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ABSTRACT 
The Hidden Subgroup Problem is the foundation of many 
quantum algorithms. An efficient solution is known for the 
problem over Abelian groups and this was used in Simon's 
algorithm and Shor's Factoring and Discrete Log algorithms. 
The non-Abelian case is open; an efficient solution would 
give rise to an efficient quantum algorithm for Graph Iso- 
morphism. We fully analyze a natural  generalization of the 
Abelian case solution to the non-Abelian case, and give an 
efficient solution to the problem for normal subgroups. We 
show, however, that  this immediate generalization of the 
Abelian algorithm does not efficiently solve Graph Isomor- 
phism. 

1. INTRODUCTION 
Peter Shor's seminal article [16] presented efficient quantum 
algorithms for computing integer factorizations and discrete 
logarithms, problems thought to be intractable for classical 
computation models. A primary ingredient in these algo- 
ri thms is a solution to the hidden subgroup problem for cer- 
tain Abelian groups; indeed Discrete-Log directly reduces 
to the hidden subgroup problem. Formally, the hidden sub- 
group problem is the following: 

DEFINITION 1. Hidden Subgroup Problem. (HSP) Given 
an efficiently computable function f : G --+ S, from a finite 
group G to a set S, that is constant on (left) cosets of some 
subgroup H and takes distinct values on distinct cosets, find 
a set of generators for H. 

The general paradigm is the following: 
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ALGORITHM 1. (Algorithm for the Abelian HSP). 

J. Compute ~-'~gEc Ig, f (g))  and measure the second regis- 
ter f (g) .  The resulting super-position is ~ h e H  I ch) ® 
If(ch)) for some coset cH of H. Furthermore, the dis- 
tribution of c over G is uniform. 

2. Compute the Fourier transform of the coset state, re- 
sulting in 

1 1 

p E O  ¥ ' ' ¥ ' ' h E H  

where G denotes the set of homomorphisms 
{p: G ~ C}. 

3. Measure the first register and observe a representation 
p. 

A key fact about this procedure is that  the resulting distri- 
bution over p does not depend on which coset cH arises after 
the first stage. Thus, we can repeat  the same experiment 
many times, each time inducing the same distribution over 
p. 
I t  is well known that  an efficient solution to the HSP for the 
symmetric group S,~ gives, in particular,  an efficient quan- 
tum algorithm for Graph Isomorphism. It  is also known 
how to efficiently compute the Fourier transform over many 
non-Abelian groups, most notably over S,~ [2]. Neverthe- 
less, until this work, there was no general understanding of 
the HSP over non-Abelian groups. In this paper we study 
the generalization of Algorithm 1 to non-Abelian groups. 
Namely, we study the following algorithm: 

ALGORITHM 2. (Potential Algorithm for the General 
HSP). 

1. Compute ~-]~gec Ig, f (g))  and measure the second regis- 
ter f (g) .  The resulting super-position is ~ h e H  I ch) ® 
If(ch)) for some coset cH of H. Furthermore, c is 
uniformly distributed over G. 

2. Compute the Fourier transform of the coset state, 
which is 

Ip, i , j ) ,  
p e g  \ h E H  / i , j  
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where G denotes the set of irreducible representations 
of G. 

3. Measure the first register and observe a representation 
p. 

For more details about the Fourier transform over non- 
Abelian groups, see Section 2. 
As before, we wish the resulting distribution to be indepen- 
dent of the actual coset eH (and so depend only on the sub- 
group H). This is guaranteed by measuring only the name 
of the representation p, leaving the matrix indices (the val- 
ues i and j)  unobserved. The question we study is whether 
this procedure retains enough information to determine H, 
or, more precisely, whether O(log(lGI)) samples of this dis- 
tribution axe enough to determine H with high probability. 
Our analysis of Algorithm 2 depends on the following theo- 
rem, which we believe is interesting on its own and is one of 
the main technical contributions of the paper: 

THEOREM 1. The probability of measuring the represen- 
tation p in algorithm 2 is proportional to the dimension of p 
and number of times p appears in the induced representation 
IndGH 1H, where 1H denotes the trivial representation on H.  

We apply this to solve the HSP for normal subgroups: 

THEOREM 2. (A solution to the Normal HSP). Let H be a 
normal subgroup of G. With high probability, H is uniquely 
determined by observing m = O(log ]G D independent trials 
of Algorithm 2. 

Our reconstruction result is information theoretic, and ap- 
plies to any normal subgroup H of any group G without 
reference to the specific way that the representations p are 
expressed. We proceed at this level of abstraction because 
there is no known canonical presentation for the represen- 
tation of a finite group G. In the same vein, there is no 
general method for computing the Fourier transform over 
an arbitrary group. 
A corollary of Theorem 1 is that conjugate subgroups H1 
and H2 (where //2 = gHlg -1 for some g 6 G) produce 
exactly the same distribution over p and hence cannot be 
distinguished by this process. In particular, the hidden sub- 
group problem cannot be solved by Algorithm 2 for a group 
G with two distinct conjugate subgroups H1,//2; the sym- 
metric group S~ is such a group. 
In light of this, one may ask whether Algorithm 2 can dis- 
tinguish between a coset cH of a non-trivial subgroup H 
and a coset cH~ = {c} of the trivial subgroup He = {e}, as 
even this would be enough for solving Graph Isomorphism. 
However, even for this weaker problem we show: 

THEOREM 3. For the symmetric group S,~, Algorithm 2 
does not distinguish (even information theoretically) the case 
that the hidden subgroup is the trivial subgroup from the case 
that the hidden subgroup is non-trivial. (Specifically, the dis- 
tributions induced on p in these two cases have exponentially 
small total variation distance.) 

