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Abstract. We characterize the structure of the normal subgroup lattice of 2-transi-
tive automorphism groups A(Q) of infinite chains (ß, <) by the structure of the
Dedekind completion (Í2, <) of the chain (Q, <). As a consequence we obtain
various group-theoretical results on the normal subgroups of A(Q), including that
any proper subnormal subgroup of A(Q) is indeed normal and contained in a
maximal proper normal subgroup of A(Q), and that A(Q) has precisely 5 normal
subgroups if and only if the coterminality of the chain (Ü, <) is countable.

1. Introduction. An infinite linearly ordered set ("chain") (ß, <) is called doubly
homogeneous if its automorphsim group (i.e. the group of all order-preserving
permutations) A($i) acts 2-transitively on it. Chains (ß, <) of this type and their
automorphism groups A(Q) have been used for the construction of infinite simple
torsion-free groups (Higman [12]) or, in the theory of lattice-ordered groups (/-
groups), in dealing with embeddings of arbitrary /-groups into simple divisible
/-groups (Holland [13]) (for a variety of further results see Glass [10]).

(ß, < ) will designate a doubly homogeneous chain for the rest of this paper unless
explicitly stated otherwise. We shall first characterize the structure of the normal
subgroup lattice ^V(A(Q,)) of A(Q) by the structure of the Dedekind completion
(ß, <) of (ß, <). In particular, automorphism groups of doubly homogeneous
chains with isomorphic Dedekind completions have isomorphic normal subgroup
lattices. Furthermore each proper subnormal subgroup of ^4(ß) is indeed normal in
A(ii) and contained in a maximal proper normal subgroup of A(&). For a e A(Q)
let (a) denote the smallest normal subgroup of A(ü) containing a. We will show that
whenever a, ß g ^4(ß) and a g (ß), then a is a product of 8 conjugates of ß and
ß~l, and that there exists a sequence of exponents ±1 of ß which is independent of
the particular choice of a, ß g A(ü). Similar results were established by Anderson
[1] for groups of homeomorphisms of certain topological spaces and by Bertram [4]
and Droste and Göbel [8] for permutation groups of unordered sets.
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648 R. N BALL AND MANFRED DROSTE

Obvious normal subgroups of ^(ß) are P(ß) (L(ß)), the group of all automor-
phisms with support bounded on the left (right, respectively), and P(ß) = P(ß) n
L(ß). According to Higman [12], P(ß) is always simple and contained in every
nontrivial normal subgroup of v4(ß). Holland [13] and Lloyd [16] showed that if the
cofinality cof(ß) (coinitiality coi(ß)) of ß is countable, then the group P(ß)/P(ß)
(L(ß)/P(ß)) is simple. Contradicting [17] the first author [2] showed by example
that in general the assumption cof(ß) = N0 is necessary. Here, as a consequence of
our characterization of the lattice ^V(A(£l)), we shall show that indeed for any
doubly homogeneous chain ß with cof(ß) # K0 the partially ordered set
{A|P(ß) c A<lPv(ß)} contains a smallest element different from P(ß); hence it is
isomorphic to the lattice of all ideals of the partially ordered subset Slx = {(a)|a g
P(ß)\P(ß)}. By a statement about (ß, <) we will characterize when (Six, ç) is a
Boolean algebra; in this case^ is isomorphic to a Boolean algebras#(k) depending
only on k = cof(ß).

Finally, considering A(Q) as an /-group again, we get that each proper normal
subgroup of ,4(ß) is an intersection of minimal prime /-subgroups of A(Q).

For further results on the.structure of ^"(^(ß)) see [6, 7] and Droste and Shelah
[9].

This paper contains parts of the dissertation thesis [2 and 6] of the authors,
written under the supervision of Professor W. C. Holland, Bowling Green, and
Professor R. Göbel, Essen, respectively. In [2], the results of this paper were first
established for a certain class of doubly homogeneous chains (ß, <) with cof(ß) =
N,; in [6] then the general theory was developed. The authors would like to thank
Professors Holland and Göbel for their encouragement.

2. Notation and remarks. For background results on our topic we refer the reader
to Glass [10]. A Ú B and Ù A¡ denote disjoint unions. For a mapping / we let a1
denote its value at a and f\A its restriction to A. If A¡ (i G /) are pairwise disjoint
sets and a,: Ai —> M¡ maps, we denote by a = ©e/a, the map from (JierAj into
U,e/M, defined by a\A = a, (/' G /). As usual, cardinal numbers are identified with
the least ordinals of the same cardinality.

Let (ß, <) be a dense unbounded chain. Then (ß, <) denotes the Dedekind
completion of (ß, «s), and (ß, <) denotes the absolute completion of (ß, <). That
is, ß = ß Ú {-oo, oo}, where -oo < x < oo for each x g ß. Note that each subset of
ß has a supremum and an infimum in ß. If a, b s ß satisfy a < b, let [a,i]={ze
Û\a < z < b}. For each a g ß u {oo} let the cofinality of a be

coî(a) = inf{ \A\ \a € A ç ß, a = sup^4},
and for b G ß u {-oo} let the coinitiality of b be

coi(Z>) = M {\B\\b<£ B ç ß, b = inf B).
The cofinality of ß is cof(ß) = cof(oo), the coinitiality of ß is coi(ß) = coi(-oo),
and the coterminality of ß is cot(ß) = cof(ß) in case cof(ß) = coi(ß). Now let
(ß, <) be an infinite chain and k g N. A(Q) is ^-transitive if whenever A, B <zQ,
with \A\ = \B\ = k, there exists a g ^(ß) with Aa = B. The following remarks are
well known.
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Remark 2.1. An infinite chain (ß, <) is called doubly homogeneous if one of the
following three pairwise equivalent conditions is satisfied:

(1) A(ü) is ^-transitive for some k G N with k ^ 2.
(2) /l(ß) is fc-transitive for any k G N with k > 2.
(3) ß is unbounded, and any two intervals [a, b] n ß, [c, d] n ß (a, b,c, d g ß,

a < 6, c < í/) in ß are order-isomorphic.
Remark 2.2. If [a¡\i g Z} and [b¡\i G Z} are two subsets of the doubly homoge-

neous chain ß such that a, < aj+x and b¡ < bi+x for all i g Z and such that the two
subsets have the same supremum and the same infimum (in ß), then there is some
a g ^(ß) such that a" = b¡ for all i g Z.

Remark 2.3. Let ß be a doubly homogeneous chain. Then ß is dense and
unbounded. For any a g ß, the set {x G ß|cof(x) = cof(a), coi(x) = coi(a)} is
dense in ß. In particular, the sets [x g ß|cof(x) = S0} and {x g ßcoi(x) = S0}
are dense in ß.

We let id denote the identity map of ß. A(Q) becomes an /-group if we put
aavp = max{aa, aß},aaAß = min{aa, aßJ for all a, ß g A(ü),a G ß.IfaG^(ß),
let a + = a V id, a= a A id, and |«| = a V a"1. If G is any /-group, a convex
normal /-subgroup of G is also called an /-ideal. For 1 < g G G let g1 = [x G G\ \x\
A g = 1}, and put C1 = D{ e-1 |c g C} for any C ç G. A polar of G is a subset of D
for which D = D1 ± ; D is termed principal if D = dL x for some d g D.

