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Abstract

Morphological and functional parameters such as chamber size and function, aortic diameters and distensibility,

flow and T1 and T2* relaxation time can be assessed and quantified by cardiovascular magnetic resonance (CMR).

Knowledge of normal values for quantitative CMR is crucial to interpretation of results and to distinguish normal

from disease. In this review, we present normal reference values for morphological and functional CMR parameters

of the cardiovascular system based on the peer-reviewed literature and current CMR techniques and sequences.
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Introduction
Quantitative cardiovascular magnetic resonance (CMR) is

able to provide a wealth of information to help distinguish

health from disease. In addition to defining chamber sizes

and function, CMR can also determine regional function

of the heart as well as tissue composition (myocardial

T1 and T2* relaxation time). Advantages of quantitative

evaluation are objective differentiation between pathology

and normal conditions, grading of disease severity, moni-

toring changes under therapy and evaluating prognosis.

Knowledge of normal values is required to interpret

the disease state. Thus, the aim of this review is to

provide normal reference values for morphological and

functional CMR parameters of the cardiovascular system

based on a systematic review of the literature using

current CMR techniques and sequences. Technical

factors such as sequence parameters are relevant for

CMR, and these factors are provided as in relationship

to the normal values. In addition, factors related to post

processing will affect the CMR analysis, and these fac-

tors are also described. When multiple peer-reviewed

manuscripts are available for normal values, we describe

the criteria used to select data for inclusion into this re-

view. When feasible, we provide weighted means based

on these literature values. Finally, demographic factors

(e.g. age, gender, and ethnicity) may have an influence

on normal values and are specified in the review.

Statistical analysis
Results from multiple studies reporting normal values for

the same CMR parameters were combined using a random

effects meta-analysis model as implemented by the metan

command [1]. This produced a weighted, pooled estimate

of the population mean of the CMR parameters in the com-

bined studies. Upper and lower limits were calculated as

±2SDp, where SDp is the pooled standard deviation calcu-

lated from the standard deviations reported in each study

[2]. Statistical analyses were performed with the Stata soft-

ware package (version 13.1, StataCorp, College Station, TX).

Left ventricular dimensions and functions in the
adult
CMR acquisition parameters

The primary method used to assess the left ventricle is

steady state free precession (SSFP) technique at 1.5

Tesla. Steady-state free precession (SSFP) technique

yields significantly improved blood-myocardium contrast

compared to conventional fast gradient echo (FGRE).

However, at 3 Tesla, fast gradient echo CMR may also

be used. To date however, no studies have presented

normal data at 3 Tesla. The derived cardiac volumes and

ventricular mass are known to differ for SSFP and FGRE
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CMR, so that normal ranges are different for each

method [3].

Publications presenting reference values of the left

ventricle based on the SSFP technique are listed in

Table 1.

CMR analysis methods

Papillary muscle mass has been shown to significantly

affect LV volumes and mass [6]. No uniformly accepted

convention has been used for analyzing trabeculation

and papillary muscle mass [7]. Papillary muscle mass has

been noted to account for approximately 9% of total LV

mass using FGRE technique [6]. Thus, tables of normal

values should specify the status of the papillary muscles

in the CMR analysis. Tables 2 and 3 provide normal

values based on papillary muscle mass added to the re-

mainder of the myocardial mass.

Table 1 References, normal LV function and dimensions,

SSFP technique, axial imaging

First author, year CMR technique N, male:
female

Age range
(yrs)

Alfakih, 2003 [3] Short axis SSFP,
papillary muscle
included in LV mass

30:30 20-65

Hudsmith, 2005 [4] Short axis SSFP,
papillary muscle
included in LV mass

63:45 21-68

Maceira, 2006 [5] Short axis SSFP,
papillary muscle
included in LV mass

60:60 20-80

SSFP = steady-state free precession; LV = left ventricle; yrs = years.

Table 2 Left ventricular parameters, ages 20–80

Men Women

meanp SDp Lower/ upper limits* meanp SDp Lower/ upper limits*

EDV [ml] 160 27 106-214 132 23 86-178

EDV /BSA [ml/m2] 81 12 57-105 76 10 56-96

ESV [ml] 54 14 26-82 44 11 22-66

ESV/BSA [ml/m2]** 26 6 14-38 24 5 14-34

SV [ml] 108 18 72-144 87 15 57-117

SV/BSA [ml/m2]** 54 6 42-66 52 7 38-66

EF [%] 67 5 57-77 67 5 57-77

Mass [g] 134 21 92-176 98 21 56-140

Mass/BSA [g/m2] 67 9 49-85 61 10 41-81

LV papillary muscle mass included as part of LV mass. Pooled weighted mean values from references [3-5]. Meanp = pooled weighted mean; SDp = pooled standard

deviation; * = calculated as meanp ± 2*SDp; EDV = end-diastolic volume; ESV = end-systolic volume; SV = stroke volume; EF = ejection fraction; BSA = body surface

area; SD = standard deviation; **from references [4,5] only.

Table 3 Left ventricular parameters, by age and gender [mean ± SD (lower, upper limits*)]

Men Women

Parameter <60 years ≥60 years <60 years ≥60 years

EDV [ml] 161 ± 21 (119, 203) 148 ± 21 (106, 190) 132 ± 21 (90, 174) 120 ± 21 (78, 162)

EDV /BSA [ml/m2] 82 ± 9 (64, 100) 76 ± 9 (58, 94) 78 ± 8.7 (61, 95) 69 ± 8.7 (52, 86)

ESV [ml] 55 ± 11 (33, 77) 48 ± 11 (26, 70) 44 ± 9.5 (25, 63) 38 ± 9.5 (19, 57)

ESV/BSA [ml/m2] 28 ± 5.5 (17, 39) 25 ± 5.5 (14, 36) 26 ± 4.7 (17, 35) 22 ± 4.7 (13, 31)

SV [ml] 106 ± 14 (78, 134) 100 ± 14 (72, 128) 88 ± 14 (60, 116) 82 ± 14 (54, 110)

SV/BSA [ml/m2] 55 ± 6.1 (43, 67) 52 ± 6.1 (40, 64) 52 ± 6.2 (40, 64) 47.5 ± 6.2 (35, 60)

EF [%] 66 ± 4.5 (57, 75) 68 ± 4.5 (59, 77) 67 ± 4.6 (58, 76) 69 ± 4.6 (60, 78)

Mass [g] 147 ± 20 (107, 187) 145 ± 20 (105, 185) 106 ± 18 (70, 142) 110 ± 18 (74, 146)

Mass/BSA [g/m2] 74 ± 8.5 (57, 91) 73 ± 8.5 (56, 90) 62 ± 7.5 (47, 77) 63 ± 7.5 (48, 78)

LV papillary muscle mass included as part of LV mass. From reference [5].

* = calculated as mean ±2*SD; EDV = end-diastolic volume; ESV = end-systolic volume; SV = stroke volume; EF = ejection fraction; BSA = body surface area;

SD = standard deviation.
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The majority of software approaches use a combination

of semi-automated feature recognition combined with

manual correction of contours. Short-axis images are most

commonly analyzed on a per-slice bases by applying the

Simpson’s method (“stack of disks”) [8]. An example of left

ventricular contouring is shown in Figure 1.

Demographic parameters

Gender has been demonstrated to have significant inde-

pendent influence on ventricular volumes and mass. All

absolute and normalized volumes decrease in relation-

ship to age in adults [5] in a continuous manner. When

considering younger (e.g. <65 years) versus older adults

Figure 1 LV contouring. Note that LV papillary muscle mass has been isolated and added to left ventricular mass.

Table 4 Functional and geometric parameters of the normal left ventricle in the adult, from reference [5]

Men Women

PFRE [ml/s] 527 ± 140 (253, 802) 477 ± 146 (190, 764)

PFRE /BSA [ml/m2] 270 ± 70 (134, 407) 279 ± 81 (121, 437)

PFRE/EDV [/s] 3.4 ± 0.71 (2.0, 4.8) 3.8 ± 0.83 (2.1, 5.4)

PFRA [ml/s] 373 ± 82 (212, 534) 283 ± 69 (149, 418)

PFRA/BSA [ml/m2] 193 ± 44 (107, 279) 168 ± 44 (82, 254)

PFRA/EDV [/s] 2.6 ± 0.57 (1.5, 3.7) 2.3 ± 0.49 (1.4, 3.3)

PFRE/PFRA 1.4 ± 0.34 (0.7, 2.8) 1.7 ± 0.29 (0.9, 3.1)

Septal AVPD [mm] 15 ± 3.6 (8, 22) 14 ± 3.2 (8, 21)

Septal AVPD /long length [%] 15 ± 2.9 (9, 21) 16 ± 3.5 (9, 23)

Lateral AVPD [mm] 18 ± 4.1 (9, 26) 17 ± 3.2 (11, 24)

Lateral AVPD /long length [%] 17 ± 3.2 (11, 23) 19 ± 3.1 (13, 24)

Sphericity index, diastole 0.35 ± 0.06 (0.22, 0.48) 0.4 ± 0.07 (0.27, 0.53)

Sphericity index, systole 0.20 ± 0.05 (0.10, 0.29) 0.23 ± 0.068 (0.09, 0.36)

Means ± standard deviation and (95% confidence intervals) are given.

BSA = body surface area; PFR = peak filling rate; E = early; A = active; AVPD = atrioventricular plane descent.
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(≥65 years), most studies have shown significant differ-

ences in normal values for mass and volumes. For con-

venience, both average, and younger/ older normal

values are given in the tables as available in the litera-

ture. An age-related normal value may be useful for pa-

tients who are at the upper or lower limits of the values

in Tables 2 and 4.

Studies included in this review

Multiple studies have presented cohorts of normal indi-

viduals for determining normal dimensions of the left

ventricle. For the purpose of this review, only cohorts of

30 or more normal subjects by gender using SSFP CMR

have been included. Only data at 1.5T is available for

normal subjects using SSFP short axis imaging. Inclusion

criteria for the tables below also included a full descrip-

tion of the subject cohort (including the analysis

methods used), age and gender of subjects. One study

used SSFP radial imaging, and is not included in this re-

view [9].

Multiple studies (not shown in the tables) have used

FGRE technique at 1.5T [9-13]. While FGRE is currently

used at 3T in some settings, the relevance of FGRE tech-

nique at 1.5T to that at 3T is not known.

Because slice FGRE acquisition parameters at 3T are dif-

ferent than at 1.5T, adaptation of 1.5T FGRE normal pa-

rameters to 3T FGRE imaging is not recommended.