1.1 Related Work. 
Simon's algorithm [17] implicitly involves distinguishing the 
trivial subgroup from an order 2 subgroup over the group 
Z~. He shows that a classical probabilistic oracle machine 

would require exponentially many oracle queries to success- 
fully distinguish the two cases with probability greater than 
1/2. Shot [16] generalizes Simon's algorithm to solve integer 
factorization and the discrete log problem. In addition to 
solving a special case of the HSP, he also solves specific 
cases when the underlying group is not even known. Boneh 
and Lipton [3] handle a case when a periodic function is 
not fixed on a coset. Hales and Hallgren [11] generalize the 
results for the case when the underlying Abelian group is 
unknown, but an estimate is known for the cardinality of its 
cyclic factors. Kitaev [13] gave an algorithm for the Abelian 
stabilizer problem, which is a special case of the HSP. The 
efficient algorithm for general Abelian HSP solution is folk- 
lore. 
As for computing the Fourier transform efficiently, Kitaev 
also shows how to efficiently compute the Fourier transform 
over any Abelian group. Beals [2] showed how to efficiently 
compute the Fourier transform over the symmetric group 
Sn. 
Ettinger, Heyer and Knill [8] show that  the HSP has poly- 
nomial query complexity. Ettinger and Heyer [5] give a so- 
lution for the HSP over the dihedral group D,~ with poly- 
nomially many queries and exponential time. In [6] and [7] 
they address whether any measurement will distinguish sub- 
groul~ states. Roetteler and Beth [15] give a solution to the 
HSP for a specific non-Abelian group. 
Grigni, Schulman and Vazirani [10] independently showed 
that measuring the representation and the row of the matrix 
entry is not enough to solve graph isomorphism. 

2. REPRESENTATION THEORY BACK- 
GROUND 

The main tool used by polynomial time quantum algorithms 
is the Fourier transform. To define the Fourier transform 
(over a group) we require the basic elements of representa- 
tion theory, defined below. 

R e p r e s e n t a t i o n .  A representation p of a group G is a ho- 
momorphism p : G -+ GL(V) ,  where V is vector space 
over C. Fixing a basis for V, each p(g) may be real- 
ized as a d x d matrix over C, where d is the dimension 
of V. As p is a homomorphism, for any g,h 6 G, 
p(gh) = p(g)p(h). The dimension dp of the represen- 
tation p is d, the dimension of V. 

A representation provides a means for investigating a 
group by homomorphically mapping it into a family of 
matrices. With this realization, the group operation 
is matrix multiplication and tools from linear algebra 
can be applied to study the group. We shall be con- 
cerned with complex-valued functions on a group G; 
the representations of the group are relevant to this 
study, as they give rise to the Fourier transform for 
such functions. 

I r r educ ib i l i t y .  We say that a subspace W is an invariant 
subspace of a representation p if p(g )W C_ W for all 
g fi G. We assume, without loss of generality, that  ev- 
ery p(g) is unitary, and, in particular, diagonalizable. 
Hence there are many subspaces fixed by an individual 
matrix p(g). In order for W to be an invariant sub- 
space for p, it must be simultaneously fixed under all 

P(g). 
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The zero subspace and the subspace V are always in- 
variant. If no nonzero proper subspaces axe invariant, 
the representation is said to be irreducible. 

D e c o m p o s i t i o n .  When a representation does have a 
nonzero proper invariant subspace V1 C V, it is always 
possible to find a complementary subspace V2 (so that 
V = V1 @ V:) which is also invariant. Since p(g) fixes 
V1, we may let pl (g) be the linear map on V1 given by 
p(g). It is not hard to see that  pl : G --+ GL(V1) is in 
fact a representation. Similarly, define p2(g) to be p(g) 
restricted to V2. Since V = V1 @ V2, the linear map 
p(g) is completely determined by pl (g) and p2 (g), and 
in this case we write p = Pl @p2. In this case there is a 
basis for V so that each matrix p(g) is block diagonal 
with two blocks. 

C o m p l e t e  Reduc ib i l i t y .  Repeating the process described 
above, any representation p may be written p = pl @ 
p2 @ .. .  @ pk, where each pl is irreducible. In par- 
ticular, there is a basis in which every matrix p(g) is 
block diagonal, the ith block corresponding to the ith 
representation in the decomposition. 

Cha rac t e r s .  The character Xp : G --+ C of a representation 
p is defined by xp(g) = t r  (p(g)). It is basis indepen- 
dent, and, as it turns out, completely determines the 
representation p. 

O r t h o g o n a l i t y  of  C h a r a c t e r s .  For two functions f l  and 
f2 on a group, there is a natural  inner product: 
(fl, f2)o given by 1 * TGT ~ 9  f l(g)f2(g) • The useful fact 
is the following: given the character Xp of any repre- 
sentation p and the character Xi of any irreducible rep- 
resentation pi, the inner product (Xp I Xi) is precisely 
the number of times the representation p~ appears in 
the decomposition of p. Since each p is unitary, the 
inner product of two characters simplifies slightly: 

(Xp l Xi)G ~GI ~ -1 = x . ( g ) x ~ ( g  ). 

