∈ [n]) −→ C satisfying two properties:

(1) xig = bi, for all i ∈ [n]; and

(2) ([xi]Z)g = [bi]C , for all i ∈ [n].

Then g can be extended to an automorphism of A and, by Lemma 2.5, the matrix[
[b1]C · · · [bn]C
b1 · · · bn

]

is a fundamental representation of g−1eg and g−1eg ∈ E(eG). The lemma follows. �

As e is reductive, for some i ∈ [n] the set Ai = [xi]Z has at least two elements.
We can suppose that [xk+1]Z contains more than one element. In fact, if [xi]Z contains
more than one element, instead of using e, we would work with the idempotent ε =
(xixk+1)Ze(xixk+1)Z , and now it is the Ker(ε)-class of xk+1 which contains more than
one element. The point is that we have to change only if [xk+1]Z has only one element.
If this is the case, then we consider the element ε = (xixk+1)Ze(xixk+1)Z , and with this
element we have 〈E(εG)〉 = 〈E(eG)〉. Thus if u ∈ 〈E(εG)〉, then u ∈ 〈E(eG)〉, which is
what we want to prove.

Thus we can assume that the fundamental representation of e chosen above has the
following shape [

[x1]Z · · · [xk]Z [xk+1, wk+1]Z · · · [xn]Z
x1 · · · xk xk+1 · · · xn

]
.

To prove that k = n we are going to prove that if k < n, then there is ε ∈ E(eG)
such that uε coincides with a twisted a in the first k + 1 elements, contradicting the
maximality of u.

Suppose first that
ak+1 �∈ 〈a1, . . . , ak, bk+1, . . . , bn〉.

https://doi.org/10.1017/S0013091500000729 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000729


214 J. Araújo

Then the set {a1, . . . , ak, bk+1, . . . , bn, ak+1} is independent and hence can be extended
to B, a basis of A. Now it follows from Lemma 3.2 that there is an idempotent ε in eG

with the following fundamental representation[
[a1]B · · · [ak]B [ak+1, bk+1]B [bk+2]B · · · [bn]B
a1 · · · ak ak+1 bk+2 · · · bn

]
.

But now, uε is defined by[
Zσ1 · · · Zσk Zσ(k+1) Zσ(k+2) · · · Zσn

a1 · · · ak ak+1 bk+2 · · · bn

]
,

which coincides with a twisted a in the first k + 1 image elements, contradicting the
maximality of u.

Thus we can now suppose that ak+1 ∈ 〈a1, . . . , ak, bk+1, . . . , bn〉. It follows from Lemma
2.8 that the following two bases exist:

(1) B = {a1, . . . , ak, bk+1, . . . , bk+j−1, bk+j , bk+j+1, . . . , bn, y, . . . }, and

(2) C = {a1, . . . , ak, bk+1, . . . , bk+j−1, ak+1, bk+j+1, . . . , bn, y, . . . },

where j � 1.
Using Lemma 3.2 once again, it follows that there are two idempotents in eG with the

following associated fundamental representations:∗

η ←→
[
[a1]B · · · [ak]B [bk+1]B · · · [bk+j , y]B · · · [bn]B
a1 · · · ak bk+1 · · · y · · · bn

]

and

ζ ←→
[
[a1]C · · · [ak]C [bk+1]C · · · [ak+1, y]C · · · [bn]C
a1 · · · ak bk+1 · · · ak+1 · · · bn

]
.

Thus, the element uηζ is defined by[
Zσ1 · · · Zσk Zσ(k+1) · · · Zσ(k+j) · · · Zσn

a1 · · · ak bk+1 · · · ak+1 · · · bn

]
.

Now we can consider a permutation σ′ ∈ Sym([n]) defined as follows:

(k + 1)σ′ = (k + j)σ, (k + j)σ′ = (k + 1)σ and (i)σ′ = (i)σ,

for the remaining elements of [n]. The element uηζ is defined by[
Zσ′1 · · · Zσ′k Zσ′(k+1) · · · Zσ′(k+j) · · · Zσ′n

a1 · · · ak ak+1 · · · bk+1 · · · bn

]
,

∗ The notation η ↔ M , where η is an endomorphism and M is a matrix, means that M is a fundamental
representation of η.
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a contradiction with the maximality of u. It is proved that k = n and, hence, the matrix[
Zσ1 · · · Zσk Zσ(k+1) · · · Zσn

a1 · · · ak ak+1 · · · an

]

is a fundamental representation of u. Thus proving our claim on p. 212.
To finish the proof of Theorem 3.1, it remains to prove, as explained on p. 212, that a

belongs to 〈E(eG)〉. So we have the following lemma.

Lemma 3.3. Let b ∈ 〈E(eG)〉 be defined by the matrix

b ↔
[
B1 · · · Bk . . . Bk+j · · · Bn

b1 · · · bk · · · bk+j · · · bn

]
.