3. Characterization of J/~(A(Ü)). The goal of this section is to characterize the
structure of the lattice (^(^(ß)), ç) by the structure of the Dedekind completion
(ß, <) of (ß, <). Let us first summarize some properties of jV(A(ü)) already
known which will be important to us.

Theorem 3.1. Let ß be a doubly homogeneous chain. Then:
(a) Every normal subgroup of A(Q) is an l-ideal of A(Q,).
(b) Every normal subgroup of R(Q) (P(ß), P(ß)) is also normal in /l(ß).
(c) P(ß) ii the smallest normal subgroup of A(Q,).
(d)A(ü) = L(ß)-P(ß).
(e) //cof(ß) = K0, then P(ß)/P(ß) is simple.
(f) //coi(ß) = K0, then L(ß)/P(ß) is simple.
(g) // cot(ß) = X0, then P(ß), P(ß) and L(ß) are the only nontrivial proper

normal and subnormal subgroups ofA(Q).

Here (c) is due to Higman [12], whereas the other statements are slight generaliza-
tions of results due to Holland [13] and Lloyd [16] (cf. §2.3 of [10]). We will now
examine the structure of (Jf, ç ) for arbitrary cofinality and coinitiality of ß.

Definition 3.2. For every group G and a G G let (a) = (aG> = fl{N\a g N<G}
be the normal subgroup of G generated by a. We put jVx(G) = {(a)\a g G}.

We abbreviate^(^(ß)) by writing simply^,. First we show that the structure
of (JV, ç ) is completely determined by the structure of (Jfx, £ ) and vice-versa.

Proposition 3.3. (Jix, ç) is a join-semilattice, i.e. (a) • (ß) g jVx for all a, ß g
/l(ß), and thus coincides with the set of all those elements of Jf which are finitely
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650 R. N. BALL AND MANFRED DROSTE

generated as normal subgroups. (Jf, Q) is a complete algebraic Brouwerian lattice with
Jfx as its set of compact elements. In particular, (Jf, ç ) is distributive and isomorphic
to the set of all ideals of(Jfx, ç ).

Proof. Because of Theorem 3.1(a) we have to prove a version of our claims where
"/-ideal" is substituted everywhere for "normal subgroup." But, indeed, this /-ideal
version holds for every /-group G (cf. [5, pp. 187, 304, 306]).

Now we turn to an examination of the partially ordered set (Jfx, ç). We first
examine statements of the form "a G (ß)" for a, ß G A(tl) in case ß has countable
coterminality. Here we make use of the fact that A(ü) is an /-group. For the
techniques used in the proofs of 3.4-3.10 we refer the reader to §2.2 of Glass [10].
Given aje A(ü), aß denotes ß~laß.

Lemma 3.4 (Holland [13]). Let a, ß g A(ü).
(a) Assume that for each a g ß, a < aa (a = a", a" < a) implies a < aß (a =

aß, aß < a, respectively). Then there exists a y g A(Q) with a = ß7.
(b) // a and ß are conjugate and /? G P(ß) (L(ß), P(ß)) then there is also a

conjugatory G R(Q) (L(ß), P(ß)) with a = ßy.

Lemma 3.5. For every a g A(ü) there are yx, y2 g A(ü) with \a\ = a7' ■ (a'1)71.

Proof. First note a = a + - a~= a- ct+. Let ax = (a+)2 • a~ and a2 = a + -(a~)2.
Hence by Lemma 3.4(a) there are y, G A(&) with a, = a7, (i = 1,2). Thus

|a| = a + -(a)-1 = ax ■ a2l = a1" -(a"1)72.

Lemma 3.6 (Holland [13]). Assume cot(ß) = N0 and let a, ß g A(iï) with id < a,
id < ß. Furthermore assume that whenever ß G P(ß)\P(ß) (ß G L(ß)\P(ß),
ß G P(ß)), then a G P(ß) (a G L(ß), a G P(ß), respectively). Then there are
yx, y2 G A(Q) with a ^ ßy> V ß*.

We now come to the first important new result of this section.

Lemma 3.7. Let ß be a doubly homogeneous chain with countable coterminality, and
a, ß g ^l(ß) such that ß ¥= id. The following are equivalent.

(l)(a)Q(ß).
(2)Ifß g R(ü)\B(ü)(ß G L(ß)\P(ß),/? G B(ü)),thena G P(ß)(a G P(ß),

a G P(ß), respectively).
(3) There are y,, y/ g ^(ß) (i = 1,2,3,4) ímc/) that a = Ut=x(ß7' ■ (ß~l)y:).
(4) There are y,, y,' G (ß) (i = 1,2,3,4) such that a = l~lt=l(ßy' • (ß'1)7')-

Proof. (4) -* (3) -* (1) -> (2): Trivial.
(2) -» (3): According to Lemma 3.6 there are y,, y2 g ^(ß) with |«j2 < \ß\71 V

\ß\yi < \ß\yi ■ \ß\yi = 8- N°te that id < a - |a| < ô and \a\ < Ô, thus id < ô < {a ■
\a\ ■ S, \a\ ■ 8} < S2. By Lemma 3.4(a) we obtain y3, y4 g ^l(ß) with a ■ \a\ ■ Ô = 8*
and \a\ ■ 8 = 5Ti. Hence

a = fiY3 .(ÔT4)-1 = i^iyy, . |j8|-r3-r3 •(|^|-1)Yrï4 •(|y8|-1)y,'Y4.
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By Lemma 3.5 there are y5, y6 g A(Q) with |j8| = ß* ■ (ß~l)7\ Iß]'1 = ß7" ■ (ß~l)7>.
This implies (3).

(3) -* (4): If ß <£ P(ß) U L(ß), then (ß) = A(Q) by what we have already
proved. Now assume, e.g., jSe P(ß) and let i g {1,2,3,4}. By Lemma 3.4(b) there
exists a y~ g P(ß) with ß7' = ßy<; furthermore, y^ g P(ß) if ß g P(ß). Now if
B g Pv(ß)\5(ß) or ß G P(ß), we have y,- G (ß) according to (2) -*, (1).

Note that Lemma 3.7 ((1) <=> (2)) coincides with Theorem 3.1(g). Now we want to
generalize Lemma 3.7 to chains ß of arbitrary cofinality and coinitiality, and we
wish to characterize statements of the form "a g (/})" for a, ß g ^4(ß) by state-
ments about (ß, <). It will be crucial that in Lemma 3.7(3) we have obtained an
order for the exponents ±1 of ß which is independent of the special choice of
a, ß g A(&). We first need some preparation.

Notation 3.8. Let ß be the Dedekind completion and ß = ß Ú {-00,00} the
absolute completion of ß. If a g A(ti), we put F(a) = [a g ß|aQ = a), where â
denotes the uniquely determined extension of a to an automorphism of ß. We
always have-oo, oo g F(a). Let &=&(&) = {P(a)|a g ^(ß)}. If a, b g ß satisfy
a < b, we always consider (a, b) = [x g ß|a < x < b) as the Dedekind completion
and [a, b] = (a, b)Ù{a, b] as the absolute completion of ßa é = Û n (a, b). By
Remark 2.1, ßa fc is a doubly homogeneous chain. Hence for a g A(Qa h) we have
a, b g F(a) ç [a, b]. For every subset A ç ß let ,4e = Û\A.