Res t r i c t i on .  A representation p of a group G is also au- 
tomatically a representation of any subgroup H. We 
refer to this restricted representation on H as ResHp. 
Note that even representations which are irreducible 
over G may be reducible when restricted to H. 

Up to isomorphism, a finite group has a finite number of 
irreducible representations. For a group G, we let G denote 
this finite collection of irreducible representations. As men- 
tioned above, any representation may be decomposed into a 
sum of representations in G. 

EXAMPLE 1. Fix a group G and a representation p. Let 
p l , . . .  ,pk be the irreducible representations of G. Desiring 
to know how p decomposes in these pi, we compute 

ni = (Xp,Xi) 

for each i = 1 , . . . , k .  Then p = nip1 ( 9 . . . ® n k p k ,  and, 
after a unitary change of basis, the diagonal of the matrix 
p(g) consists of nl copies of pl(g), followed by n2 copies of 
p2 (g), etc. 

There are two representations possessed by every group: 

T h e  

T h e  

Triv ia l  R e p r e s e n t a t i o n .  The trivial representation 
l c  maps every group element g E G to the 1 by 1 
matrix (1). One feature of the trivial representation is 
that  ~ g  1c(g) is the 1 x I matrix (IG[);.this sum is the 
zero matrix for any other irreducible representation. 

R e g u l a r  R e p r e s e n t a t i o n .  We take a vector space V 
with a basis vector eg for every element g E G. The 
regular representation reg G : G --~ GL(V) is defined by 
regc(g ) : e~ ~-~ eg~, for any x E G. It has dimension 
IGI. With the basis above, for any g E G, regG(g ) is a 
permutation matrix. 

An important fact about the regular representation is 
that it contains every irreducible representation of G. 
In particular, if p l , . . .  ,pk are the irreducible repre- 
sentations of G with dimensions d l , . .  • , dk, then 

preg = dip1 @ " " " @ dkpk, 

that is, the regular representation contains each irre- 
ducible representation pl exactly di times. Counting 
dimensions, 

IGI = ~-'~d 2. (1) 
i 

The main tool in quantum polynomial time algorithms is 
the Fourier transform. 

DEFINITION 2. Let f : G --+ C. The Fourier transform of 
f at the irreducible representation p is the dp × dp matrix 

](p)  = _ _  ~ f(g)P(g)- 
gEG 

We refer to the collection of m a t r i c e s  (](P))pEG as the 

Fourier transform of f.  Thus f is mapped into 161 ma- 
trices of different dimensions. The total number of entries 
in these matrices is )--~. dp 2 = ]G], by equation 1 above. The 
Fourier transform is linear in f;  with the constants used 
above (i.e. V/ -~IGI)  it is in fact unitary, taking the IGI 
complex numbers (f(g))gEG to 1GI complex numbers orga- 
nized into matrices. 
A familiar case in computer science is when the group is 
cyclic of order n. Then the linear transformation (i.e., the 
Fourier transform) is a Vandermonde matrix with n-th roots 
of unity and the matrices are 1-by-1. 
In the quantum setting we identify the superposition 
~gEo fg lg )  with the function f : G -+ C defined by 
f (g)  = fg. In this notation, ~geG f(g)lg) is mapped under 

the Fourier transform to ~-~'pE6,1<i,j<d, ](P)i,JlP, i,J) • We 

remind the reader that f(p)i , j  is a complex number. When 
the first portion of this triple is measured, we observe p E 
with probability 

E f(P)i,J 2 =  f(p) 2 
l<i,j<_dp 

where IIAII is the natural  norm given by IIAII 2 -- t r  A*A. 
Let f be the indicator function of a left coset of H in G, i.e. 
for some c E G, 

f ( g ) = { 0 ~  i f g E c H ,  and 

otherwise. 
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Our goal is to understand the Fourier transform of f. As 

mentioned above, the probability of observing p is ](p) 2 : 

~ i , j  t(](P));J 12. Our choice to measure only the representa- 
tion p (and not the matrix indices) depends on the following 
key fact about the Fourier transform, also relevant to the 
Abelian solution: 

CLAIM 1. The probability of observing p is independent 
of the coset. 

PROOF. ](p) = EheHP(Ch) = p(c) E u e ,  P(h) and, 
since p(c) is a unitary matrix, 

f(p) 2 =  p(c) h~eHp(h) 2=  h~HP(h) 2. 

[] 

Given this, we may assume that our function f is positive 
on the subgroup H itself, and zero elsewhere. 

3. THE PROBABILITY OF MEASURING p 
The primary question is that of the the probability of observ- 
ing p. We have seen that  this is determined by ~heH p(h) 
which, being a sum of the linear transformations p(h), is 
a linear transformation. We being by showing that  it is a 
projection: 

LEMMA 1. ](p) is a projection. 