Information on ethnicity in relationship to LV parameters

Figure 2 Left ventricular volumes, mass and function in systole and diastole normalized to age and body surface area for males

according to reference [5].
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is not available for SSFP technique. Finally, the studies in

Table 1 were all conducted in European centers. Normal

values for left ventricular dimensions and functions ac-

cording to these studies are presented in Tables 2, 3 and 4.

Age dependent normal values for men and women are

also presented in Figures 2 and 3.

Additional LV function parameters

In addition to ejection fraction, Maceira et al. have pro-

vided additional functional parameters that may be use-

ful in some settings [5]. For diastolic function, the

derivative of the time/ volume filling curve expresses the

peak filling rate (PFR). Both early (E) and active (A)

filling rates are provided. In addition, longitudinal atrio-

ventricular plane descent (AVPD) and sphericity index

(volume observed/volume of sphere using long axis as

diameter) at end diastole and end systole are given.

These latter parameters are not routinely used for

clinical diagnosis.

Right ventricular dimensions and functions in the
adult
CMR acquisition parameters

For measurement of right ventricular volumes a stack of

cine SSFP images acquired either horizontally or in short

axis view can be used [7].

Figure 3 Left ventricular volumes, mass and function in systole and diastole normalized to age and body surface area for females

according to reference [5].
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CMR analysis methods

Similar to the left ventricle, analysis of the right ventricle

is usually performed on a per slice basis by manual con-

touring of the endocardial and epicardial borders. Vol-

umes are calculated based on the Simpson’s method [8].

The right ventricular volumes and mass are significantly

affected by inclusion or exclusion of trabeculations and

papillary muscles [14,15]. For manual contouring, inclu-

sion of trabeculations and papillary muscles as part of

the right ventricular volume will achieve higher reproduci-

bility [7,14,15]. However, semiautomatic software is in-

creasingly used for volumetric analysis, enabling automatic

delineation of papillary muscles [16]. Therefore normal

values for both methods are provided. An example of right

ventricular contouring using a semiautomatic software is

shown in Figure 4.

Detailed recommendations for right ventricular acqui-

sitions and post processing have been published [7].

Demographic parameters

BSA has been shown to have an independent influence

on RV mass and volumes [16]. Absolute and normalized

RV volumes are significantly larger in males compared

to females [3,4,16]. Further, RV mass and volumes de-

crease with age [4,16].

Studies included in this review

Criteria regarding study inclusion are identical compared

to the left ventricle. Three studies based on SSFP imaging

were included (Table 5). In two studies, trabeculations and

papillary muscles were included as part of the right ven-

tricular cavity [3,4], and pooled weighted mean values of

the two studies are presented in Table 6. In the third study

papillary muscles were considered part of the right ven-

tricular mass [16]. Similar to the left ventricle, data is pre-

sented as a younger age (<60 years) and an older age group

(≥60 years) (Table 7). Further, age dependent normal values

for men and women are presented in Figures 5 and 6.

Additional RV function parameters

Similar to the LV, Maceira et al. have provided additional

functional parameters [16] (Table 8) that may have rele-

vance to specific applications.

Left atrial dimensions and functions in the adult
CMR acquisition parameters

There is limited consensus in the literature about how to

measure left atrial volumes. Therefore depending on the

method that is used, SSFP sequences in different views are

required. The most common methods to measure left

atrial volume are the modified Simpson’s method analo-

gous to the left and right ventricle and the biplane area-

length method. Dedicated 3D-modeling software has also

been used [17]. For evaluation by applying the Simpson’s

method, a stack of cine SSFP images either in the short

axis, the horizontal long axis or transverse view is required.

For 3-dimensional modeling a stack of short axis images

has been used [17]. Evaluation by the biplane area-length

method is based on a 2 and 4 chamber view [4].

Left atrial longitudinal and transverse diameters and

area have been measured on 2, 3, and 4 chamber cine

SSFP images [17].

CMR analysis methods

Generally the left atrial appendage is included as part of

the left atrial volume while the pulmonary veins are ex-

cluded [4,17,18].

The maximal left atrial volume is achieved during ven-

tricular systole. Using cine images, the maximum volume

can be defined as last image before opening of the mi-

tral valve. Accordingly the minimal left atrial volume

can be defined as first image after closure of the mitral

valve [19].

Figure 4 Example of RV contouring using a semiautomatic

software. Note that papillary muscles were included in RV

mass (arrow).

Table 5 References, normal right ventricular function and dimensions, SSFP technique

First author, year CMR technique N, male: female Age range (yrs)

Alfakih, 2003 [3] Short axis SSFP, papillary muscles and trabeculation included in RV volume 30:30 20-65

Hudsmith, 2005 [4] Short axis SSFP, papillary muscles and trabeculation included in RV volume 63:45 21-68

Maceira, 2006 [16] Short axis SSFP, papillary muscle included in RV mass 60:60 20-80

SSFP = steady-state free precession; RV = right ventricle; yrs = years.
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Table 7 Right ventricular parameters, by age and gender [mean ± SD (lower/upper limits*)]

Men Women

Parameter <60 years ≥60 years <60 years ≥60 years

EDV [ml] 169 ± 25 (119, 219) 153 ± 25 (103, 203) 133 ± 22 (89, 177) 114 ± 22 (70, 158)

EDV /BSA [ml/m2] 87 ± 12 (63, 111) 77 ± 12 (53, 101) 78 ± 9 (60, 96) 66 ± 9 (48, 84)

ESV [ml] 62 ± 15 (32, 92) 48 ± 15 (18, 78) 49 ± 13 (23, 75) 35 ± 13 (9, 61)

ESV/BSA [ml/m2] 32 ± 7 (18, 46) 24 ± 7 (10, 38) 28 ± 7 (14, 42) 20 ± 7 (6, 34)

SV [ml] 107 ± 17 (73, 141) 105 ± 17 (71, 139) 85 ± 13 (59, 111) 80 ± 13 (54, 106)

SV/BSA [ml/m2] 55 ± 8 (39, 71) 53 ± 8 (37, 69) 50 ± 6 (38, 62) 46 ± 6 (34, 58)

EF [%] 64 ± 7 (50, 78) 69 ± 7 (55, 83) 64 ± 6 (52, 76) 70 ± 6 (58, 82)

Mass [g] 68 ± 14 (40, 96) 63 ± 14 (35, 91) 50 ± 11 (28, 72) 44 ± 11 (22, 66)

Mass/BSA [g/m2] 35 ± 7 (21, 49) 32 ± 7 (18, 46) 30 ± 5 (20, 40) 25 ± 5 (15, 35)

Right ventricular trabeculations and papillary muscle mass included as part of right ventricular mass. From reference [16].

EDV= end-diastolic volume; ESV= end-systolic volume; SV= stroke volume; EF = ejection fraction; BSA=body surface area; SD= standard deviation; * = calculated as mean±2*SD.

Table 6 Right ventricular parameters, ages 20–68

Men Women

Parameter meanp SDp Lower/ upper limits* meanp SDp Lower/ upper limits*

EDV [ml] 184 33 118-250 139 31 77-201

EDV /BSA [ml/m2] 91 15 61-121 80 16 48-112

ESV [ml] 79 19 41-117 54 15 24-84

ESV/BSA [ml/m2]** 39 10 19-59 32 10 12-52

SV [ml] 106 19 68-144 84 18 48-120

SV/BSA [ml/m2]** 57 8 41-73 53 9 35-71

EF [%] 62 5 52-72 61 5 51-71

Mass [g]** 41 8 25-57 35 7 21-49

Mass/BSA [g/m2]** 21 4 13-29 20 4 12-28

Right ventricular trabeculations and papillary muscle mass included as part of right ventricular volume.

Pooled weighted mean values from references [3,4].

meanp = pooled weighted mean; SDp = pooled standard deviation; * = calculated as meanp ± 2*SDp; EDV = end-diastolic volume; ESV = end-systolic volume;

SV = stroke volume; EF = ejection fraction; BSA = body surface area; SD = standard deviation; **from reference [4] only.

Figure 5 Right ventricular volumes, mass and function for males by age decile.
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Demographic parameters

Body surface area (BSA) has been shown to have a sig-

nificant independent influence on left atrial volume and

most diameters [17]. Per Sievers et al. [20], age is not an

independent predictor of left atrial maximal volume [17]

nor diameter in normal individuals. Men have a larger

maximal left atrial volume compared to women [4,17].

Studies included in this review

There are three publications for reference values of the

left atrium (volume and/or diameter and/or area) based

on SSFP imaging with a sufficient sample size [4,17,20]

(Table 9). Hudsmith et al. [4] used the biplane area-

length method (Figure 7), while Maceira et al. [17] used

a 3D modeling technique (Figure 8). Since the results

for left atrial maximal volume differ substantially be-

tween the two publications, probably based on the dif-

ferent methods, these data are presented separately

(Tables 10 and 11, respectively). Maceira et al. provide

reference values for maximum left atrial volume, longi-

tudinal, transverse and anteroposterior diameters as

well as area (Tables 11, 12 and 13; Figures 8 and 9) [17].

Figure 6 Right ventricular volumes, mass and function for females by age decile.

Table 8 Functional and geometric parameters of the normal right ventricle in the adult, from reference [16] [mean ±

SD (95% CI)]

Men Women

PFRE [ml/s] 405 ± 137 (137, 674) 337 ± 117 (107, 567)

PFRE /BSA [ml/m2] 207 ± 70 (68, 345) 197 ± 68 (64, 330)

PFRE/EDV [/s] 2.4 ± 0.75 (1.0, 3.9) 2.7 ± 0.85 (1.0, 4.3)

PFRA [ml/s] 489 ± 175 (146, 833) 368 ± 153 (67, 668)

PFRA/BSA [ml/m2] 250 ± 94 (66, 434) 215 ± 89 (40, 390)

PFRA/EDV [/s] 3.1 ± 1.0 (1.0, 5.2) 2.9 ± 1.0 (0.9, 5.0)

PFRE/PFRA 0.8 ± 0.49 (−0.1, 1.8) 0.9 ± 0.46 (0.0, 1.8)

Septal AVPD [mm] 15 ± 4.1 (6, 23) 13 ± 3.0 (7, 19)

Septal AVPD /long length [%] 17 ± 4.5 (8, 26) 17 ± 3.9 (9, 25)

Lateral AVPD [mm] 22 ± 4.4 (13, 30) 21 ± 3.5 (14, 27)

Lateral AVPD /long length [%] 23 ± 4.1 (15, 31) 24 ± 4.0 (16, 32)

BSA = body surface area; PFR = peak filling rate; E = early; A = active; AVPD = atrioventricular plane descent; SD = standard deviation; CI = confidence interval.
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Table 9 References, normal left atrial function and dimensions, SSFP technique

First author, year CMR technique N, male: female Age range (yrs)

Sievers, 2005 [20] 2, 3 and 4 chamber SSFP; measurement of diameters 59:52 25-73

Hudsmith, 2005 [4] 2 and 4 chamber SSFP; biplane area-length method; atrial appendage
included, pulmonary veins excluded

63:45 21-68

Maceira, 2010 [17] Short axis, 2, 3 and 4 chamber SSFP; 3D modeling and measurement of area and
diameters; atrial appendage included, pulmonary veins excluded (for volume analysis)

60:60 20-80

SSFP = steady-state free precession; yrs = years.