The following two remarks are well known and very important to us.
Remark 3.9. JHs closed under finite intersections.
Proof. Let a, ß g A(Q). Put y = \a\ ■ \ß\ g A(Q). Then F(a) n F(ß) = F(y) g

ST.
In fact, J^is closed under even countably infinite intersections, as we will see in

Proposition 3.16(c), but we will not need this generalization.
Remark 3.10. Let^4 c ß. The following are equivalent:
(1) A g jr.
(2) Ac ç ß and A1' is a disjoint union of open intervals of countable coterminality.
Proof. (1) -* (2): Let a g A(Q) satisfy A = F(a) = F(\a\). Then for each a G Ac

n ß, the set Ia = U„eN(a|a| ", a|a|") Q ß is an open interval of countable coterminal-
ity, Ac = U{ Ia\a g A1 ' n ß}, and for any a, b g Ac n ß, either 7a = /6 or IaC\Ih =
0.

(2) -» (1): Let (a, è) ç ylc be an open interval with a, b ^ A and cot((a, /))) = K0.
Then ßa = (a, ¿>) n ß is doubly homogeneous. Choose an unbounded subset {a,.|/
G Z} ç ßa with a¡ < ai+x for each /' g Z, and, by Remark 2.2, an aa g A(üa) with
flf" = a, + 1. Then F(aa) = [a, b). If we define a g A(Q) by a|ßo = aa for each such
interval (a, b), we obtain A = F(ct) g &.

Observe that Remark 3.10 characterizes the statement "A ej^" completely
within (ß, < ), without referring to A(Q).

Definition 3.11. For each subset A Q Ûwe put
S(A) = { a G A\îor no b g ß with Z> < a do we have [/>, a] ç ^4, and for no c g ß

with a < c do we have [a, c] ç ^4},
P(/4) = [a g giriere exists c g ß with a < c and [a, c] ç ,4, but no ft g ß with

b < a and [ft, a]<z A),
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L(A) = {a g ^|there exists ft g ß with ft < a and [ft, a] Q A, but no c g ß with
a < c and [a, c] ç A),

1(A) = {a g ,4|there exist ft, c g ß with ft < a < c and [ft, c]Q A}.
If A = F(a) for some a G ¿(ß), we also put S(a) = S(/4), P(a) = R(A), L(a)

= L(yf)and/(a) = /(^).
We always have ,4 = S(A) Ù R(A) Ú L(^) Ú 1(A), and /(/I) is the interior of A.

The set [I(A)\A eF} coincides with the set of all regular open subsets of ß. If
a G /l(ß) and x G ß, we have x g R(a) (x g L(a)) iff a whole interval on the right
(left), but not on the left (right) of x is fixed by a. We always have -oo g R(a) U S(a)
and oo g L(a) U S(a), and, finally, a g L(ß) (a G P(ß), a G ß(ß), a = id) iff
oo G L(a) (-oo G R(a), oo g L(a) and -oo G R(a), F(a) = Û, respectively).

We come now to our generalization of Lemma 3.7.

Theorem 3.12. Let il be a doubly homogeneous chain, and let a, ß g ,4(ß) and
A = F(a), B = F(ß). The following are equivalent.

(I)(a)c(j8),
(2) There exists an F G &with F ç A n B and the following properties:
(Ï) 1(B) n Fez 1(A).
(ii) R(B) n F Q R(A)U 1(A),
(iii) L(B) DFçz L(A) U 7(^1),
(iv) whenever a, ft G F satisfy a < ft and[a, ft] ç B, ?/je« [a, ft] ç ^4.
//ere, (i)-(iii) may fte replaced by
(i') S(A) DFçz S(B),
(ii') R(A) n F Q R(B) U S(B),
(iii') L(A) n F ç L(ß)uS(P).
(3) P/îere are y„ y/ g (ß) ç ^(ß) (/ = 1,2, 3,4) with a = L\Ux(ß7' ■ (/3-1)1*).

Proof. (1) ^ (2): There exist n g N and y, g A(tt), /?, g [ß, ß-1} (i = l,...,n)
such that a = n,".!^. Let F = B nfl?.! P(y,). By Remark 3.9 we have F e J^and
Fc/lnß. We first show (P(P) Ú /(P)) nfc P(^) U 1(A), thus in particular
(2)(ii). Let a g (P(P) U 1(B)) n P. Then there is some c G ß with a < c and
[a, c] ç P, and since a g n"_iP(Y,-). wehavex1'',^'1'' ' g (a, c) for all x g (a, J) n ß
and i = l,...,n, where d is the least among [c7:± \i = 1,...,«}. Hence [a, d) Q A
anda G R(A)U 1(A).

Analogously, we obtain (L(B) U 1(B)) D F çz L(A) U 1(A) and thus (2)(iii).
This implies

/(P) n P= (L(P) U 7(B)) 0(ä(5) U 7(B)) f)Fç/(4

hence (2)(i). Now let a, ft G F with a < ft and [a, ft] ç P. Then a, ft G F(y¡), hence
([a, ft] n ß)y' = [a, ft] n ß for / = 1,... ,n. Thus [a, ft] ç F(cx) = 4, proving
(2)(i)-(iv). The equivalence of (i)-(iii) and (i')-(ni') is obvious.

(2) -» (3): If F = ß, we have A = B = Û, thus a = ß = id and the assertion is
trivial. Now assume F ¥= ß. By Remark 3.10 there exists a nonempty index set / with
Fc = Ù/e/(a,, ft,), a,, ft, g P, and cot((a„ ft,)) = N0 for each i g /. For each ; g /,
let ß, = ß n (a,, ft,), a, = a|a  and ß, = ß|a   Then ß, is a doubly homogeneous
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chain with countable coterminality and a,, ß, G A(il¡) because a,, ft, G F ç A Ci B.
We claim that ß, g B(ß,) implies á¡ g P(ß,), for if not then a, g L(A) U S(A),
hence a, g L(B) U S(B) by our assumption, contrary to ß, G P(ß,). Similarly
ß, g L(ß,) implies a, G L(ß,). Hence ß, g P(ß,) implies a, g P(ß,). Finally, if
ß, = id|a, then [a,, ft,] ç P, thus [a, ft] ç ,4 and a, = id|a. Now by Lemma 3.7
(applied twice) there are

*/. y'u e (ft4^ •(ß,-1)"<ß'T Ê ¿(Pr)        (7 = 1,2,3,4)
with a, = n;_!(ß,^ • (ß-1)7'")- Put y, =  e,e/y,7 © id|Fna G ,4(ß), yj =  e/e,Y¿
© idlFnß e -4(ß)(/' = 1,2,3,4). SincePç A n P, we have

a =   0 a, 0 id
( = i

and    ß =   0 ß, e id

hence a = n/4_1(ßT' • (ß_1)y;)- Similarly we obtain y¡, y] G (ßA<-ü) ■ (ß-yW))* ç
(ß) for/=1,2,3,4.