With the right basis, then, f(p) will be diagonal, and the 
diagonal entries will consists of ones and zeros. The prob- 
ability of observing a particular representation p will then 
correspond to the number of ones appe~ing on the diagonal 
(i.e., on the dimension of the image of f(p)).  
Given an irreducible representation p of G, we are interested 
in the sum of the matrices p(h) for all h E H. Since we only 
evaluate p on H, we can instead consider P~esHp without 
changing anything. As mentioned before, though p is irre- 
ducible (over G), R e s ,  p may not be irreducible on H. We 
may, however, decompose I=tesHp into irreducible represen- 
tations over H. Then the Fourier transform of f at p is 
comprised of blocks, each corresponding to a representation 
in the decomposition of ResHp. In particular, the matrix 
~ h e ,  p(h) is: 

~ h e H  al(h) 0 "'" 0 
0 ~ h e H a 2 ( h )  . . -  0 

U U t 
: : " . .  : 

0 0 "'" ~ h e H a t ( h )  
(2) 

for some unitary transformation U and some irreducible rep- 
resentations al of H (with possible repetitions). We know 
that the sum is nonzero only when the irreducible represen- 
tation is trivial, in which case it is [H I. Then the probability 
of observing p is 

dp 1 2 
= ~I-~[IHI (XO,X~H)H 

-.~ I~f-~elldp(Xp,X1H)H. 

We have proved: 

THEOREM 4. ](p) 2 = L~aldp(xp, X1H)H. 

Observe that one consequence of the theorem is that the 
probability of observing a representation p depends only on 
the character of p. It turns out that characters are class 
functions, i.e., x(g) = x(hg h - l )  for any character X and 
h,g E G. Hence conjugate subgroups (gHg -1 for some 
g E G is a conjugate subgroup of H) produce exactly the 
same distribution; this rules out using the paradigm of Algo- 
ri thm 2 with representations names alone to solve the HSP 
for any group containing a non-normal subgroup. 

3.1 Induced Representations 
We have discussed the restriction of a representation p on 
G to a subgroup H of G. There is a dual operation, called 
induction. This extends to all of G a representation p de- 
fined on a subgroup H. We will only need to work with the 
representation induced from the trivial representation on H. 
Let G / H  def r = l a l , . . .  , a t}  be a collection of representatives 
for the left cosets of H in G, so that  G : a l H  t3 • • • U a tH,  
this union being disjoint. Then the induced representation 
IndaH1H : G --+ GL(W) is defined over the vector space W 
that  has one basis vector e[~ d for each coset cnH. It is 
defined by linearly extending the rule 

IndaHl,(g) : e[ad -+ e[gal I = e[a~] 

where gc~i belongs to the coset otjH. Observe that  this rep- 
resentation is a permutation representation. As suggested 
by the notation, the representation is independent of the 
choice of cn. 

G 
E X A M P L E  2. I n d { i d } l { i d }  ~ r e g  c .  

LEMMA 2. (A special case of Frobenius reciprocity) [12, 
§3.20]): Let H C G and let p : G --+ GL(V) be an irreducible 
representation of G. Then 

(X1HI~P)H:(~IndGH1HIXP~G' 
the first inner product being computed over H and the second 
over G. 

Hence the number of times that  the trivial representa- 
tion of H appears in ResHp is the same as the number 
of times that p appears in IndaH1H. Theorem 4 shows 
that the probability of measuring the representation p in 
algorithm 2 is ~Gldp (X1 I Xp)H" By Frobenius reciprocity, 

: \(•IndGH1 H Xp~G , ,  proving Theorem 1. (xl Ix.). 

4. A POSITIVE RESULT: N O R M A L  SUB- 
GROUPS 

We begin this section by showing that  a polynomial number 
of samples suffices to reconstruct normal subgroups. The 
proof uses a Chernoff bound and Lemma 3, which we will 
prove in the next section. The lemma is the interesting part, 
and sections §4.1 and §4.2 are devoted to two proofs of the 
lemma, one from the perspective of restriction, the other 
from the perspective of induction. 
For a normal subgroup H of G, let :DH denote the distri- 
bution induced on G by the quantum experiment of Algo- 
ri thm 2. Lemma 3 below states that under this distribution 

H 2 a E G is sampled with probability IHId if H C kera,  and IGI ~ 
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zero otherwise ~. We will see also that Y~ ~eO, d~ = IG/HI. 
HC_ker c, 

Now, we are ready to prove: 

THEOREM ~ 5. Let a~,. . . , as be independent random vari- 
ables distributed according to ~)H with s = clog 2 IGt. Then 

_ (~-~)~ 
P r [ g  7t 1")ker a~] <__e z¢ logzlGI 

i 

PROOF. Let i = ~j=~ kera~ and No = G. As an 
intersection of normal subgroups, each Ni is normal in 
G. Also, we know that H C kerai,  for any i. Hence, 
H C_ N~ C N~_~ C . . .  C_ No = G. We claim: 

1 CLAIM 2. I f  Ni 5£ H then Pr~i+lez~,(Ni+l = Ni) < 

PROOF. Ni+l --= g i  iff Ni C ker ai+l. Now, we measure 
a C G with H C kern with probability IHI~2 by Lemma 3. 