Figure 7 Example of contouring for the biplane area-length method from reference [4]. The left atrial appendage was included in the

atrial volume and the pulmonary veins were excluded.

Figure 8 Contouring of the left and right atrium using a 3D modeling method according to reference [17].
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Table 10 Left atrial volume and function in the adult for the SSFP technique based on the biplane area-length method

according to reference [4]

Parameter Men Women

mean SD Lower/ upper limits* mean SD Lower/ upper limits*

Max. LA volume (ml) 103 30 43-163 89 21 47-131

Min. LA volume (ml) 46 14 18-74 41 11 19-63

EF (%) 55 13 29-81 53 9 35-71

SV (ml) 58 23 12-104 48 15 18-78

LA = left atrial; Max. = maximal; Min. = minimal; EF = ejection fraction; SV = stroke volume; SD = standard deviation; * = calculated as mean ± 2*SD.

Table 11 Left atrial maximal volume in the adult for the SSFP technique based on 3D modeling methods, according to

reference [17]

Parameter Men Women

mean SD Lower/ upper limits* mean SD Lower/ upper limits*

Max. LA volume (ml) 77 14.9 47-107 68 14.9 38-98

Max. LA volume/BSA (ml/m2) 39 6.7 26-52 40 6.7 27-53

LA = left atrial; Max. = maximal; BSA = body surface area; SD = standard deviation; * = calculated as mean ± 2*SD.

Table 12 Left atrial maximal area in the adult for the SSFP technique, according to reference [17]

Parameter Men Women

mean SD Lower/ upper limits* mean SD Lower/ upper limits*

Area (cm2) 4ch 22 3.7 15-29 20 3.7 13-27

Area/BSA (cm2/ m2) 4ch 11 1.8 7-15 12 1.8 8-16

Area (cm2) 2ch 21 4.7 12-30 19 4.7 10-28

Area/BSA (cm2/ m2) 2ch 11 2.4 6-16 11 2.4 6-16

Area (cm2) 3ch 19 3.6 12-26 17 3.6 10-24

Area/BSA (cm2/ m2) 3ch 10 1.8 6-14 10 1.8 6-14

LA = left atrial; BSA = body surface area; SD = standard deviation; * = calculated as mean± 2*SD; 4ch = 4-chamber view; 2ch = 2-chamber view; 3ch = 3-chamber view.

Table 13 Left atrial diameter in the adult for the SSFP technique according to reference [17]

Parameter Men Women

mean SD Lower/ upper limits* mean SD Lower/ upper limits*

Longitudinal diameter (cm) 4ch 5.9 0.7 4.5-7.3 5.5 0.7 4.1-6.9

Longitudinal diameter/BSA (cm/m2) 4ch 3.0 0.4 2.2-3.8 3.2 0.4 2.4-4.0

Transverse diameter (cm) 4ch 4.1 0.5 3.1-5.1 4.1 0.5 3.1-5.1

Transverse diameter/BSA (cm/m2) 4ch 2.1 0.3 1.5-2.7 2.4 0.3 1.8-3.0

Longitudinal diameter (cm) 2ch 5.0 0.7 3.6-6.4 4.6 0.7 3.2-6.0

Longitudinal diameter/BSA (cm/m2) 2ch 2.5 0.4 1.7-3.3 2.7 0.4 1.9-3.5

Transverse diameter (cm) 2ch 4.6 0.5 3.6-5.6 4.4 0.5 3.4-5.4

Transverse diameter/BSA (cm/m2) 2ch 2.3 0.2 1.9-2.7 2.6 0.2 2.2-3.0

AP diameter (cm) 3ch 3.3 0.5 2.3-4.3 3.1 0.5 2.1-4.1

AP diameter/BSA (cm/m2) 3ch 1.7 0.3 1.1-2.3 1.8 0.3 1.2-2.4

BSA = body surface area; SD = standard deviation; * = calculated as mean ± 2*SD; 4ch = 4-chamber view; 2ch = 2-chamber view; 3ch = 3-chamber

view; AP = anteroposterior.
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Hudsmith evaluated normal values of maximal and

minimal left atrial volume and calculated left atrial ejec-

tion fraction and left atrial stroke volume (Table 10) [4].

Sievers et al. provide reference values for left atrial

transverse diameters measured on the 2-, 3- and 4-

chamber view at ventricular end-systole [20]. Maceira

et al. provide both transverse and longitudinal diame-

ters with different 3-chamber methodology than Sievers

et al., thus only diameters of Maceira et al. are included

(Table 13) [17,20].

Right atrial dimensions and functions in the adult
CMR acquisition parameters

There is no consensus in the literature regarding ac-

quisition and measurement method for the right

atrium. Published methods for right atrial volume in-

clude the modified Simpson’s method, the biplane

area-length method and 3D-modeling [21,22]. Com-

paring the Simpsons method and the biplane area

length method results in different values for right atrial

volume [21]. For Simpson’s method and 3D modeling,

a stack of cine SSFP images in the short axis view are

analyzed. For the biplane area-length method, a 4-

chamber view and/or a right ventricular 2-chamber

view are evaluated.

CMR analysis methods

Generally the right atrial appendage is included in the

right atrial volume while the inferior and superior vena

cava are excluded [21,22].

The maximal right atrial volume is achieved during

ventricular systole and can be defined as last cine image

before opening of the tricuspid valve. The minimal left

atrial volume can be defined as first cine image after

closure of the tricuspid valve.

Demographic parameters

Maceira et al. demonstrated a significant independent

influence of BSA on most RA parameters [22]. There

was no influence of age on atrial parameters and no in-

fluence of gender on atrial volumes [21,22].

Studies included in this review

There are two publications of reference values for the

right atrium (volume and/or diameter) based on SSFP

imaging with a sufficient sample size [21,22] (Table 14).

For evaluation of volume, Maceira et al. [22] used a 3D

modeling technique (Figure 8) while Sievers et al. [21]

applied the Simpsons and the biplane area-length

methods, respectively. Due to different methodology, no

pooled mean values are provided. Normal values for

right atrial volume and function, diameter and area are

presented in Tables 15, 16, 17, 18 and 19.

Left and right ventricular dimensions and
function in children
The presentation of normal values in children is differ-

ent than in the adult population due to continuous

changes in body weight and height as a function of age.

These changes may also be asymmetrical. Normal data

in children is frequently presented in percentiles and/or

z-scores. While the use of percentiles is a daily routine

for the paediatric radiologist, the use of percentile data

might be unfamiliar to the general radiologist. Therefore

in the current review, normal values are presented as

mean ± standard deviation as well as in percentiles.

Figure 9 Measurement of left atrial area (A2C, A4C, A3C), longitudinal (L2C, L4C), transverse (T2C, T4C) and anteroposterior (APD)

diameters on the 2-, 4- and 3-chamber views according to reference [17].

Table 14 References, normal RA function and dimensions, SSFP technique

First author, year CMR technique N, male: female Age range (yrs)

Sievers, 2007 [21] Short axis SSFP and 4 chamber SSFP; Simpsons method and biplane area
length method; atrial appendage included, pulmonary veins excluded

38:32 25-73

Maceira, 2013 [22] Short axis SSFP; 3D modeling; atrial appendage included, pulmonary veins excluded 60:60 20-80

SSFP = steady-state free precession; yrs = years.
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Demographic parameters

A linear correlation between ventricular volumes and

BSA in children has been reported. Ventricular volumes

also vary by gender [23-25]. Ejection fraction remains

constant during somatic growth and does not appear to

be gender specific [23-25]. Gender differences are more

marked in older children, indicating that gender is more

important after puberty and in adulthood.

Studies included in this review

Normal values published in studies based on older gradi-

ent echo sequences are not comparable to current SSFP

techniques [26,27]. Literature values for normative SSFP

values have been proposed by three different groups ac-

quired with slightly different methods [23-25] (Table 20).

A good agreement between the three studies regarding

the dimensions for older children has been demon-

strated [25].

In the studies of Robbers-Visser et al. and Sarikouch

et al., normal values for older children of 8–17 years and

4–20 years, respectively, are presented [23,24], Buechel

et al. also include younger children starting with an age

of 7 months. In the studies of Robbers-Visser et al. and

Sarikouch et al. papillary muscle mass was included as

part of LV mass, while Buchel et al. included papillary

muscles in the LV cavity and provide separate values for

papillary muscle mass. Robbers-Visser et al. and

Sarikouch et al. present normal values as mean ± SD for

all female and male children and for children of different

age groups and also as percentiles. In the study by

Buechel et al. data is presented in percentiles only.

Due to similar study design and age range, Tables 21

and 22 show pooled mean values for male and female

children calculated based on mean values presented by

Robbers-Visser et al. and Sarikouch et al. Figures 10,11,12

show normal data in percentiles originally published by

Buechel et al.

Table 15 Right atrial volume and function in the adult for

the SSFP technique based on the Simpson’s method

according to reference [21]

Parameter mean SD Lower/ upper limits*

Max. RA volume (ml) 101 30 41-161

Max. RA volume/BSA (ml/ m2) 53 16 21-85

Min. RA volume (ml) 50 19 12-88

Min. RA volume/BSA (ml/m2) 27 10 7-47

SV (ml) 50 16 18-82

SV/BSA (ml/m2) 26 9 8-44

EF (%) 47 8 31-63

RA = right atrial; Max. = maximal; Min. = minimal; SV = stroke volume; EF = ejection

fraction; SD = standard deviation; BSA = body surface area; * = calculated as

mean ± 2*SD; since no influence of gender was demonstrated, gender specific

values are not presented.