(3) ^ (1): Trivial.
As an immediate consequence of Theorem 3.12, we note that there is a single

formula <p(x, y) in the first order language of predicate calculus for group theory
such that whenever a, ß g A(il), then cp[a, ß] holds iff (a) ç (ß). We now gener-
alize Theorem 3.1(b).

Corollary 3.13. Let il be a doubly homogeneous chain. Then any subnormal
subgroup ofA(il) is normal in A(il).

Proof. Let A<lM<U(ß), ß g N, y g ^(ß) and a = ß7. By Theorem 3.12,
« = nf_!(ßY' • (ß_1)y;) for some y,., y,' G (ß) Ç M (i = 1,2,3,4). Hence a g A,
which shows A<y4(ß).

For later purposes (see Theorem 5.5) we note here:

Corollary 3.14. Let il be a doubly homogeneous chain and a, ß g ^4(ß). Then
I(ß) Ç I(ct) implies (a) çz (ß). In particular, 1(a) = I(ß) implies (a) = (ß).

Proof. Apply Theorem 3.12 with P = A n P.
Next we want to simplify condition (2) of Theorem 3.12.
Definition 3.15. Let .4 ç ß. We put lim(A) ={aGßu{oo}|a = sup{x g A\x

< a}} and lim(A) = {a g ß Ú{-oo}|a = inf{x g ^|a < x}}. We call A closed

upwards (downwards) if lim(,4) çz A (lim(/I) çz (A)). Let lim(^) = lim(y4)
U Urn (A), the set of all accumulation points of A. We say that A is cofinal to

a g ß u{oo} if a g lim(^), and coinitial to ft g ß 0{-oo} if ft G lim(A); A is
cofinal (coinitial) if A is cofinal to oo (coinitial to -oo).

Now we list several important properties for subsets of ß which will be used very
often in the following.

Proposition 3.16. Let A çz ß.
(a) A is closed iff A is closed upwards and downwards, i.e. ifflim(A) ç A.
(b) A g & iff -oo, oo e^ and A is closed and cofinal (coinitial) to each a G

^\{-oo} (a G /l\{oo})w/í7!cof(a)* N0(coi(a)^ S0).
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(c)LetAi ç ß(/ G I) and A = CllmIA,.
(i) If all Ai (i G /) are closed upwards (downwards), then so is A.
(ii) Let I be countable. If all A¡, i G /, are closed upwards (downwards) and cofinal

io a G ß U {00} (coinitial to a G ß U {-oo}), where cof(a) =£ S0 (coi(a) # X0), then
A is closed upwards (downwards) and cofinal (coinitial) to a.

(iii) Let I be countable and Ai g &for each i G 7. Then /I ejf.
(d)Letn G Nand/1 = U"=1^,with A,,ç Cl(i = 1,...,«).
(i) We have lim(A) = Uf=1 lim (.4,) and lim(/i) = U"=1 lim(^,). 7« particular, if

lim(^4,) ç /I (lim(y4,) ç A) for all i = 1,...,«, f«e« ^4 is closed upwards (down-
wards).

(ii) If A j G Jf/or a// / = 1,..., n, then ̂ eJ.

Proof, (a) Trivial.
(b) First let A g JF. Obviously, -oo, oo G .4 and ^ is closed. Let a g ,4 \ {-oo}.

If a £ lim(^), there is a ft g ß with b < a and (ft, a) c /T. But by Remark 3.10 Ac
is a disjoint union of open intervals of countable coterminality, and a is a right
endpoint of such an interval. Hence cof(a) = N0. Conversely, let A satisfy the
condition. Then Ac c ß is open and hence a disjoint union of open intervals. Let
a g A be a (e.g. right) endpoint of such an interval. Then a £ lim (,4) implies
cof(a) = X0, hence the intervals have countable coterminality, and A G JF by
Remark 3.10.

(c) (i) Trivial.
(ii) Without loss of generality let 7 = N and a g ß U{oo} with cof(a) + X0 and

a g lim(y4,) for each i g I. We apply a standard argument of set theory. Let
nx, n2, n3,... be an arbitrary sequence in N which contains each positive integer
infinitely many times. For any ft e ß with ft < a choose a sequence ft < ft1 < ft2 <
•••  < a in ß with ft, G An for each i g /, and put ft + = sup{ft,|/ g /}. Then b + < a
because cof(a) + S0, and ft + = sup{ft-|./ g 7, n¡ = /'} G A¡ for each / g 7, hence
ft + G ^4 and b < b+< a. This shows a g lim(,4).

(iii) Immediately by (c)(i), (ii), and (b).
(d)(i) is obvious, and (ii) follows from (d)(i) and (b).

Lemma 3.17. Let A, B ef and C = Cx U C2, where Cx = (R(A) U S(/l)) n
(R(B) U S(P)) and C2 = (L(A) U 5(^)) n (L(B) U S(B)).

(a) P(^4) U S(A), Cx and C are closed upwards, and L(A)U S(A), C2 and C are
closed downwards. C is closed.

(b) R(A) U S(A) (Cx) is cofinal to each a g R(A) U S(A) (a g Cx) with a * -oo
and coî(a) # 80. L(A) U S(A) (C2) is coinitial to each a g L(A) U S(/4) (a g C2)
w/'in û# oo and coi( a) =£ H0.

(c) // cof(ß) =£ K0 and oo g S(^l), /nen R(A) U S(A) is closed upwards and
cofinal. //coi(ß) =£ N0 and -oo G 5(^4), then L(A) U S(A) is closed downwards and
coinitial.

Proof, (a) To demonstrate that Cx and C are closed upwards it suffices to show
lim(C) çz Cx. Let a g lim(C). Then a g A n P since C ç ^ n P. If a g L(^) U
7(^), there exists ft g ,4 with ft < a and [ft, a) ç 7(,4), hence [ft, a) n C = 0, a
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contradiction. This shows a <e R(A) U S(A) and, by symmetry, a e Q. By letting
A = Bit follows that R(A) U S(A) is closed upwards.

(b) Let -oo ^ a g R(A) U S(A) and cof(a) ¥= S0. There exists a set P ç Ac with
a = sup P. Choose ft G P. By Proposition 3.16(b) we obtain a g lim(,4), hence
there exists ft' = inf{c g A\b < c < a). It follows that ft' G A \(L(A) U 1(A)) =
R(A) U S(A) and ft < ft' < a. This shows a g lim(P(,4) U S(A)).

(c) Immediate from (a) and (b).

Lemma 3.18. Let A, B, FGJwith S(A) n F <z S(B). Then there exists a set
U G JTwith S(A) n U ç 5(P), P(/l) n U çz P(P) U 5(P) and L(A) ni/ç L(B)
U S(B).