-- Ial ~a ,  
Hence, 

Pr (Ni C kera) = E ][H[[d~ 
a E ~ H  

pE G : N i  C ker  p 

[H_~I. IGI IHI 1 
= Ial IN~l - Ig~l --- 

[] 

For each i = 1 , . . .  ,s, let Xi be the indicator random 
variable taking value 1 if Ni = H or Ni ¢ Ni-1 and 
zero otherwise. The random variables X1, . . .  ,X~ are 
not necessarily independent, but by the previous claim, 
Pr [Xi = 0 IP l , . . .  ,pi-1] _< ½. We can therefore define new 
independent random variables II1,. • • , Y~ with Pr(]~ = 0) = 
1 7 and such that ~ Y/ _< y~ Xi is always true. We now apply 
the Chernoff bound. 
Chernoff bound [1, A.1] Let Yi, i = 1 , . . .  ,s be a collection 
of independent random variables, uniformly distributed in 

_ a 2  
{0, 1}. Then Pr [}-~-i Y/ < ~__z~] < e 2, 

(~12 l°g21al Hence, Pr(P,~=IXi < log [GI) < e -  However, 
whenever P~=IXi >_ log(]G[) we must have N~ = H, because 
each time Ni+l C Ni the size of Ni+l is reduced by at least 
half, and we can repeat this no more than log(lGI) times. 

Hence, except for probability at most e - ( ¢ ~  )2 log~lal, we 
have N~ = H, which completes the proof. 

We now give two proofs for the facts stated at the beginning 
of this section. 

4.1  P r o o f  1: R e s t r i c t e d  r e p r e s e n t a t i o n s  
With this view, the main question, given the theorem of 
the last section, is whether or not the number of ones on 
the diagonal behaves in a useful way. We show that for 
normal subgroups, the Fourier transform at an irreducible 
representation is either (a multiple of) the identity or the 
zero matrix. 

~We remind the reader that a representation a is a homo- 
morphism a • G --+ GL(V).  The kernel of p is the set 
ker(a) = {g E Gin(g) = 1y} and is a normal subgroup of 
G, which we write kera  <~ G. 

LEMMA 3. Let H <3 G. I f  H C kerp then p is observed 
with probability IHI d2- iCl~p. I f  H ~= kerp then p is observed with 
probability O. 

PROOF. If H C kerp then p(h) is the identity for every 
h E H, so ResHp must contain dp copies of the trivial repre- 

IHIz2 sentation of H, and by theorem 1 the probability is lal ~p" 
Now we will use a simple counting argument to show that 
no other representations can contain a trivial representation 
of H. First we compute how many times the trivial repre- 
sentation of H appears in the regular representation of G 
restricted to H: 

1 h_ 1 

hEH 

1 _ pa j  
= V~xro~o(e)-IH--TI. 

On the other hand, let d l , . . .  , dt be the dimensions of those 
representations with H in their kernel. Each occurs in the re- 
striction of the regular representation of G dimension many 
times, so we get a total of ~ d/2 copies of the trivial repre- 
sentation of H that we already counted. Using Equation 1 
from Section 2 ~ dr = ~HL~I , so there can be no more. 
The final fact follows from group theory. Let groups G, G1 
and H ~ G be given. The number of homomorphisms of G 
that map H to the identity in G1 is the same as the number 
of homomorphisms of the quotient group G / H  to G1. 

[] 

4 .2  P r o o f  2 :  I n d u c e d  r e p r e s e n t a t i o n s  
We now provide an alternative proof for Lemma 3. Lemma 4 
restates the result in Lemma 3 using induced representa- 
tions. 

LEMMA 4. Let H ~_ G. Then 

IndaH 1H = ( ~  dc, a. 

(r E G : H  Cker  ¢r 

PROOF. We may think of T = IndGHIH as the natural per- 
mutation representation on the cosets of G / H  (see Section 
3.1). When H < 3 G  the coset h . g H i s  just the coset gH. 
Hence, for any h 6 H, 7(h) = l v  and H C_ kerIndaH1H. 
In particular, if we express v = (~o~d mpp, then for any p 
with m p >  0 it must be that H C l<er L _  p. 
On the other hand, let p C G with H _ kerp. Then, 

1 
(X~ [Xp)G = (X1 [XP)H -= -~IP'heHXp(h) 

= xp(e) = dp 

where the first equality is by Frobenius reciprocity, and the 
third is because H C kerp. We conclude that IndaHIH = 
~ : n C _ k e r o  d~a, as desired. [] 

[GI The dimension of Ind~ 1 H is I-HT, which yields the following 
corollary: 

COROLLARY 1. Let H <~ G. 

~ 0 ,  d~ = I a / n l .  
H C k e r  c~ 
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5. A NEGATIVE RESULT: DETERMINING 
TRIVIALITY IN S,,,, 

In this section we show that  a well known reduction of graph 
isomorphism to finding a hidden subgroup over S~ will not 
work using Algorithm 2. Some representation theory of Sn 
is needed and is in the appendix. 
Graph Automorphism is the problem of determining if a 
graph G has a nontrivial automorphism, and is easier than 
Graph Isomorphism [14]. A natural  special case occurs when 
the graph G consists of two disjoint connected rigid graphs 
G1, Gz (i.e., Aut(G~) = Aut(Gz) = {e}). In this case there 
are two possibilities for the automorphism group of G: 

CLAIM 3. 

• I f  a l  ~ G2, then Aut(G) = {e}. 

• I f  G1 .~ G2 then A u t ( G ) =  {e,a} where a E Sn is a 
permutation with n /2  disjoint 2-cycles. 