Table 16 Right atrial volume and function in the adult for

the SSFP technique based on the biplane-area-length

method according to reference [21]

Parameter mean SD Lower/ upper limits*

Max. RA volume (ml) 103 33 37-169

Max. RA volume/BSA (ml/ m2) 54 18 18-90

Min. RA volume (ml) 51 20 11-91

Min. RA volume/BSA (ml/m2) 27 11 5-49

SV (ml) 52 17 18-86

SV/BSA (ml/m2) 27 9 9-45

EF (%) 51 9 33-69

RA = left atrial; Max. = maximal; Min. = minimal; SV = stroke volume;

EF = ejection fraction; SD = standard deviation; BSA = body surface area;

* = calculated as mean ± 2*SD; since no influence of gender was

demonstrated, gender specific values are not presented.

Table 18 Right atrial maximal area in the adult for the

SSFP technique according to reference [22]

Parameter mean SD Lower/ upper limits*

Area (cm2) 4ch 22 3.8 14-30

Area/BSA (cm2/ m2) 4ch 12 1.8 8-16

Area (cm2) 2ch 22 3.95 14-30

Area/BSA (cm2/ m2) 2ch 12 2.27 7-17

BSA = body surface area; * = calculated as mean ± 2*SD; since no influence of

gender was demonstrated, gender specific values are not presented.

Table 17 Right atrial volume in the adult for the SSFP

technique based a 3D modeling technique according to

reference [22]

Parameter mean SD Lower/ upper limits*

Max. RA volume (ml) 100 20 60-140

Max. RA volume/BSA (ml/ m2) 54 10 34-74

RA = left atrial; Max. = maximal; * = calculated as mean ± 2*SD; BSA = body

surface area; since no influence of gender was demonstrated, gender specific

values are not presented.

Table 19 Right atrial diameter in the adult for the SSFP

technique according to reference [22]

Parameter mean SD Lower/ upper
limits*

Longitudinal diameter (cm) 4ch 5.5 0.58 4.3-6.7

Longitudinal diameter/BSA (cm/m2) 4ch 3.0 0.32 2.4-3.6

Transverse diameter (cm) 4ch 4.7 0.55 3.6-5.8

Transverse diameter/BSA (cm/m2) 4ch 2.6 0.3 2.0-3.2

Longitudinal diameter (cm) 2ch 5.4 0.5 4.4-6.4

Longitudinal diameter/BSA (cm/m2) 2ch 2.9 0.3 2.3-3.5

Transverse diameter (cm) 2ch 4.3 0.7 2.9-5.7

Transverse diameter/BSA (cm/m2) 2ch 2.4 0.4 1.6-3.2

BSA = body surface area; SD = standard deviation; * = calculated as mean ± 2*SD;

4ch = 4-chamber view; 2ch = 2-chamber view; since no influence of gender was

demonstrated, gender specific values are not presented.
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Z-values can be calculated as z-value = (measurement –

expected mean)/SD by using the values presented in

Tables 21 and 22.

Left and right atrial dimensions and function in
children
CMR acquisition parameters

Left and right atrial dimensions and function were evalu-

ated using SSFP technique in a single publication [18],

(Table 23). Measurements were obtained on a stack of

transverse cine SSFP images with a slice thickness be-

tween 5 and 6 mm without interslice gap [18].

CMR analysis methods

In that study, the pulmonary veins, the superior and in-

ferior vena cava and the coronary sinus were excluded

from the left and right atrial volume, respectively, while

the atrial appendages were included in the volume of the

respective atrium. The maximal atrial volume was mea-

sured at ventricular end-systole and the minimal atrial

volume at ventricular end-diastole.

Demographic parameters

Left and right atrial volumes show an increase with age

with a plateau after the age of 14 for girls only. Absolute

and indexed volumes have been shown to be significantly

greater for boys compared to girls (except for the indexed

maximal volumes for both atria) [18].

Studies included in this review

Sarikouch et al. evaluated atrial parameters of 115 healthy

children (Table 23) [18] using SSFP imaging. Since the

standard deviation is large for each parameter, lower

and upper limits were not calculated (Tables 24 and 25).

Theoretically calculation of lower limits by mean – (2*SD)

would result in negative lower limits for certain parameters.

Normal left ventricular myocardial thickness
CMR acquisition parameters

Normal values of left ventricular myocardial thickness

(LVMT) have been shown to vary by type of pulse se-

quence (FGRE versus SSFP) [3,28]. For the purposes of

this review, only SSFP normal values are shown.

CMR analysis methods

Measures of LVMT vary by the plane of acquisition

(short axis versus long axis) [29]. Measurements ob-

tained on long axis images at the basal and mid-cavity

level have been shown to be significantly greater com-

pared to measurements on corresponding short axis im-

ages, whereas measurements obtained at the apical level

of long axis images are significantly lower compared to

short axis images. In recent publications, papillary

Table 20 References, normal left and right ventricular dimensions in children

First author, year CMR technique N, male: female Age range (yrs)

Robbers-Visser,
2009 [23]

Short axis SSFP, papillary muscle/ trabeculation excluded from volumes 30:30* 8-17

Buechel, 2009 [25] Short axis SSFP, papillary muscle/trabeculation included in volumes,
separate analysis of papillary muscle mass

23:27** 7 mo – 18

Sarikouch, 2010
[24]

Axial SSFP (in 29 children additional short axis stack), papillary muscle/
trabeculation excluded from volumes

Total: 55:59*
Percentiles: 51:48

Total: 4–20
Percentiles: 8-20

SSFP = steady-state free precession; yrs = years; mo =month; * = none of the subjects was sedated; ** = 13 subjects were sedated.

Table 21 Left ventricular parameters in children, ages 8–17

Parameter Male Female

meanp SDp Lower/ upper limits* meanp SDp Lower/ upper limits*

EDV/BSA [ml/m2] 80 12 56-104 75 10 55-95

ESV/BSA [ml/m2] 28 6 16-40 25 5 15-35

SV/BSA [ml/m2]** 54 9 36-72 50 8 34-66

EF [%]** 66 5 56-76 63 6 51-75

CI [l/min/ m2]** 4.4 0.85 2.7-6.1 3.9 0.62 2.7-5.1

Mass/BSA [g/m2] 62 12 38-86 53 9 35-71

Left ventricular papillary muscle mass included as part of left ventricular mass. Pooled weighted mean values from references [23,24].

meanp = pooled weighted mean; SDp = pooled standard deviation; * = calculated as meanp ± 2*SDp; EDV = end-diastolic volume; ESV = end-systolic volume;

BSA = body surface area; SV = stroke volume; EF = ejection fraction; CI = cardiac index; SD = standard deviation; ** = from reference [24] (8–15 years) only.
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muscles and trabeculations were excluded from measure-

ments of left ventricular myocardial thickness [29,30].

Demographic parameters

LVMT is greater in men than women [29,30]. There are

also small differences in LVMT in relationship to ethni-

city and body size, but these variations are not likely to

have clinical significance [29]. Regarding age, one study

of 120 healthy volunteers age 20–80 years reported an

increase in myocardial thickness with age—starting after

the fourth decade [30]. In the study by Kawel el al. of

300 normal individuals without hypertension, smoking

history or diabetes, there was no statistically significant

difference in LVMT with age [29].

Figure 10 Percentiles for left ventricular parameters in children according to reference [25].

Table 22 Right ventricular parameters in children, ages 8–17

Parameter Male Female

meanp SDp Lower/ upper limits* meanp SDp Lower/ upper limits*

EDV/BSA [ml/m2] 84 12 60-108 76 9 58-94

ESV/BSA [ml/m2] 32 7 18-46 27 5 17-37

SV/BSA [ml/m2]** 52 8 36-68 49 7 35-63

EF [%]** 62 4 54-70 63 4 55-71

Mass/BSA [g/m2] 21 5 11-31 18 4 10-26

Right ventricular trabeculation included as part of right ventricular mass. Pooled weighted mean values from references [23,24].

meanp = pooled weighted mean; SDp = pooled standard deviation; * = calculated as meanp ± 2*SDp EDV = end-diastolic volume; ESV = end-systolic volume;

BSA = body surface area; SV = stroke volume; EF = ejection fraction; SD = standard deviation; ** = from reference [24] only.
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Figure 12 Percentiles for right ventricular parameters in children according to reference [25].

Figure 11 Percentiles for left ventricular papillary muscle mass in children according to reference [25].
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Studies included in this review

There are two publications of a systematic analysis of

left ventricular myocardial thickness based on SSFP im-

aging at 1.5T [29,30]. In the study by Dawson et al.,

measurements were obtained on short axis images only.

Kawel et al. published normal values of LVMT for long

and short axis imaging (Tables 26, 27 and 28).

Cardiac valves and quantification of flow
CMR acquisition parameters

Prospectively and retrospectively ECG- gated phase con-

trast (PC) CMR sequences are available on most CMR

machines. Prospectively-gated sequences use arrhythmia

rejection and may be performed in a breath hold. Retro-

spectively gated techniques are mainly performed during

free-breathing, often with higher spatial and temporal

resolution compared to the breath hold techniques [31].

4D PC flow quantification techniques show initial prom-

ising results, but 2D PC flow techniques are currently

used in the daily clinical routine [32]. Apart from PC-

CMR, valve planimetry—using ECG-gated SSFP CMR—

can also be used to estimate stenosis or insufficiencies

with good correlation to echocardiographic measure-

ments [33].

Measurements of flow are most precise when a) the

imaging plane is positioned perpendicular to the vessel

of interest and b) the velocity encoded gradient echo

(Venc) is encoded in a through plane direction [34]. The

slice thickness should be <7 mm to minimize partial vol-

ume effects. Compared to aortic or pulmonary flow

evaluation, quantification of mitral or tricuspid valves is

more challenging using PC-CMR due to substantial

through plane motion during the cardiac cycle [35].

Flow encoding velocity (Venc)

The Venc should be chosen close to the maximum ex-

pected flow velocity of the examined vessel for precise

measurements. Setting the Venc below the peak velocity

results in aliasing. For the normal aorta and main pul-

monary artery, maximum velocities do not exceed 150

and 90 cm/sec, respectively.

Adequate temporal resolution is necessary to avoid

temporal flow averaging, especially for the evaluation of

short, fast, and turbulent jets within a vessel (e.g. aortic

stenosis). For the clinical routine, 25–30 msec temporal

resolution is usually sufficient. The minimum required

spatial resolution should be less than one third of the

vessel diameter to avoid partial volume effects with the

adjacent vessel wall and surrounding stationary tissues

for small arteries [34].

CMR analysis methods

For data analysis, dedicated flow software should be

used. Most of the currently available flow software tools

offer semi-automatic vessel contouring, which needs to

be carefully checked by the examiner.