Proof. For every a g R(A) let a' = sup{jc g ,4|a < x, [a, x] çz A} g L(^). This
defines an order-isomorphism ': R(A) -> L(A) with a < a' and [a, a'] ç ,4 for each
a g P(^4). For a g B(,4) choose elements ax, a2 g yí by Remark 2.3 with a < a, <
a2 < a' and coi(a!) = cof(a2) = S0. If ft g L(^4) satisfies ft = a' for a g R(A), we
also write b2 = a2. Let Ct = («(/!) U S(A)) n (P(P) U 5(P)), C2 = (L(v4) U
5(/l))n(L(P)US(P)), andC = Q U C2. WeputP= Cu Z) where

/)=        Ü        [a,ax]Ù        IJ        [¿2,6]-
oeS(/()nC heL(A)riC

First let us show that T is closed upwards in ß. By Lemma 3.17, C is closed.
Hence, according to Proposition 3.16(d), it suffices to prove that lim(D) çz T. Let
5 g ß u{oo} and A' çz D with.s <£ Xanas = sup X. Now if there are a g R(A) n C,
ft g L(^) n C and xel with >> g [a, aj U [ft2, ft] for all y ^ X with x < y, we
immediately get x g [a, aj U [ft2, ft]. Otherwise, to each x g X there exists an
ax G (P(y4) Pi C) U (L(y4) C\ C)Q D with x < ax < s, and we obtain a set Y çz
(R(A) n C) U (L(v4) n C) with îi F and 5 = sup Y. Now 7çC implies 5 g C,
since C is closed, proving lim(£>) ç T.

By a symmetrical argument, P is closed downwards and hence closed. Thus THF
is closed and -oo, oo g Pn P, and now we show T n P g J£" by Proposition
3.16(b). Let c g P n P with c ^ -oo and cof(c) # K0. We claim c g lim(P n P).
First observe c # ft2 for all ft g L(^4) n C since cof(ft2) = N0 by construction. Next
assume c g (a, aj (c g (ft2, ft]) for some a g R(A) n C (ft g P(/l) n C). Since
P g JFis cofinal to c g F, (a, c] n P ((ft2, c] n P) is also cofinal to c, proving c
g lim(Pn P). Hence now we can assume c g C and c £ P(^4) n C, thus c g
(7?(/í)U S(/4))n Cn P. Observe P(^) n C ç R(B) U S(P) and S(A) n P ç
5(P) by assumption, hence c g P(P) u 5(P) and so c g Q. By Lemma 3.17(b)
and Proposition 3.16(c) we get c g lim(Cx) and c g lim(C, n P), thus c G

lim(P n F). Together with a symmetrical argument, this shows T n P G JF_
Now put Í7 = P n P G JF. Then S(/l) n t/ ç S(^) n P ç S(B) by assumption,

and also R(A) ni/c /?(/!) n7= R(A) n C çz R(B) U S(P) and L(A) D U çz
L(B)U S(B).

Now we can simplify Theorem 3.12.
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Theorem 3.19. Let il be a doubly homogeneous chain, and let a, ß g A(il) and
A = F(a), B = F(ß). The following are equivalent.

(!)(«)£ iß).
(2) There exist F G !Fwith F çz A n B and the following properties:
(i)S(A)DFçz S(B);
(ii) whenever a, ft G F satisfy a < ft and [a, ft] ç B, then [a, ft] çz A.

Proof. (1) -» (2): By Theorem 3.12.
(2) t* (1): By Lemma 3.18 and Theorem 3.12.
Definition 3.20 of a partially ordered set ( J"(ß), < ). Let A, B g JF= JF(ß).

If condition (2) of Theorem 3.19 is satisfied, we put A < B. Then the relation < is
reflexive and transitive on JF. Put A - B if A < B and P < A (A, B g 3T). Then for
any A gJF let [A]- [B e¿F\A ~ B) designate the equivalence class of A in JF
with respect to ~ , and let £f(il) = {[A]\A ef ) = JF/~ designate the factor
space. For A, B g jf let [A] < [B] iff A < P. Then (J"(ß), <) is a partially ordered
set.

Now Theorem 3.19 and Proposition 3.3 immediately imply our characterization of
(^(^(Q)), £).

Theorem 3.21. Let il be a doubly homogeneous chain. Then the map <#>: Jfx(A(il))
—y £f(il) defined by (a)* = [F(a)] is an isomorphism from the partially ordered set
(^(^(ß)), çz) onto (J^(ß), <). Hence (J"(ß), <) is a join semilattice, and [A] V
[P] = [A n P] for all A, B G JF(ß). (Jf(A(il)), çz) is isomorphic to the set of all
ideals of (S?(il),<).

Note that because of Remark 3.10 or Proposition 3.16(b), the set (£f(il), <) has
been defined completely within (ß, <) without reference to ,4(ß). In particular, by
Theorem 3.21 the structure of (Jf(A(il)), c) depends only on the structure of
(ß, < ). Thus we have

Corollary 3.22. Let ilx, il2 be two doubly homogeneous chains with isomorphic
Dedekind completions ilx = il2. Then A(ilx) and ^4(ß2) have isomorphic normal
subgroup lattices.

However, in the situation of Corollary 3.22 it is possible that the groups A(ilx)
and A(il2) are not isomorphic and, moreover, do not even satisfy the same sentences
of group theory. For example, take ilx = Q and ß2 = R [11, 13, 14].

Example 3.23. Let w, be the least uncountable ordinal with smallest element 0
and 70 = [0,1) ç R, /, = 70 \ Q, 72 - 70 n Q. For i = 1,2,3 let L', = /, x ux ordered
lexicographically: (a,, ja,) < (a2,ju2) iff either /x, < n2 or ju, = ju,2 and a, < a2
(ctj G 7„ fij g «j for ; = 1,2). Let L, = L'¡\ {(0,0)}. Then each (L„ <) is called a
long line and is a doubly homogeneous chain with cof(L,) = Kx, coi(L,) = S0 and
L, = Lj. Hence the normal subgroup lattices Jf(A(Li)) (i = 1,2,3) are pairwise
isomorphic.

Using the results and methods of this section, in Droste and Shelah [9] a complete
set-theoretic characterization and construction of the class of all normal subgroup
lattices Jf(A(il)) (il a doubly homogeneous chain) is given, without assuming, as in
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Theorem 3.21, the class of all doubly homogeneous chains to be given. As a
consequence, an open problem in [6, p. 124], whether in Theorem 3.19 condition
(2)(ii) is necessary if ß # id (if ß = id, it is clearly necessary; take any a g
P(ß)\ {id}), has been answered positively. It was also shown in [9] that Jfx(A(il))
is indeed closed under even countably infinite intersections; hence (£f(il), <) is a
lattice closed under countable infima.

4. Group-theoretic properties of ^(ß). In this section we will use our characteriza-
tion of Jf(A(il)) obtained in Theorems 3.19 and 3.21 to derive further group-
theoretical properties of A(il), in particular, to generalize our starting point, Theo-
rem 3.1.

Lemma 4.1. (a) There exist P, g J?" (/' = 1,2,3) andy, z G ß with
(i)S(Fx)=Fx;
(ii) R(F2)= {-oo}, oo g S(F2) = F2C\ [y,oo\;
(iii) L(F3) = {oo}, -oo G S(F3) = F3n [-oo, z\.
(b) Whenever F¡ G JF satisfy the conditions in (a) and a, G A(il) are such that

F(a¡) = F¡(i= 1,2,3), then (ax) = A(il), (a2) = R(il) and(a3) = L(il).