PROOF. For the first part  notice tha t  any automorphism 
maps a connected component onto a connect component. 
In our case we have two connected components G~ and G2. 
However, G1 and G2 are not isomorphic and have no non- 
trivial automorphisms. 
For the second part,  let a reflect an automorphism between 
G1 and Gz. Now, suppose there was another non-trivial 
automorphism T. Then aT is also an automorphism, and 
a r  maps the connected component of G1 onto G1, and G2 
onto G2. As G1 and G2 have no non-trivial automorphisms 
it follows that  a7 = 1, T = a-1 = a. [] 

Thus, if one knows how to solve the HSP for S~, or if one 
knows how to distinguish between cosets of a trivial sub- 
group and the cosets of a non-trivial subgroup, one can give 
an efficient quantum algorithm for Graph Automorphism. 
In particular, one might t ry  the following algorithm for re- 
constructing H = Aut(G).  

ALGORITHM 3. I n p u t  a graph G s.t. either Aut(G) = 
{e} or Aut(G) = {e, a}.  

1. Compute E.es , [ l r ,  Tr(G)) and measure the sec- 
ond register lr(G). The resulting super-position 
is EheHIch) ® If(oh)) for some coset cH of H.  
Furthermore, c is uniformly distributed over G. 

2. Compute the Fourier transform of the coset state, 
which is 

V VN pEG \ h E H  / i , j  

3. Measure the first register and observe a represen- 
tation p. 

We show that  even for this part icular case of Graph Iso- 
morphism (and Graph Automorphism) the algorithm fails. 

THEOREM 6. Let pp be the probability of sampling p in 
Algorithm 3 when G1 ~ G2, and qp when G1 ~ G2 and 
G1, G2 are connected and rigid. Then I P -  qlz <_ 2-~(~). 

PROOF. When G1 ~ G2, H = Aut(G) = {e}. Then 

IndSH~ 1 is the regular representation, and so /X o I ~¥indSAn 1/ ,  

the multiplicity of p in the regular representation, is d o. 

Hence, Po = ~ HI" 
When G1 ~ G2 and G1, G2 are connected and rigid, A = 
H = {e, a ) .  By Theorem 4 

qp = ~Gt] dp 

H has only two elements, e and a,  hence 

1 1 
(Xz I Xo)H = ~(Xp(e) + Xo(a)) = ~(d ,  + Xp(a)). 

That  is, qp = a~-~l.(dp + Xp(a)) and so, 

IPp - qpl 

We will soon prove: 

LEMMA 5. IXp(o)l < 2 0 ( n ) v ~ .  

Therefore, 

dp 
= n-[ IX,,(':")I 

I P - q ] l  = ]Ep IPo-qpl  

- n !  

_< ~,p ~ 2° (") V,"~ n/2 

< 2 ° ( ')  x/-n"~/2 
- 

= 

n! 
< 20(.. ) 1 <<< 2_a(~) 
- -  V / ~ - / 2 ) !  

where the second inequality is due to the fact that  the ev- 
ery irreducible representation p has dimension dp < v~ . ,  
for ~pd~ = n!. The third inequality follows from the fact 
that  the number of irreducible representation is the par- 
t i t ion number and is about  2 ~f~ (see Equation (3) in the 
appendix).  []  

PROOF OF LEMMA 5. We use the Murnaghan~Nakayama 
rule. We refer the reader to the appendix for more back- 
ground about  representations of S~ and an explanation of 
the rule. 

THEOREM 7 (THE MURNAGAN-NAKAYAMA RULE). 
Let c be a permutation with cycle structure ( c l , . . .  ,ct),  
Cl >_ .. . >_ c~. Then 

x (c) = ( -1 )  
Sly... ,st 

where each si is a skew hook of length ci of the diagram X 
after sa , . . .  , si-1 have been removed, and v(si)  denotes the 
number of vertical steps in si. 

A sequence s~ , . . .  , st where each si is a skew hook of length 
ci of the diagram A after s l , . .  • , s i-1 have been removed, is 
called an ordered decomposition of A into c. The (unordered) 
decomposition of s l , . . .  ,s t  is the set { s l , . . .  ,s t}.  
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We first claim tha t  the number of unordered decompositions 
is at most 4% To see that  notice that  a decomposition is 
in part icular a domino covering. For each cell in the shape, 
there is a unique neighbor (up,down left or right) such that  
the two are covered together by a domino. In particular, 
one way to completely specify such a covering is to write, 
for each cell in the shape, which neighbor (up,down,left or 
right) is covered with this cell. If the shape has n cells, this 
takes 2n bits, and therefore the number of such coverings is 
at most 2 2 n  . 

We now bound the number of ordered decomposition that  
correspond to the same unordered decomposition A. A con- 
tains n/2 dominos (skew-hooks of length 2). An ordered 
decomposition with unordered decomposition A, must con- 
secutively pick a domino from A that  lies on the boundary 
of the current shape. However, 

CLAIM 4. For any shape A with m cells, the number of 
dominos from A that lie on the boundary of A is at most 
O( vr-~) 

PROOF. Let B(A) be the set of cells that  belong to a 
domino that  lie on the boundary of A. We prove by in- 
duction that  if A covers m cells then IB(A)I < 4v/~.  I t  
then follows that  the number of dominos of A that  lie on 
the boundary of A is at most 2x/~.  
The base case (m = 1) is clearly true. Now, let A be a 
shape with m cells. If a cell (i, j )  C B(A) then (i, j )  is one 
of the last two cells on the i ' th  row, and one of the last 
two cells on the j ' t h  column. Now, A covers m cells, hence 
either the first row or the first column contains at least 
cells. W.l.o.g. let us assume the first row contains at least 

cells. Let A' be the shape ), without the first row. A' 
contains m'  < m - v / m  cells. By induction, IB(A')I < 4x /~  -7. 
Now, [B(A)[ < [B(A')[ + 2 _< 4 mv/-~ -L-- ~ + 2 _< 4x/-~ and 
the induction follows. []  