The modified Bernoulli equation (∆P = 4 × Vmax
2 ) is

commonly used for calculation of pressure gradients

using PC-CMR across the pulmonary or aortic valve

[36,37].

It has to be considered that velocity measurements of

a stenotic lesion with high jet velocities might be in-

accurate due to partial volume effects in case of a small

jet width and also the limited temporal resolution com-

pared to the high velocity of the jet. Measurements are

further affected by signal loss due to the high velocity

that may lead to phase shift errors and dephasing.

Table 25 Right atrial parameters in children, ages 4–20

according to reference [18]

Male Female

Parameter mean SD mean SD

Vol. max. [ml] 89 43 71 25

Vol. max./BSA [ml/m2] 58 16 53 12

Vol. min. [ml] 42 21 31 13

Vol. min./BSA [ml/m2] 27 8 23 6

SV [ml] 47 24 40 15

EF [%] 53 7 56 8

Vol. max. = maximal atrial volume; Vol. min. = minimal atrial volume;

BSA = body surface area; SV = stroke volume; EF = ejection fraction;

SD = standard deviation.

Table 24 Left atrial parameters in children, ages 4–20

according to reference [18]

Male Female

Parameter mean SD mean SD

Vol. max. [ml] 71 30 59 20

Vol. max./BSA [ml/m2] 47 10 44 9

Vol. min. [ml] 33 15 26 9

Vol. min./BSA [ml/m2] 22 5 19 4

SV [ml] 38 16 33 12

EF [%] 54 6 56 6

Vol. max. = maximal atrial volume; Vol. min. = minimal atrial volume;

BSA = body surface area; SV = stroke volume; EF = ejection fraction;

SD = standard deviation.

Table 23 Reference, normal left and right atrial dimensions in children

First author, year CMR technique N, male: female Age range (yrs)

Sarikouch, 2011 [18] Axial SSFP; pulmonary veins, SVC, IVC and coronary sinus excluded, atrial
appendages included from/in the left and right atrial volume, respectively

56:59 4.4-20.3

SSFP = steady-state free precession; SVC = superior vena cava; IVC inferior vena cava; yrs = years.
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Table 26 References, normal left ventricular myocardial thickness in adults

First author, year CMR technique N, male: female Age range (yrs)

Dawson, 2011 [30] Short axis SSFP, papillary muscle/ trabeculation excluded from LVMT 60:60 20-80

Kawel, 2012 [29] Short and long axis SSFP, papillary muscle/ trabeculation excluded from LVMT 131:169 54-91

SSFP = steady-state free precession; yrs = years; LVMT = left ventricular myocardial thickness.

Table 27 Normal left ventricular myocardial thickness in mm measured on long axis images for men and women

according to [29]

Men Women

Level Region mean SD Lower/upper limits* mean SD Lower/upper limits*

basal anterior 8.2 1.3 5.6-10.8 7.0 1.1 4.8-9.2

inferior 8.2 1.3 5.6-10.8 6.7 1.1 4.5-8.9

septal 9.1 1.3 6.5-11.7 7.3 1.1 5.1-9.5

lateral 7.6 1.3 5.0-10.2 6.0 1.1 3.8-8.2

mean 8.3 1.0 6.3-10.3 6.8 0.9 5.0-8.6

mid-cavity anterior 6.0 1.3 3.4-8.6 4.9 1.1 2.7-7.1

inferior 7.7 1.3 5.1-10.3 6.5 1.1 4.3-8.7

septal 8.3 1.3 5.7-10.9 6.8 1.1 4.6-9.0

lateral 6.6 1.3 4.0-9.2 5.3 1.1 3.1-7.5

mean 7.2 1.0 5.2-9.2 5.9 0.9 4.1-7.7

apical anterior 5.1 1.3 2.5-7.7 4.2 1.1 2.0-6.4

inferior 5.8 1.3 3.2-8.4 5.0 1.1 2.8-7.2

septal 5.8 1.3 3.2-8.4 5.0 1.1 2.8-7.2

lateral 5.5 1.3 2.9-8.1 4.6 1.1 2.4-6.8

mean 5.6 1.0 3.6-7.6 4.7 0.9 2.9-6.5

* = calculated as mean ± (2*SD).

Table 28 Normal left ventricular myocardial thickness in mm measured on short axis images for men and women

Men Women

Level Segment meanp SDp Lower/upper limits* meanp SDp Lower/upper limits*

basal 1 8.2 1.1 6.0-10.4 6.7 1.0 4.7-8.7

2 9.6 1.1 7.4-11.8 7.9 1.0 5.9-9.9

3 9.2 1.1 7.0-11.4 7.5 1.0 5.5-9.5

4 8.1 1.1 5.9-10.3 6.6 1.0 4.6-8.6

5 7.3 1.1 5.1-9.5 6.0 1.0 4.0-8.0

6 7.4 1.1 5.2-9.6 6.1 0.9 4.3-7.9

mid-cavity 7 6.7 1.1 4.5-8.9 5.7 1.0 3.7-7.7

8 7.7 1.1 5.5-9.9 6.4 1.0 4.4-8.4

9 8.2 1.1 6.0-10.4 6.9 1.0 4.9-8.9

10 7.0 1.1 4.8-9.2 5.9 1.0 3.9-7.9

11 6.2 1.1 4.0-8.4 5.2 0.9 3.4-7.0

12 6.4 1.1 4.2-8.6 5.4 1.0 3.4-7.4

apical 13 6.7 1.1 4.5-8.9 6.4 1.0 4.4-8.4

14 7.3 1.1 5.1-9.5 6.3 1.0 4.3-8.3

15 6.2 1.1 4.0-8.4 5.4 1.0 3.4-7.4

16 6.3 1.1 4.1-8.5 5.9 1.0 3.9-7.9

Pooled weighted mean values from references [29,30].

meanp = pooled weighted mean; SDp = pooled standard deviation; * = calculated as meanp ± 2*SDp; Segments: 1 = basal anterior, 2 = basal anteroseptal, 3 = basal

inferoseptal, 4 = basal inferior, 5 = basal inferolateral, 6 = basal anterolateral, 7 = mid anterior, 8 = mid anteroseptal, 9 = mid inferoseptal, 10 =mid inferior, 11 =mid

inferolateral, 12 =mid anterolateral, 13 = apical anterior, 14 = apical septal, 15 = apical inferior, 16 = apical lateral.
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Misalignement of the slice relative to the direction of the

jet may lead to an underestimation of the peak velocity

[38].

Demographic parameters

To our knowledge, data of the association between nor-

mal values of flow and valve planimetry with demo-

graphic parameters has not been previously published.

Studies included in this review

There is good agreement between PC-CMR, SSFP CMR

planimetry, and echocardiography measurements, American

Heart Association (AHA) criteria for grading valve stenosis

or insufficiency is suggested [33,39,40] (Table 29). To date,

there is no publication of normal reference values of flow

and valve planimetry based on CMR measurements.

Mitral valve flow velocities and deceleration time as

for determination of diastolic left ventricular function

measured by CMR showed a good correlation with mea-

surements derived by transthoracic echocardiography

but with a systematic underestimation [42] (Table 30).

Normal aortic dimensions in the adult
CMR acquisition parameters

Three- dimensional contrast enhanced MR Angiography

(MRA) has gained broad acceptance and is widely used

for assessment and follow-up of thoracic aortic diameter

in clinical setting. The multi-planar reformation of MRA

images leads to an accurate measurement perpendicular

to the lumen of the vessel. However, the need of a con-

trast injection is a limitation for the use of this tech-

nique in patients who need multiple follow up

examinations and in population based study settings

[44]. Alternatively non-contrast techniques such as ECG

gated non contrast 3D (2D) balanced steady state free

precession (SSFP) CMR can be applied. The modulus

image of phase contrast CMR has also been used to

measure diameters of the aorta [45]. 2D Black blood

CMR is used for a more detailed aortic wall assessment.

In 2D acquisitions, the imaging plane needs to be ac-

quired correctly at the time of the scan; thus any alter-

ations in the imaging plane will result in a higher

variability and lower accuracy of measurements. Another

Table 29 Grading valve disease adapted from echocardiography [39,41]

Valve disease Indicator Mild Moderate Severe

Aortic stenosis Peak velocity [m/s] <3 3-4 >4

Orifice area [cm2] >1.5 1.0-1.5 <1.0

Orifice area /BSA [cm2/m2] <0.6

Aortic regurgitation Regurgitant volume [ml/beat] <30 30-59 ≥60

Regurgitant fraction [%] <30 30-49 ≥50

Regurgitant orifice area [cm2] <0.10 0.10-0.29 ≥0.30

Mitral stenosis Peak velocity [m/s] <1.2 1.2-2.2 >2.2

Orifice area [cm2] >1.5 1.0-1.5 <1.0

Mitral regurgitation Regurgitant volume [ml/beat] <30 30-59 ≥60

Regurgitant fraction [%] <30 30-49 ≥50

Regurgitant orifice area [cm2] <0.20 0.20-0.39 ≥0.40

Pulmonary stenosis Peak velocity [m/s] <3 3-4 >4

Orifice area [cm2] <1

Pulmonary regurgitation Regurgitant volume [ml/beat] <30 30-40 >40

Regurgitant fraction [%] <25 20-35 >35

Tricuspid stenosis Orifice area [cm2] <1.0

Table 30 Mitral valve flow for determination of diastolic left ventricular function according to reference [43]

Parameter Normal Type 1 (Impaired
relaxation)

Type 2 (Pseudonormal) Type 3 (Restrictive,
partially reversible)

Type 3 (Restrictive,
fixed)

MDT (ms) 150-220 Increased Normal Decreased Decreased

E/A ratio 1-2 <1 1-2 >2 >2

MDT =mitral deceleration time; E/A ratio = ratio of the mitral early (E) and atrial (A) components of the mitral inflow velocity profile.
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limitation for ascending thoracic aorta diameter meas-

urement is the through plane motion during the cardiac

cycle which can be minimized with ECG gating [44].

Potthast and colleagues compared the diameter of the

ascending aorta obtained by different CMR sequences to

ECG-triggered CT angiography as the gold standard and

reported that ECG gated navigator triggered 3D SSFP se-

quence showed the best agreement with CT [44].

CMR analysis methods

It is important to indentify the anatomic locations of

diameter measurements of the thoracic aorta. In the

studies cited here, measurements were obtained at the

following anatomic locations: 1. aortic root cusp-

commissure and cusp-cusp measurements; 2. aortic

valve annulus; 3. aortic sinus; 4. sinotubular junction; 5.

ascending aorta and proximal descending aorta: mea-

surements at the level of the right pulmonary artery; 6.

abdominal aorta: 12 cm distal to the pulmonary artery

(Figure 13).