Then the endomorphism defined by

c ↔
[
B1 · · · Bk−1 Bk Bk+1 · · · Bk+j−1 Bk+j Bk+j+1 · · · Bn

b1 · · · bk−1 bk+j bk+1 · · · bk+j−1 bk bk+j+1 · · · bn

]

belongs to 〈E(eG)〉 as well.

Proof. Let B = {b1, . . . , bn, y, . . . } be a basis of A. By Lemma 3.2, the following
idempotents belong to eG:

ε ←→
[
[b1]B · · · [bk]B · · · [bk+j , y]B · · · [bn]B
b1 · · · bk · · · y · · · bn

]
,

ζ ←→
[
[b1]B · · · [bk−1]B [y]B [bk+1] · · · [bk, bk+j ]B · · · [bn]B
b1 · · · bk−1 y bk+1 · · · bk+j · · · bn

]
,

η ←→
[
[b1]B · · · [y, bk]B · · · [bk+j ]B · · · [bn]B
b1 · · · bk · · · bk+j · · · bn

]
.

Now, bεζη is defined by[
B1 · · · Bk · · · Bk+j · · · Bn

b1 . . . bk+j · · · bk · · · bn

]
,

which is equal to c. The lemma is proved. �

Now, as u, with fundamental representation[
Zσ1 · · · Zσk Zσ(k+1) · · · Zσn

a1 · · · ak ak+1 · · · an

]
,

belongs to 〈E(eG)〉, it follows by repeated application of the previous lemma that a,
defined by [

Z1 · · · Zn

a1 · · · an

]
,
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belongs to 〈E(eG)〉 as well. Thus the semigroup eG is generated by its idempotents. As
eG = αG = 〈α, G〉 \ G, the theorem is proved.

Corollary 3.4. Let A be a proper independence algebra. Then every ideal of the
semigroup End(A) \ Aut(A) is generated by its idempotents.

Proof. It is proved in [3, remark after Proposition 1.3] that the ideals of End(A) \
Aut(A) are precisely the sets

Ir = {α ∈ End(A) : rank(α) � r}, for r < rank(A).

Now, if r = 0, then Ir has only one element, which is idempotent, and hence the result
holds. If 0 < r < rank(A), then every α ∈ Ir \ I0 is reductive and hence

α ∈ αG = 〈E(αG)〉 ⊆ Ir.

Thus α is a product of idempotents of Ir. �

Corollary 3.5 (Howie). Let X be a finite set. Then T (X) \ Sym(X) is idempotent
generated.

Corollary 3.6 (Erdos). Let V be a finite-dimensional vector space. Then the semi-
group End(V ) \ Aut(V ) is idempotent generated.

4. Normal semigroups of endomorphisms

Let A be an independence algebra, let α ∈ End(A) and g ∈ G. We will denote the element
gαg−1 by αg. A subsemigroup S of End(A) is said to be a normal semigroup if sg ∈ S,
for all s ∈ S and all g ∈ G. The smallest normal semigroup containing α ∈ End(A) is
the semigroup generated by the set {αg | g ∈ G} and will be denoted by 〈α : G〉.

The proof of the next theorem turns out to be very easy when we use some techniques
developed by McAlister [8].

Theorem 4.1. Let A be a proper independence algebra such that G, the automor-
phism group of A, is a periodic group. Moreover, let α be a reductive endomorphism
of A. Then the semigroup 〈α : G〉 is equal to 〈α, G〉 \ G and hence is generated by its
idempotents.

Proof. It is obvious that 〈α : G〉 ⊆ 〈α, G〉 \ G. So we prove the converse.
Let u = g1αg2αg3 . . . gnαgn+1 be an idempotent of 〈α, G〉 \ G. Then we have

u = g1αg−1
1 (g1g2)α(g1g2)−1(g1g2g3)α . . . α(g1g2g3 . . . gn)−1(g1g2g3 . . . gngn+1)

= αg1αg1g2αg1g2g3 . . . αg1g2g3...gn(g1 . . . gn+1).

Thus u ∈ 〈α : G〉(g1 . . . gn+1), say u = vg, where g is equal to g1 . . . gn+1 and v belongs
to 〈α : G〉.
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As G is periodic, there is n ∈ N such that gn is the identity. Now, as u = vg is
idempotent, we have vg = (vg)n and hence

vg = (vg)n

= v(gvg−1)(g2vg−2) . . . (gn−1vg−n+1)gn

= v(gvg−1)(g2vg−2) . . . (gn−1vg−n+1) ∈ 〈α : G〉.

It is proved that u = vg = v(gvg−1)(g2vg−2) . . . (gn−1vg−n+1) is an idempotent of 〈α :
G〉. Thus all the idempotents of 〈α, G〉 \ G belong to 〈α : G〉. As E(〈α, G〉 \ G) generates
〈α, G〉 \ G, the theorem is proved. �

We observe that when A is a vector space, over a field, the above result is true even
when the automorphism group is not a periodic group (see [1]).
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