Hence, the number of ordered decompositions that  corre- 
spond to A is at most (2x/-n) '~/~. By the Murnaghan- 
Nakayama rule Xp(cr) < 4'~(2v/-~) '~/~. 
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APPENDIX 

A. THE IRREDUCIBLE REPRESENTA- 
TIONS OF SN 

The irreducible representations of S,~ may be placed into 
one-to-one correspondence with the part i t ions of n. A par- 
tition of n is a sequence (A1,. . .  , Ak) of positive integers, 
with A1 > . . .  > Ak for which ~A~ = n. The number of 
distinct parti t ions of n (also called the partition number of 
n and denoted p(n)) is a very well-studied function. Though 
no explicit formula is known, 

p(n) ~ 1--~--e#V'ff (3) 
o ~ n  
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where ~ -- 4v/-3, ~ = T r y / ~  and  the notat ion f ~ g means 
that  lim~-+oo f (n ) /g (n)  = 1. It  is customary to identify the 
par t i t ion A = (A1,. . .  ,Ak) with a diagram consisting of k 
rows of boxes, the i th  row containing Ai boxes. We will let 
A s tand for both  the par t i t ion and the associated diagram. 
For example, the diagram corresponding to the par t i t ion 
A = (6, 4, 3, 3, 2) is shown in figure 1. 
The irreducible representat ion associated with A is denoted 
p~. There is an explicit formula for the dimension of p~. 
This involves the not ion of a hook: for a cell (i, j )  of a Young 
tableau A, the (i, j ) -hook  hi,j is the collection of M1 cells of A 
which are benea th  (i, j )  (but  in the same column) or to the 
right of ( i , j )  (but  in the same row), including the cell (i , j) .  
The length of the hook ~(h) is the number  of cells appearing 
in the hook. Wi th  this nota t ion,  the dimension of pA may 
be expressed: 

n! 
d x - -  

1-I~,~ e(h~,j)' 
this product  being taken over all hooks h of A. 
Fixing a par t i t ion  A, the funct ion X~(') is invariant  on con- 
jugacy classes of S~ ( that  is, depends only on the conjugacy 
class of its argument) .  Conjugacy classes in Sn consist of all 
elements with like cycle structure.  Let c = (c~, . . .  , ct), with 
cl > • • • > ct, denote the class of permuta t ions  7r which can 
be wri t ten as a disjoint product  of cycles 7r = C1C2 "" Ct 
with each Ci having length el. Though no explicit formula 
for X~(C) is known, the remarkable Murnaghan-Nakayama 
rule will be sufficient for our needs. 

DEFINITION 3. A skew hook s of a Young diagram A is 
a connected collection of boundary boxes such that their re- 
moval from A results in a (smaller) diagram. The set of 
skew hooks of a diagram A may be placed in a natural one- 
to-one correspondence with the set of hooks as indicated in 
Figure 2. 

THEOREM 8 (THE MURNAGHAN-NAKAYAMA RULE). 
Let c be a permutation with a cycle structure (c l , . . .  ,ct) ,  
C1 ~ ... ___~ Ct. 

x~(c) = ~ (-1) ~(s~)...(-1) °(~'), 
81 ,... ,st 

where each si is a skew hook of length ei of the diagram A 
after S l , . . .  ,s~-i have been removed, and v(si) denotes the 
number of vertical steps in sl. 

A sequence S l , . . .  , st where each si is a skew hook of length 
c~ of the diagram A after s l , . . .  , s i -1 have been removed, is 
called an ordered decomposition of A into c. The (unordered) 
decomposit ion of s l , . . .  , s t  is the set { s l , . . .  , st}. 

EXAMPLE 3. F o r  /~ --- (2, 2, 1, 1) there are three possible 
ordered decomposition; the first is (2, 2, 1, 1), (2, 2), (1, 1); 

~2 
~3 
L4 

Figure 1: The diagram for A = (6, 4, 3, 3, 2). 

 ,lttAoJII 

X4 
~5 

Figure 2: A hook with i t 's  associated skew hook in A ---- 
(6, 4, 3, 3, 2). 

the second is (2 ,2 ,1 ,1) ,  (2,2), (2,0);  the third is (2,2,1,  1), 
(1, 1, 1, 1), (1, 1). Notice that as sets there are only two pos- 
sible decompositions, the first and the third coincide. The 
first decomposition has three vertical steps, the second has 
one vertical step, and the third three vertical steps. In all 
those eases the sign is - 1 ,  so the rule says that Xp(a) = -3 .  

B. THE HSP FOR HAMILTONIAN 
GROUPS 

B.1 Abelian HSP 
We now show how the above gives an efficient procedure for 
solving the hsp for abel ian groups. 