Proof, (a) Let / = {(a, ft)|a, ft g ß, a < ft, cot((a, ft)) = S0}. By Zorn's lemma,
there exists a maximal subset M çz I such that the elements of M are pairwise
disjoint. Let Fa = Ù{Z|Z G M} and Fx = ß \ P0. Clearly Fx G JF, and we claim
S(FX) = Fx. Otherwise, there are a, ft G Fx with a < ft and [a, ft] çz Fx. Choose
c, d G ß with a < c < d < ft and cot(c, d) = X0. Then M Ù {(c, d)} provides a
counterexample to the maximality of M. This shows (i).

Now choose y g Fx with coi(y) = S0, and let F2 = [-oo, y] U Fx. Then P2 g JF
satisfies (ii). Analogously, we obtain (iii).

(b) First we prove (ax) = A(il). Choose any a G ^4(ß). Obviously, S(a) C\ Fx çz
S(FX). By S(FX) = P,, there are no a, ft g ß with a < ft and [a, ft] ç F,. Hence
Theorem 3.19 implies a g (ax).

Next we show (a2) = P(ß). Clearly a2 G R(il) since -oo g P(a2). Now let
ß g P(ß). Choose c g ß with [-oo, c] ç P(ß) and y g ^(ß) with y < c7. Then
[-oo, y]çz F(ß7) and S(ß7) D F2 çz (y, oo] n F2 çz S(a2). Whenever d, e g F2
satisfy d < e and [d, e] çz F(a2), then e <j and [d, e] ç P(ßy). By Theorem 3.19
this shows ß g (a2). It can be shown analogously that (a3) = L(il).

As an immediate consequence we obtain

Theorem 4.2. Let il be a doubly homogeneous chain and G any one of the groups
A(il), R(il), or L(il). Then:

(a) G g Jfx.
(b) Each proper normal subgroup of G is contained in a maximal proper normal

subgroup of G.
(c)f]{M\M ^maxG} = {« g G|ß g G, (a) ■ (ß) = G imply (ß) = G}.
(d) Let Nx, N2<G and a G A(il) such that Nx ■ N2= G and Nx n N2 = (a).
Then Nx, N2 G Jfx.
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Proof, (a) Immediate by Lemma 4.1.
(b) By (a) and Zorn's lemma.
(c) Straightforward using (a) and (b).
(d) By (a), G = (y) for some y g ^(ß). Choose ß, g N¡ (i = 1,2) such that

y^(ßx)-(ß2). Then G = (ß,) • N2, and by the distributivity of Jf(A(il)) we
obtain

Nx = (iß,) • Nx) n((ßj • N2) = ißx) -iNx n N2) = iß,) •(«) G Jfx.

All of the results established so far are obvious by Theorem 3.1 if cot(ß) = S0.
Now we want to show that the structure of (Jf(A(il)), ç) is indeed much more
complicated if cof(ß) i= S0 or coi(ß) =£ N0. For this we need some preparations.

Notation 4.3. Let cof(ß) # X0. A set P c ß is called a good club if Pis closed and
unbounded in ß and (T, <) is well ordered, i.e. if

lim(P)=0    and    oo g lim(P u {oo}) ç P u {oo}.

Proposition 4.4. Let A çz il.
(a) We have hm(hm(A))Q lim(,4) and lim(lim(^)) ç lim(yí), and lim(^) is

closed.
(b) If a g lim(^) andcoi(a) =£ S0, then a G lim(lim(,4)).
(c) Let cof(ß) =£ S0 and let T ç ß fte cofinal and such that (T, <) is well ordered.

Then 7" = lim(P) DO, is a good club with cof(a) =K0for each a g T \ lim(P').
Hence T' is cofinal to each a g T with cof(a) # S0.

(d) Let cof(ß) # N0, T çz il a good club and A closed above and cofinal. Then
T Pi A is a good club.

(e) If k = cof(ß) =é S0, there exists a good club T çz il with T = k.

Proof,  (a) We only show   lim (lim(/I )) c lim (A).  Let a g lim(lim(,4))  and
P ç lim(yl) with a £ B and a = sup P. Choose ft g P. There exists b' ^ B with
ft < ft' < a and then, since ft' g lim(^4), an element a' g ,4 with a' g (ft, ft') u
(ft', a); in particular ft < a' < a. This shows a G lim(^4).

(b) Choose any x g ß with x < a, and then a set .4' = {a,|/ G N} ç ^4 with
x < a, < a, + 1 < a for all /' g N. Let >> = sup A'. Then x < y < a by cof(a) ¥= S0,
and^ g lim(,4). This shows a g lim(lim(v4)).

(c) We apply (a) and (b). Obviously lim(P') ç lim(P) = 0 and T U {oo} =
lim(P), hence 7" is well ordered and closed in ß. If a g T U {oo} = lim(P) and

cof(a) ¥= S0, then

a G lim(lim(P)) = lim(P' u{oo}) = lim(P') ç lim(P');

in particular oo G lim(P').
(d) By Proposition 3.16(c), B = (T Ù{oo}) n A is closed above and cofinal, and

as a subset of P U {oo}, B is well ordered. Hence T O A is a good club.
(e) By standard set theory.
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The following construction will be used several times.
Construction 4.5. Assume cof(ß) + S0, and let Z c ß be a good club with

cof(a) = S0 for all a G Z\lim(Z) (cf. Proposition 4.4). For each a G Z let a + =
min{z g Z|a < x) designate the successor of a in Z, and choose a' g (a, a+) with
coi(a') = S0. Furthermore, find x g ß with x < Z and coi(x) = S0. Then let
Z+(x, a') = [-00, x] ÙÙaeZ[a, a'] Ù{oo}. Observe (Z+(x, a'))' = (x, min Z)
(j\Ja(EZ(a', a+), and the open intervals have countable coterminality by construc-
tion. Hence Z+(x, a') g J^ by Remark 3.10.

The procedure used in the following proof is typical for our setting.

Lemma 4.6. Let e G P(ß)\P(ß). Assume that there exists either an F G JFwith
S(e) n F = {oo}, or, if cof(ß) =£ S0, more generally, a closed and unbounded set
Z çz ÛwithS(e)r\Z = {oo}. Then e g (a)foreacha G A(il)\L(il).