The sagittal oblique view of the left ventricular outflow

tract was used for measuring diameter at the level of the

aortic annulus, the aortic sinus, and the sinotubular

junction. Axial cross sectional images at predefined ana-

tomic levels were used for measuring the ascending and

descending aorta [46] as well as cusp-commissure and

cusp-cusp diameters at the level of the aortic sinus [47]

(Figures 13 and 14). There is no definite convention

about measuring the luminal or outer to outer diameter

of the aorta. Usually, measurement technique depends

on the resolution and characteristics of the available

MRI sequence. In the tables below, the method is

specified.

Demographic parameters

Age, gender and body size are major determinants of

physiologic variation in aortic size. In the Multi-Ethnic

Study of Atherosclerosis, which included participants

from four different ethnicities, the race/ethnicity were

not clinically significant determinants of ascending aorta

diameter [45].

Aortic diameter and ascending aorta length increase

with age, leading to decreased curvature of the aortic

arch [48,49]. The association of age with aortic diameter

was more marked in the ascending aorta compared to

the descending thoracic and abdominal aorta, respect-

ively [50,51]. Additionally, the descending aorta did not

demonstrate age associated lengthening [49].

Studies included in this review

Studies with normal values of aortic diameters including

50 or more subjects for both men and women and a

range of ages (due to the age dependence of aortic

Figure 13 The anatomic locations of aorta measurements: A.

aortic valve annulus; B. aortic sinus; C. sinotubular junction; D.

ascending aorta and proximal descending aorta; E.

abdominal aorta.

Figure 14 Cusp-commissure (continuous lines) and cusp-cusp

(dashed-lines) measurements at the level of the aortic sinus.
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diameters) have been included in this review (Tables 31,

32, 33, 34 and 35). There are three major publications

regarding MR-based measurements of the thoracic aorta

in adults: Davis et al. determined aortic diameter at three

levels (ascending aorta, proximal descending aorta and

abdominal aorta) by calculating the luminal diameter

based on measurements of the cross sectional area ob-

tained on cine SSFP images [46]. In the original publica-

tion normal age and gender specific absolute and

indexed (for BSA) values are presented in a graph and

absolute numbers are presented for different weight cat-

egories (Table 32).

Turkbey et al. measured the luminal diameter of the

ascending aorta on magnitude images of a phase con-

trast sequence in a large number of healthy subjects [45]

(Table 33).

Burmann et al. performed detailed measurements of the

aortic root including cusp-commissure and cusp-cusp

measurements at diastole and systole on cine SSFP images

[47] (Tables 34 and 35).

Normal aortic dimensions in children
CMR acquisition parameters

There is no consensus regarding the sequence type used to

measure aortic diameters and areas. In the three major

publications (Table 36) measurements were obtained on 3

dimensional contrast enhanced MR angiography [52],

gradient echo images [53] and phase contrast cine images

[54].

CMR analysis methods

In order to reduce error in measurement, care has to be

taken to obtain or reconstruct cross sectional images

that are true perpendicular instead of oblique to the

course of the vessel. Kaiser et al. demonstrated that aor-

tic diameter measurements show a slight variation with

measurement plane with a mean difference between

measurements on cross-sectional and longitudinal

images of 0.16 mm and a coefficient of variability of

2.1% [52].

Kutty et al. indicate that in their study the outer diam-

eter of the vessel was measured [54] while Kaiser et al.

and Voges et al. do not mention details in this respect

[52,53].

Demographic parameters

Aortic diameters vary by BSA [52,54] but do not show

gender differences [53,54]. Aortic area did also not show

any gender differences [53].

Studies included in this review

There are three publications of a systematic evaluation

of aortic dimensions (diameter and/or area) in children

that vary by CMR-technique, measurement technique

and data presentation (Table 36): In the study by Kai-

ser et al. aortic diameter was measured as the shortest

diameter passing the center of the vessel at 9 levels

of the thoracic aorta on reconstructed cross-sectional

images of a contrast enhanced 3 dimensional MR

Table 32 Normal values (in mm) of the thoracic and abdominal aortic luminal diameters for men and women of

different BMI categories measured at diastole (mean[±2SD]) according to [46]

Men Women

Level Normal weight Overweight Obese Normal weight Overweight Obese

Aortic annulus 23.9 (18.6-29.2) 24.3 (18.9-29.7) 25.6 (20.4-30.8) 20.6 (17.4-23.8) 21.7 (18.4-25.0) 21.5 (17.2-25.8)

Aortic sinus 31.9 (24.3-39.5) 32.8 (25.2-40.4) 33.3 (24.3-42.3) 27.5 (21.9-33.1) 28.0 (21.8-34.2) 27.5 (21.3-33.7)

Sinotubular junction 24.4 (18.2- 30.6) 25.7 (16.7- 34.7) 26.2 (18.9- 33.5) 21.6 (16.6- 26.6) 22.3 (17.0- 27.6) 22.1 (15.9- 28.3)

Ascending aorta 26.0 (18.7-33.3) 27.4 (18.9-35.9) 28.5 (23.1-33.9) 24.7 (17.8-31.6) 26.5 (19.3-33.7) 26.6 (18.8-34.4)

Prox. desc. aorta 20.1 (14.7-25.5) 20.9 (15.6-26.2) 22.2 (16.3-28.1) 18.5 (14.6-22.4) 19.2 (14.8-23.6) 19.6 (16.5-23.2)

Abdominal aorta * 17.1 (12.0-22.2) 17.9 (12.8-23.0) 18.8 (14.4-23.2) 16.0 (12.1-19.9) 16.3 (12.3-20.3) 17.4 (13.9-20.9)

normal weight = BMI <25 kg/m2; overweight = BMI 25–29.9 kg/m2; obese = BMI >30 kg/m2; prox. desc. aorta = proximal descending aorta; * = abdominal aorta

measured 12 cm distal to the pulmonary artery.

Table 31 References, normal aortic dimensions in adults

First author, year CMR technique N, male: female Age range (yrs)

Davis, 2014 [46] SSFP; luminal diameter of thoracic and abdominal aorta 208: 239 19-70

Turkbey, 2013 [45] Phase contrast (magnitude image); luminal diameter of ascending thoracic aorta 770:842 45-84

Burman, 2008 [47] SSFP; luminal diameter of aortic root 60:60 20-80

SSFP = steady-state free precession; yrs = years.
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angiography [52]. In the original publication data is

presented as median and range as well as percentiles,

z-scores and regression models incorporating BSA.

Voges et al. present measurements obtained at four

levels of the thoracic aorta obtained on cine GRE

images at maximal aortic distension as mean ± stand-

ard deviation and as percentiles [53]. In the study by

Kutty et al. aortic diameter and area was measured

1-2 cm distal to the sinotubular junction at systole on

phase contrast cine images [54]. Data is presented

as mean ± standard deviation, regression equation and

z-scores.

In this review we present regression equations of nor-

mal aortic diameters measured at 9 different sites ac-

cording to [52] (Table 37, Figure 15) and of normal area

of the ascending aorta according to [54] (Table 38). Fur-

ther reference percentiles of aortic area measured at 4

different locations obtained on cine GRE images are pre-

sented in Figure 16 according to [53]. The z-scores for

each aortic diameter (D) can be calculated with the

following equation:

z‐score ¼ measured D – predicted Dð Þ=SD of residuals

on the base of the data provided in Table 37.

Due to the differences in acquisition and measurement

technique as well as presentation of results, weighted

mean values were not calculated.

Normal aortic distensibility/ pulse wave velocity
in adults
CMR acquisition parameters

Pulse wave velocity (PWV) calculations using a velocity-

encoded CMR with phase contrast sequences allow

Table 34 Absolute and indexed (to BSA) normal values of aortic root cusp-commissure measurements for men and

women of different age categories measured at systole and diastole (mean ± SD [lower/upper limits calculated as

mean ± 2SD]) according to [47]

Men Women

Age (years) systolic diastolic systolic diastolic

Absolute values (mm)

20-29 32.6 ± 3.5 (26–40) 30.4 ± 3.3 (24–37) 28.6 ± 3.9 (21–36) 26.3 ± 3.9 (19–34)

30-39 32.0 ± 3.3 (25–39) 29.7 ± 3.5 (23–37) 28.5 ± 2.8 (23–34) 26.8 ± 2.8 (21–32)

40-49 33.3 ± 2.1 (29–38) 31.6 ± 1.6 (28–35) 31.7 ± 2.8 (26–37) 30.0 ± 2.1 (26–34)

50-59 33.9 ± 5.1 (24–44) 32.7 ± 4.8 (23–42) 29.5 ± 2.0 (26–34) 28.4 ± 1.8 (25–32)

60-69 34.6 ± 2.5 (30–40) 33.5 ± 2.3 (29–38) 30.5 ± 1.9 (27–34) 29.5 ± 2.0 (26–34)

70-79 35.1 ± 3.1 (29–41) 33.9 ± 3.0 (28–40) 30.7 ± 1.3 (28–33) 29.6 ± 1.4 (27–32)

all 33.6 ± 3.4 (27–40) 32.0 ± 3.5 (25–39) 29.9 ± 2.7 (25–35) 28.4 ± 2.8 (23–34)

Values indexed to BSA (mm/m2)

20-29 16.8 ± 1.6 (14–20) 15.6 ± 1.7 (12–19) 16.7 ± 1.9 (13–21) 15.3 ± 2.0 (11–19)

30-39 16.3 ± 1.6 (13–20) 15.1 ± 1.6 (12–18) 17.5 ± 1.3 (15–20) 16.4 ± 1.3 (14–19)

40-49 16.1 ± 1.1 (14–18) 15.3 ± 1.0 (13–17) 17.8 ± 2.6 (13–23) 16.8 ± 2.3 (12–21)

50-59 17.2 ± 2.1 (13–21) 16.6 ± 1.9 (13–20) 17.8 ± 1.4 (15–21) 17.2 ± 1.4 (14–20)

60-69 17.7 ± 1.8 (14–21) 17.2 ± 1.7 (14–21) 17.7 ± 1.5 (15–21) 17.1 ± 1.4 (14–20)

70-79 18.0 ± 1.2 (16–20) 17.4 ± 1.2 (15–20) 18.5 ± 0.9 (17–20) 17.8 ± 0.9 (16–20)

all 17.0 ± 1.7 (14–20) 16.2 ± 1.8 (13–20) 17.7 ± 1.7 (14–21) 16.8 ± 1.7 (13–20)

BSA = body surface area.