G = Z~ . Any  abel ian group is isomorphic to a product  of 
cyclic groups, so we star t  with cyclic groups G = Z,~. 
G has n one-dimensional  irreducible representations,  
Pk : G --~ C defined by pk(x) = w k~ where w is a 
primit ive n root of unity, say w = e 2~i/'~. W h e n  we 
sample Pk E G we see the vMue k. The kernel is 

ker(pk) ---- {x  : w k * = l }  = { x  : n l k x } = { x  : re[x} 

where m - gcd~,k)" Clearly, given n and  k 
we can easily compute  m. Now, to find H 
we take s samples. Suppose tha t  we sampled 
k l , . . . , k s  and  computed  m l , . . . , m s .  Then,  w.h.p., 
H = A i k e r a i  = { x e G  : ml]x , . . .  ,ms[x} = 
{x e G : 1 .c .m(ml , . . .  ,ms)Ix}.  We can easily com- 
pute  g = l . c .m(ml , . . .  , ms). We then  know tha t  w.h.p. 
H is generated by g. 

G = Z ~  . Next, we do the  easy case of G = Z~. 
G has 2 '~ one-dimensional  irreducible representat ions 
P(al ..... am) : G --+ C , a l , . . .  , an  E {0,1}, defined 
by P(al . . . . . . .  ) (X l , . . .  ,X,~) = (--1) ~a~ i .  The kernel is 

ker(p(al . . . . . . .  )) = { (X l , . . .  , x n ) :  ( - 1 )  ~" '~ '  = 1 }  = 
{ ( X l , . . . , x , ~ )  : Ea, x i = O (  m o d 2 ) } .  To find H we 
do s samples and  get s l inear equat ions over the field 
Z2. We solve the system of l inear equat ions for those 
( x l , . . .  ,x,~) tha t  satisfy all of the s equations.  This  is 
Simon's  algori thm [17]. 

G = Z k x Z t  • We now deal with a product  of two cyclic 
groups: G = Zk x Zt. Before get t ing into the solution, 
the reader might want  to play with the following exam- 
ple: G = Zs x Zs and  the subgroup H is generated by 
{(4, 0), (0, 4), (2, 2)}. 

G has k .  1 one-dimensional  irreducible representat ions 
azlo3bx2 where Pa,b : G ~ C defined by p~,b(xLx2) = w k t , 

wk is a pr imit ive k root of unity,  and  wt is a pr imit ive 
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1 root of unity. The kernel is 

= {(xl ,x2) : e 2~i(l~l+kb~2)/(kt) = 1 }  

= {(xl,x2) : laxl+kbx2-----O( modkl)}  

To find H we do s samples and get s linear equations 
over the ring Zm. Even though Zm is a ring (and not 
a field) we can still diagonlize the system of equations, 
and sample a random solution [9], which, w.h.p., is a 
random element of H. Doing that O(log([GI) ) times 
we get, w.h.p., a set of generators for H. 

A n y  p r o d u c t  o f  cyclic g roups  . The general case where 
G is a product of cyclic group is similar. 
We note that even though any abelian group is isomor- 
phic to a product of cyclic group, it is not always easy 
to find this isomorphism. E.g., it might not be easy to 
find a representations of the subgroup H as a product 
of cyclic groups. 

B.2 The HSP for the Hamiltonian Group 
A group is Hamiltonian if every subgroup is normal. Ev- 
ery abelian group is Hamiltonian. The only non-abelian, 
Hamiltonian group is G = Z~ @ B @ Q for some abelian 
group B with exponent b coprime with 2. The irreducible 
representations of G are 

~=  {P(a 1 ...... k) ~ Pb * pq ] P(al ...... ~) E Z~k2,Pb ~ JB,pq ~ 0 } "  

A and B are abelian and we know A,/3. The 
quaternin group Q = {4-1,+i, 4-j,+k}. has a nor- 
mal subgroup A = {1, -1} .  Q/A has four cosets, 
{{1, -1} ,  { i , - i} ,  {j, - j } ,  {k , -k}} .  Furthermore, Q/A is 
isomorphic to Z2 × Z2 with {1 , -1}  mapping to (0, 0), { i , - i }  
mapping to (1, 1), { j , - j }  mapping to (0, 1) and { k , - k }  
mapping to (1, 0). Hence, Q/A is abelian. Therefore, Q has 
four irreducible one dimensional representations P(cl,C2)(,) 
that given x E Q give ( -1)  c1.1+c2.2 where the coset of x in 
Q/A is isomorphic to (xl, x2) E Z2 x Z2. The last irreducible 
representation p of Q is obtained by realizing Q as SU(2), 
the group of 2 x 2 matrices with determinant 1. We associate 

( 1  O )  ( 0 1 )  ( i  0 ) 
1wi th  0 1 , i w i t h  - 1  0 ' j with 0 - "  ' 

a n d k w i t h  ( 0 - i )  - i  0 . - x  is associated with minus the 

corresponding matrix. 
Now, suppose we measure p = p~ ® Pb ® pc. If pc is one 
dimensional, we are like in the abelian case, and 

1 

ker(p) = { x = ( x l , . . . , q ) : E d ,  x , = 0 ( m o d N ) ,  
i = 1  

and the coset of q in Q/A is 

isomorphic to (x l- 1, xl) } 

where di and N are known integers. If pc is two dimensional, 
then there are eight possibilities for the matrix p(e). We 
group all equations with a particular matrix together, and 
then we are back to the abelian case. We solve each systems 
of equations separately, and we find a generating set for each 
of them. Finally, we find the intersections of the nine sets 
of equations. 
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