Proof. Let a g A(il)\L(il). If cof(ß) = N0 then Theorem 3.1(d) and the
distributivity of ^"(^(ß)) imply (a) = ((a) n L(il)) ■ ((a) D R(il)). Now (a) n
R(il) çz B(il) would imply (a) çz L(il), a contradiction. Hence (a) n P(ß) = P(ß)
by Theorem 3.1(c), (e), proving s g P(ß) ç (a). Therefore we can now assume
cof(ß) # K0. Let Z ç ß be closed and cofinal with 5(e) nZniî= 0. Put /I =
P(a), P = F(e) and choose x, y g ß with x < y, (-oo, x] ç /(P), (x, ^) f¿ /I, and
coi(x) = S0. By Proposition 4.4(c) there exists a good club T çz il with y < T. Now
since oo G S(E) C\ S(A), Lemma 3.17(c) and Propositions 3.16(c), and 4.4(d) imply
that f/= T C\ (R(E)U S(E))n(R(A)U S(A))DZ is again a good club. Let
V = lim(<y) C\ il Q U. By Proposition 4.4(c), F is a good club with cof(a) = N0 for
each a g V\ lim(F). For each a g F let a + = min{t; G F|a < v) be the successor
of a in F. By a G Z n ß we have a £ S(E), but then a G Uimplies a g R(E), and
hence we can choose an element a' G (a, a+) with (a, a'] çz 1(E) and coi(a') = N0.
Now construct F+= V+(x, a') G JF as in Construction 4.5. Since -oo g R(E), we
have F+\{oo} ç P(P) u 1(E) and hence S(E) n F+= {oo} ç S(A).

Now let c, d G F+ with c < d and [c, d] ç ^4. Since (x, .y) g ^4, we have either
[c, d] çz [-oo, x] çz E or c, d g F+\[-oo, x]. In the latter case oo g S(A) implies
d # oo, hence there are ax, a2 g V with c g [a,, a[], d G [a2, a2] and ax < a2. But
ax < a2 implies [a[, a2] ç /I, contradicting a2 g V çz U çz R(A) U 5(^4). Hence
ax = a2, and this yields [c, d] ç [a,, aj] ç p by construction. Thus Theorem 3.19
implies e G (a).

A slight generalization of the preceding lemma is given in

Lemma 4.7. Let a, ß g ,4(ß) and F G & satisfy B # id, S(ct) D F çz S(ß) and
S(a) nFnn = 0. Pnen a g (ß).

Proof. First assume F(a) = {-oo, oo}. Then cot(ß) = S0 by Remark 3.10, and
ß G P(ß) implies -oo £ 5(ß) 2 5(a) n P, hence a G P(ß). Likewise ß G L(ß)
implies a g L(ß). The result follows from Theorem 3.1.

Now assume there exists an element a G F(a) n ß. Let ß[ = {x g ß|x < a),
il2 = [x g ß|a < x} and a, = a|a e id|axa (/ = 1,2). Then (a) = (ax) ■ (a2) and
we will show (a2) çz (ß); then (a,) ç (ß) by symmetry. Indeed, if oo g P(a2), we
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have a2 g B(il) çz (ß) because ß ¥= id. On the other hand if oo g S(a2) then our
assumption yields S(a2) n F = {00} ç S(ß), hence ß £ P(ß). Now Lemma 4.6
implies (a2) çz (ß).

Lemma 4.8. There are A¡ ef(¿ = 1,2,3,4) with S(AX) = {-00, 00}, S(A2) = {00},
S(A3) = {-00}, S(A4) = 0 andA4 * Û.

Proof. Choose x, y e il with x < y and coi(x) = coî(y) = X0. We put ^44 =
[-00, X] Ù[j>, OO] G JF.

If cof(ß) # S0, let 7fç(j;, 00) be a good club with cof(a) = N0 for each
a g P\lim(P). For each a g P let a + = min{t (= T\a < t) and a' G (a, a+) such
thatcoi(a') = K0. Let^i = Ùue7-[a, a'] Ù{oo}.

If coi(ß) # S0, there is analogously a closed coinitial set R çz (-00, x) satisfying
lim(P)= 0, i.e. (R, <) is inversely well ordered, and coi(ft) = N0 for each

ft g R\lim(R). For each ft g R let ft~= max{r g R\r < ft} and ft' g (ft", ft) with
cof(ft') = K0. We put P; = {-00} ÜÜfte«[ft', ft].

First we assume cof(ß) =t= S0 and coi(ß) =é X0. Let /I, = B{ Ù 415 yl2 = [-00, x]
Ú /4J and A3 = B{ V[y, 00]. Then A2 = P+(x,a') g JFas in Construction 4.5, and
analogously A3 G JF. Hence Ax = A2 n ^3 g jf. We have 5(^4,) = {-00, 00},
5(^2) = {00} and S(A3) = {-00}.

Next assume cof(ß) # S0 and coi(ß) = S0. We put /4j = {-00} Ú A{, A2 =
[-00, x] U A'x and A3 = {-00} U[ v, 00].

If cof(ß) = S0 and coi(ß) # S0, proceed in a symmetric way.
Finally, if cof(ß) = coi(ß) = S0, let Ax = {-00, 00}, A2 = [-00, x] 0{00} and

^3 = {^°°} Ú[^, 00].
In each of these cases, Ax, A2, A3 g JF satisfy the assertion.
Now we generalize Theorem 3.1.

Theorem 4.9. Let il be a doubly homogeneous chain. Then
(a) R(il)/B(il) is simple if and only ifcoï(il) = «0.
(b) L(il)/B(il) is simple if and only //coi(ß) = K0.
(c) B(il), L(il) and R(il) are the only nontrivial proper normal subgroups ofA(il) if

and only ifcot(il) = S0.
(d) There exist smallest normal subgroups Nx, N2, N3ofA(il) satisfying

i + )    P(ß) c Nxçz P(ß),    P(ß) c Aj çz L(ß),      and      A3 g P(ß) U L(ß),

/•ei/Jeci/'we/y.
Here we have N¡ = (e,) for any e, G ,4(ß) (/ = 1,2,3) with S(ex) = {00}, S(e2) =

{-00} and S(e3) = {-00, 00}.

Proof. First we show (d). The existence of e, g ^4(ß) as prescribed was shown in
Lemma 4.8. Obviously A, = (e,) (; = 1,2,3) satisfy ( +). Now let B(il) c A<P(ß).
Choose ß g A\P(ß). Then S(ex) = {00} ç S(ß) and S(ex) n ß = 0, hence 6l g
(ß) g A by Lemma 4.7, proving Nx ç A. In a similar way, Lemma 4.7 yields the
minimality of A2 and N3.
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The normal subgroup lattice of A iii)

(1) coi(ß) = cof(ß) = S0
A(il)

L(il) R(il)

(2)coi(ß)* N0, cof(ß)= S0

A(il)

L(il)

(3)coi(ß)= «0, cof(8)# S0

A(il)

N2 ■ R(il)       Nx ■ L(il)
R(il) L(il)

(4) coi(ß) * «0, cof(ß) * S0

,4(ß)

A2 ■ R(il)

R(il)

R(il)
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(a) Because of Theorem 3.1, we may assume cof(ß) ¥= N0. We claim B(il) c Nx c
P(ß). Indeed, assume (e,) = A, = P(ß). According to Lemma 4.1, there are A g JF,
a G /l(ß), ^ G ß with /I = F(a), R(A) = {-oo} and oo g S(A) = A P [y, oo].
Now by a g R(il) = (£l) and Theorem 3.19 there exists Fef with S(A) P F çz
F(ex) = {oo}. However, by cof(ß) # N0 and Proposition 3.16(c), S(A) P F = A P
F n [7, 00] is cofinal in ß. Hence S(A) P F P il ¥= 0, a contradiction.