Table 33 Absolute and BSA indexed normal values of

ascending aortic luminal diameter for men and women of

different age categories (median [5th-95th percentile])

measured on phase contrast images according to [45]

Age (years) Men Women

Absolute values (mm)

45-54 31.6 (27.2-37.3) 28.8 (24.6-34.4)

55-64 32.8 (28.1-40.7) 30.1 (25.7-36.4)

65-74 34.2 (28.7-41.0) 30.6 (26.1-36.3)

75-84 34.7 (28.6-40.8) 31.1 (26.8-37.1)

Values indexed to BSA (mm/m2)

45-54 15.9 (13.3-19.5) 16.7 (13.5-20.7)

55-64 16.8 (13.6-21.1) 17.6 (14.8-22.1)

65-74 17.8 (14.2-21.8) 18.1 (14.5-22.1)

75-84 18.6 (15.2-22.6) 19.7 (15.3-28.2)

BSA = body surface area.
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Table 36 References, normal aortic dimensions in children

First author, year CMR technique N, male: female Age range (yrs)

Kaiser, 2008 [52] Contrast enhanced 3D MR angiography; shortest diameter 30:23 2-20

Voges, 2012 [53] Cine GRE; measurements obtained at maximal distension of the aorta 30:41 2.3-28.3

Kutty, 2012 [54] Cine phase contrast CMR; measurements obtained at systole 55:50 4.4-20.4

GRE = gradient echo; 3D = 3-dimensional; yrs = years.

Table 37 Normal aortic diameters (in mm) measured on reconstructed cross-sectional images of a contrast enhanced

3D-MR angiography according to reference [52]

Site Predicted diameter SD of residuals

Aortic sinus 0.57 + 19.37*BSA0.5 2.38

Sinotubular junction −0.03 + 16.91*BSA0.5 1.92

Ascending aorta −1.33 + 18.6*BSA0.5 1.99

Proximal to the origin of the brachiocephalic artery −3.38 + 20.07*BSA0.5 1.69

First transverse segment −3.52 + 18.66*BSA0.5 1.63

Second transverse segment −2.63 + 16.5*BSA0.5 1.31

Isthmic region −3.37 + 16.52*BSA0.5 1.46

Descending aorta −1.12 + 14.42*BSA0.5 1.64

Thoracoabdominal aorta at the level of the diaphragm 1.27 + 9.89*BSA0.5 1.34

BSA = body surface area; SD = standard deviation.

Table 35 Absolute and indexed (to BSA) normal values of aortic root cusp-cusp measurements for men and women of

different age categories measured at systole and diastole (mean ± SD [lower-upper limits calculated as mean ± 2*SD])

according to [47]

Men Women

Age (years) systolic diastolic systolic diastolic

Absolute values (mm)

20-29 34.4 ± 4.2 (26–43) 32.8 ± 3.8 (25–40) 30.2 ± 4.7 (21–40) 28.4 ± 4.7 (19–38)

30-39 33.8 ± 3.8 (26–41) 32.0 ± 3.9 (24–40) 30.0 ± 3.1 (24–36) 28.7 ± 3.0 (23–35)

40-49 36.0 ± 2.7 (31–41) 34.1 ± 2.3 (30–39) 33.9 ± 2.5 (29–39) 32.8 ± 2.5 (28–38)

50-59 36.3 ± 5.9 (25–48) 35.2 ± 5.7 (24–47) 31.4 ± 2.5 (26–36) 30.6 ± 2.6 (25–36)

60-69 37.4 ± 2.9 (32–43) 36.2 ± 2.5 (31–41) 32.8 ± 2.3 (28–37) 32.0 ± 2.2 (28–36)

70-79 37.8 ± 3.9 (30–46) 37.0 ± 3.5 (30–44) 32.9 ± 1.7 (30–36) 32.0 ± 1.6 (29–35)

all 36.0 ± 4.1 (28–44) 34.6 ± 4.0 (27–43) 31.9 ± 3.2 (26–38) 30.7 ± 3.3 (24–37)

Values indexed to BSA (mm/m2)

20-29 17.7 ± 1.9 (14–22) 16.9 ± 1.9 (13–21) 17.6 ± 2.3 (13–22) 16.6 ± 2.3 (12–21)

30-39 17.2 ± 2.0 (13–21) 16.2 ± 1.9 (12–20) 18.4 ± 1.4 (16–21) 17.6 ± 1.3 (15–20)

40-49 17.4 ± 1.4 (15–20) 16.5 ± 1.3 (14–19) 19.0 ± 2.7 (14–24) 18.4 ± 2.5 (13–23)

50-59 18.5 ± 2.4 (14–23) 17.9 ± 2.3 (13–23) 18.9 ± 1.7 (16–22) 18.5 ± 1.8 (15–22)

60-69 19.2 ± 2.2 (15–24) 18.6 ± 2.0 (15–23) 19.0 ± 1.8 (15–23) 18.6 ± 1.6 (15–22)

70-79 19.4 ± 1.4 (17–22) 19.0 ± 1.3 (16–22) 19.8 ± 1.0 (18–22) 19.3 ± 1.0 (17–21)

all 17.6 ± 2.0 (14–22) 17.5 ± 2.0 (14–22) 18.8 ± 1.9 (15–23) 18.1 ± 2.0 (14–22)

BSA = body surface area.
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accurate assessment of aortic systolic flow wave and

the blood flow velocity. The sequence should be ac-

quired at the level of the bifurcation of the pulmon-

ary trunk, perpendicular to both, the ascending and

descending aorta. The distance between two aortic

locations (aortic length) can be estimated from axial

and coronal cine breath hold SSFP sequences cover-

ing the whole aortic arch [55]. Alternatively, sagittal

oblique views of the aortic arch can be acquired

using a black blood spin echo sequence [51].

Another measurement method of aortic stiffness

is aortic distensibility. The cross sectional aortic area

at different phases of the cardiac cycle is measured using

ECG-gated SSFP cine imaging to assess aortic distensi-

bility by CMR. Modulus images of cine phase contrast

CMR can be used as well [56].

CMR analysis methods

PWV is the most validated method to quantify arterial

stiffness using CMR. PWV is calculated by measuring

the pulse transit time of the flow curves (Δt) and the dis-

tance (D) between the ascending and descending aortic

locations of the phase contrast acquisition [51]: Aortic

PWV =D/ Δt (Figure 17).

PWV increases with stiffening of arteries since the

stiffened artery conducts the pulse wave faster compared

to more distensible arteries.

Aortic distensibility is calculated with the fallowing

formula after measuring the minimum and maximum

aortic cross sectional area [57]:

Aortic Distensibility = (minimum area- maximum area)/

(minimum area x ΔP x 1000) where ΔP is the pulse

pressure in mmHg.

Demographic parameters

Greater ascending aorta diameter and changes in aortic

arch geometry by aging was significantly associated with

increased regional stiffness of the aorta, especially the

ascending portion. The relationship of age with mea-

sures of aortic stiffness is non –linear and the decrease

of aortic distensibility is steeper before the fifth decade

of life [51]. Males have stiffer aortas compared to fe-

males [58].

Studies included in this review

Two publications reported normal values of pulse

wave velocity and aortic distensibility (Tables 39, 40

and 41).

Normal aortic distensibility/ pulse wave velocity
in children
CMR acquisition parameters

In the only publication of aortic distensibility and pulse

wave velocity in children, distensibility was measured on

gradient echo cine CMR images and pulse wave velocity

was measured on phase-contrast cine CMR [53].

CMR analysis methods

Distensibility was calculated as (Amax – Amin)/Amin x

(Pmax – Pmin), where Amax and Amin represent the max-

imal and minimal cross-sectional areal of the aorta, and

Table 38 Normal aortic area (in cm2) measured 1-2 cm

distal to the sinotubular junction at systole on phase

contrast cine images according to reference [54]

Site Predicted diameter

Ascending aorta −0.0386 + 2.913*BSA

BSA = body surface area.

Figure 15 Sites of measurement. AS = aortic sinus; STJ =

sinotubular junction; AA = ascending aorta; BCA = proximal to

the origin of the brachiocephalic artery; T1 = first transverse

segment; T2 = second transverse segment; IR = isthmic region;

DA = descending aorta; D = thoracoabdominal aorta at the level

of the diaphragm.
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Pmax and Pmin represent the systolic and diastolic blood

pressure measured with a sphygmomanometer cuff

around the right arm.

Pulse wave velocity was calculated as Δx/Δt, where Δx

is defined as the length of the centerline between the

sites of flow measurement in the ascending and de-

scending aorta and Δt represents the time delay between

the flow curve obtained in the descending aorta relative

to the flow curve obtained in the ascending aorta

(Figure 17).

Demographic parameters

Aortic distensibility and pulse wave velocity did not

vary by gender. Aortic distensibility decreases with

age and correlates with height, body weight and BSA

[53].

Studies included in this review

There is a single publication only of a systematic evalu-

ation of normal aortic distensibility and pulse wave

velocity in children (Table 42). Reference percentiles by

age according to reference [53] are presented in Fig-

ures 18 and 19.

Normal values of myocardial T1 relaxation time
and the extracellular volume (ECV)
CMR acquisition parameters

Most of the published myocardial T1 values have

been acquired using a Modified Look-Locker Inver-

sion Recovery (MOLLI) [59] or shortened-MOLLI

(ShMOLLI) [60] method, combined with a balanced

SSFP read out [59]. The MOLLI method acquires

data over 17 heartbeats with a 3(3bt)3(3bt)5 sampling

pattern, while ShMOLLI has been described with a 9

heart beat breath-hold and a 5(1bt)1(1bt)1 sampling

pattern, although variations of these acquisition

schemes have been proposed [60]. An alternative

sampling method is saturation recovery single-shot

acquisition (SASHA) in which a first single-shot

bSSFP image is acquired without magnetization

Figure 16 Reference percentiles for aortic areas measured at four different sites (ascending aorta [a], aortic arch [b], aortic

isthmus [c] and descending aorta above the diaphragm [d]) on cine GRE images at maximal aortic distension according to

reference [53].
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preparation followed by nine images prepared with

variable saturation recovery times [61]. All methods

usually acquire images at end diastole to limit car-

diac motion artifacts [59] but acquisition of T1 maps

at systole has been shown to be feasible [62]. Post

contrast T1 values have been performed following a

bolus or primed infusion (Equilibrium-EQCMR) with

good agreement of ECV values up to 40% [63].