(b) Analogously to (a).
(c) By (a) and (b).
The various possibilities for the structure of (Jf(A(il)), ç), as a consequence of

Theorem 4.9, are depicted in the following diagram.
Because of the symmetry of this diagram and the distributivity of Jf(A(il)), we

now turn to an examination of
S?x = Jfx(R(il))\{id, P(ß)} = {(a)\a G P(ß)\P(ß)}

under the assumption k = cof(ß) ¥= S0. So far by Theorem 4.9(a), (d) we know that
then \Six\ > 2 (in fact, we even have \Stx\> 2", see [6, 7]) and (Six, çz) has a smallest
and a largest element. We wish to characterize when (Stx, çz ) is a Boolean algebra.

Definition 4.10 (cf. Jech [15]). Let k # S0 be a regular cardinal. We put
I(k) = [A çz k\k\A contains a closed unbounded subset of k}, the ideal of all thin
subsets of k. Then A(k) = P(k)/I(k), a Boolean algebra.

Theorem 4.11. Let il be a doubly homogeneous chain with k = cof(ß) =£ N0. Then
the following are equivalent:

(1) There exists a closed and cofinal subset A çz il with coi(a) = S Ofor each a g A.
(2) (¿%x, ç) is a Boolean algebra.
(3) (Stx, çz ) is isomorphic to A(k).

For a proof of this result see [2] (where (1) and k = S, is assumed) or [6, 7].
Finally, we note the following surprising consequence of Theorem 4.11, where

ZFC denotes the standard system of axioms of set theory (including the axiom of
choice) and k + the successor cardinal of the cardinal k.

Corollary 4.12. Let il = L0, a long line, and N the smallest cardinal number such
that there exist no set {a\i < S} ç P(ß) with the properties

(i)(a,)# R(il)foralli < K;
(ii) (a,) • ictj) = R(il)for all i, j < N, i * j.

Then the question of whether S = (2S')+ is undecidab/e in ZFC.

Proof. If a system {a,|z < N} satisfies conditions (i) and (ii), then a, £ B(il),
hence (a,) g &lx for all i < S. By Theorem 4.11, (Six, ç) is isomorphic to ^4(N,).
Hence N is the smallest cardinal such that there exists no set A çz A(XX) with
\A\ = S and a ¥= 1, a V ft = 1 for all a, ft g A, a =f= ft, where 1 denotes the largest
element of ^(S,). Now the undecidability result follows from Jech [15, pp. 434-436].

5. Lattice-theoretic properties of A (il). Here we will consider A(il) as an /-group
again, and we will deal with minimal prime /-subgroups of A(il). Recall that an
/-subgroup P of an /-group G is called prime if P is convex and /, gGG, /AgGP
always imply/ G P or g G P.
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Proposition 5.1. Let G be an l-group, C çz G a convex l-subgroup, and <j> # P c G
a lower directed set of positive elements of G such that C P T = 0.

(a) [3, Theorem 2.2]. If Q çz G is maximal among those convex l-subgroups of G
containing C which are disjoint from T, then Q is prime.

(b) There exists a prime P 2 C which is disjoint from T and minimal in the set of all
primes containing C.

Proof, (b) By Zorn's lemma and (a), there exists a prime Q 2 C which is disjoint
from P, and hence, again by Zorn's lemma, a minimal prime P with Q 2 P 2 C.

Lemma 5.2. Let P be a prime and C a convex l-subgroup of an arbitrary l-group G
such that P 2 C. The following are equivalent.

(1) P is minimal among those primes containing C.
(2) For each 1 < p G P there exists an element 1 < q G G \ P w/'in p A a G C.

Proof. (2) -» (1): Let g be a prime with C çz Q çz P. Consider any 1 < p g P
and find 1 < q G G \ P such that p A a g C. Then p A a G g, a £ g, and <2 prime
imply p G Q, proving P ç Q.

-,(2) -> -.(1): Suppose (2) is violated by 1 < p g P and let P = {p A a|l < a g
G\P}. Then C P T = 0 and P # 0. By Zorn's lemma and Proposition 5.1(a),
there exists a prime Q 2 C with Q P T = 0. We claim ß Ç P. Assume there exists
1 < a g Q \ P. Thenp AjiEfno contradicting rng= 0. Hence g ç P, and
g # P follows from <#> # P c P and again lnö= 0.

As a consequence we obtain

Corollary 5.3. Suppose G is an l-group in which every polar is principal, and let P
be a prime of G. Then P is a minimal prime of G iff p1'x+ G for all 1 < p G P. 7n
particular, if il is a doubly homogeneous chain, a prime P of A(il) is minimal iff
/(/>)# 0 for all p g P.

Proof. If P is a nonminimal prime of G, then by the preceding lemma there is
some 1 < p e P such that p x c P. Now if ce G satisfies px = a-1 x , then a g px
and hence p V q ^ P and(p V q)~LX = pJ"L Vp-L= G. Conversely, if P is a minimal
prime of G and 1 < p g P, again by Lemma 5.2, we obtain px + {1}, i.e. px x # G.
The final statement of the corollary now follows from the previous one and the
following remark.

Remark 5.4. Let ß be a doubly homogeneous chain.
(a) Whenever id < a g A(il), then ax = {id} iff 7(a) = 0.
(b) In ,4(ß) all polars are principal.
Proof, (a) If 1(a) = 0 and ß g ^(ß) satisfies a A \ß\ = id, then ß =

I(a A |ß|) = I(F(a) U P(ß)) = I(ß), where the last equality holds since 1(a) = 0
and I(ß) is regular open, hence ß = id. Conversely, assume there are a, ft G ß with
a < ft and [a, ft] ç F(a). If we define id < ß g A(il) such that P(ß) 2 [-oo, a]
Ù[ft, oo], we obtain ß G ax .

(b) Suppose ß is a polar of A(il). By Zorn's lemma find a maximal set of pairwise
disjoint positive elements {a,|/ g /} çz Q. For each / G / let r¡ designate the restric-
tion of a, to il\F(qi), and let q be  ®¡e,ri © idj^, where A = f]i(E/F(qj). Now
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A = F(q), and îl\ A çz B = OqeQil\F(q), so ax 2 Q± . On the other hand ß \ A
is dense in P, hence gx ç £>x . We conclude ax x = G\

Now we state the main result of this section.

Theorem 5.5. Let H be a doubly homogeneous chain and N a proper normal
subgroup of A(il). Then any prime P minimal in the set of primes containing N is
minimal also in the set of all primes ofA(il).

Proof. Suppose P is minimal in the set of primes containing N, and for
contradiction suppose P contains p > 1 with I(p)= 0 (cf. Corollary 5.3). By
Lemma 5.2, find 1 < q g A(il)\P such that p A q g A. Now I(p A q) = I(q) as
in the proof of Remark 5.4(a). Hence a G A by Corollary 3.14, a contradiction.

Corollary 5.6. Let il be a doubly homogeneous chain. Then every proper normal
subgroup N of A(il) is an intersection of minimal primes.

Proof. By Proposition 5.1(b) we have A = {Pg|g G ,4(ß)\A}, where Pg is a
prime minimal in the set of primes containing A such that g £ P By Theorem 5.5,
each Pg is a minimal prime of A (il).
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