Factors affecting T1 and ECV

Field strength has a significant effect on T1 values;

with 3T scans producing 28% higher native T1 and

14% higher post contrast T1 values when compared

with 1.5T [62]. Post contrast T1 is also affected by the

dose and relaxivity of the contrast agent used, contrast

clearance, and the time between injection and meas-

urement [62,64,65]. There is also greater heterogeneity

for a T1 native normal range at 3 Tesla [62,66,67].

Further, it has been shown that T1 varies by cardiac

phase (diastole versus systole) and region of measure-

ment (septal versus non-septal) [62]. ECV values

are relatively unaffected by field strength (3T versus

1.5T). Both native T1 and ECV values have been

shown to be less reliable in the infero-lateral wall

[62,68].

Flip-angle and pre-pulse can also affect normal values,

with the adiabatic pre-pulse increasing native T1 values

by approximately 25 ms compared with non-adiabatic

pre-pulses. FLASH mapping sequences produce signifi-

cantly lower native T1 values than bSSFP methods

[69,70].

CMR analysis methods

T1 maps are based on pixel-wise quantification of

longitudinal relaxation of the acquired images. Na-

tive T1 measures a composite signal from myocytes

and interstitium and is expressed in ms [71]. Mea-

surements that correlate pre and post contrast T1

myocardial values and blood T1 have been proposed,

such as the partition coefficient or the extracellular

volume fraction (ECV), expressed as a percantage

[72].

Offline post-processing involves manually tracing

endocardial and epicardial contours [65,73] (Figure 20)

or placing a region of interest within the septal myocar-

dium using a prototype tool [67]. Inclusion of blood

pool or adjacent tissue should be carefully avoided. Mo-

tion correction is generally used to counter undesired

breathing motion. However, motion correction can only

correct for in-plane motion and not through-plane

motion. All methods, therefore, are vulnerable to partial

Figure 17 Measurement of pulse wave velocity according to

reference [53]. Δx = length of the centerline between the sites of flow

measurement in the ascending and descending aorta (A); Δt = time

delay between the flow curves obtained in the descending aorta relative

to the flow curve obtained in the ascending aorta calculated between

the midpoint of the systolic up slope tails on the flow versus time curves

of the ascending aorta (ta1) and the descending aorta (ta2) (B).

Table 39 References, ascending and descending thoracic aorta distensibility, aortic arch pulse wave velocity

First author, year CMR technique N, male: female Age range (yrs)

Redheuil, 2010 [51] Phase contrast CMR and gradient echo cine 54:57 20-84

Rose, 2010 [58] SSFP 13:13 23-61

yrs = years; SSFP = steady-state free precession.
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volume effects. Some investigators also corrected for this

with smaller regions of interest and co-registration of

images [74].

Demographic parameters

Increasing age has been shown to increase ECV in

healthy volunteers in one publication [68] and females

less than 45 years have been shown to have a higher pre-

contrast T1 [74].

Studies included in this review

Several studies have shown a strong correlation between

T1 values by CMR and diffuse myocardial fibrosis on

myocardial biopsy [71,75,76], but the rapid evolution of

acquisition methods over the past years has led to incon-

sistent T1 values reported in the literature.

In order to reflect the current literature, the normal

values presented here are classified by field strength and

acquisition pulse sequence and list pre contrast, post

contrast, and ECV values where available.

It should be noted that a universal normal range for

T1 cannot be determined given the heterogeneity of ac-

quisition pulse sequences used in the existing literature

and because no true reference value for in vivo T1 ex-

ists. Table 43 is a summary of publications over the last

years presenting normal values based on ≥ 20 healthy

subjects as available in December 2013.

For SASHA, only limited normal values are available.

T1 estimates based on SASHA are higher than with

MOLLI methods. One study reported SASHA derived

T1 values in 39 normal subjects of 1170 ± 9 ms at 1.5T

[61].

We conclude that at present, normal native T1 values

are specific to pulse sequences and scanner manufac-

turer. For diagnostic purposes it is most important to

use a method with a tight normal range, good reproduci-

bility and sensitivity to disease.

Normal values of myocardial T2* relaxation time
CMR acquisition parameters

Quantification of the T2* relaxation time plays an

important role for estimation of myocardial iron

overload [81]. For quantification of the myocardial

T2* time, the gradient-echo T2* technique with mul-

tiple increasing TEs is preferred over the spin-echo

T2 technique due to a greater sensitivity to iron de-

position [82-84]. Usually a single-breath hold tech-

nique is used. Normal values and a grading system

for myocardial iron overload are available for 1.5T

[84].

CMR analysis methods

Since the gradient-echo T2* technique is vulnerable

to distortions of the local magnetic field e.g. by

air-tissue interfaces, measurements are obtained by

placing a region of interest on the interventricular

septum of a midventricular short axis slice, since the

septum is surrounded by blood on both sides [83]

(Figure 21).

T2* times are frequently reported as relaxation rate,

representing the reciprocal of the time constant and calcu-

lated as R2* = 1000/T2*. The unit of R2* is Hertz or s−1

[83].

Table 41 Normal values of ascending and descending

thoracic aorta distensibility (in 10 −3mmHg −1) by gender

(mean ± SD) according to [58]

Men Women

Ascending Aorta 6.1 ± 2.5 8.6 ± 2.7

Descending Aorta 5.1 ± 2.4 7.2 ± 1.6

Table 42 References, normal aortic distensibility and

pulse wave velocity in children

First author,
year

CMR technique N, male:
female

Age range (yrs)

Voges, 2012 [53] Cine GRE; phase-
contrast cine CMR

30:41 2.3-28.3

GRE = gradient echo; yrs = years.

Table 40 Normal values of ascending and descending thoracic aorta distensibility and aortic arch pulse wave velocity

by age categories (mean ± SD) according to [51]

Age categories (years)

20-29 30-39 40-49 50-59 60-69 ≥70

Ascending aortic distensibility (kPa −1. 10 −3) 74 ± 23 61 ± 23 31 ± 18 18 ± 7 12 ± 7 10 ± 6

Descending aortic distensibility (kPa −1. 10 −3) 72 ± 18 70 ± 24 38 ± 17 29 ± 13 18 ± 8 17 ± 6

Aortic arch PWV (m/s) 3.5 ± 0.5 3.9 ± 1.1 5.6 ± 1.4 7.2 ± 2.3 9.7 ± 2.9 11.1 ± 4.6

PWV = Pulse wave velocity.
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Figure 19 Reference percentiles for aortic pulse wave velocity according to reference [53].

Figure 18 Reference percentiles for aortic distensibility measured at four different sites (ascending aorta [a], aortic arch [b], aortic

isthmus [c] and descending aorta above the diaphragm [d]) on cine GRE images at maximal aortic distension according to

reference [53].
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Table 43 Normal native and post contrast T1 time and ECV (mean ± SD)

Author n Age
(yrs)

Male
(%)

Sequence Gd type & dose
(mmol/kg)

Time p.c.
(min)

T1 native
(ms)

T1 p.c.
(ms)

ECV Slice(s), %
thickness

1.5 Tesla

Iles (2008) [77] 20 38 ± 3 50 GE, VAST 3–4
BH

0.2 Magnevist 15 975 ± 62 564 ± 23 n/a 3x SAX & 4Ch
full thickness

Ugander (2012) [68] 60 49 ± 17 52 MOLLI 0.15-0.2
Magnevist

15-20 Not
reported

Not
reported

27 ± 3 1x SAX & 4Ch
full thickness

Kellman (2012) [78] 62 44 ± 17 48 MOLLI 0.15 Magnevist 15-20 965 ± 35 Not
reported

25 ±
3**

1x SAX & 4Ch
midwall

Flett (2012) [69] 30 64 ± 13 67 FLASH, multi-
BH

0.1 Dotarem 45-80
EQCMR

698 ± 86 408 ± 33 n/a 2x SAX
septum

Fontana (2012) [76] 50 47 ± 7 53 ShMOLLI* 0.1 Dotarem 45-80
EQCMR

Not
reported

Not
reported

26 ± 3 2x SAX
septum

Sado (2012) [70] 81 44 ± 17 52 FLASH, multi-
BH

0.1 Dotarem 45-80
EQCMR

Not
reported

Not
reported

25 ± 4 2x SAX
septum

Kawel (2012) [62] 23 28 ± 6 36 MOLLI 0.15 Magnevist 12 1003 ± 46 522 ± 34 28 ± 3 1x SAX full
thickness

Piechnik (2013) [74] 342 38 ± 15 49 ShMOLLI* No contrast
given

n/a 962 ± 25 n/a n/a 3x SAX full
thickness

Bull (2013) [75] 33 62 ± 7 64 ShMOLLI No contrast
given

n/a 944 ± 16 n/a n/a 1x SAX septal
midwall

3 Tesla

Kawel (2012) [65] 23 28 ± 6 31 MOLLI 0.15 Magnevist 12 1286 ± 59 538 ± 34 28 ± 3 1x SAX full
thickness

Kawel (2012) [65] 23 28 ± 6 33 MOLLI 0.1 Multihance 12 As above 555 ± 33 27 ± 3 1x SAX full
thickness

Puntmann (2013)
[67]

21 38 ± 6 23 MOLLI* 0.2 Gadobutrol 15 1056 ± 27 454 ± 53 26 ± 5 1x SAX septal
midwall

Puntmann (2013)
[79]

30 43 ± 9 63 MOLLI* 0.2 Gadobutrol 10 1070 ± 55 402 ± 58 27 ± 5 1x SA septal
midwall

Liu (2012) [80] 24 29 ± 6 33 MOLLI 0.15 Magnevist 12 1159 ± 39 Not
reported

27 ± 3 1x SAX full
thickness

Liu (2012) [80] 24 29 ± 6 33 MOLLI 0.1 Multihance 12 1159 ± 39 Not
reported

26 ± 3 1x SAX full
thickness

Age: mean ± standard deviation; yrs = years; n = number of subjects; Gd = Gadolinium; p.c. = post contrast; ECV = extracellular volume fraction; MOLLI = modified

look-locker inversion recovery; ShMOLLI = shortened MOLLI; GE = gradient echo; VAST = variable sampling of k-space; BH = breath hold; LL = Look-locker; FLASH =

fast low angle single shot recovery; SAX = short axis; 4Ch = 4 chamber; Hb = heart beat; EQCMR = equilibrium contrast cardiovascular magnetic resonance;

* = adiabatic pre pulse; ** = automated motion correction and co-registration.

Figure 20 T1 maps pre- and post-contrast with left ventricular endocardial and epicardial contours.
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Demographic parameters

It has been shown that T2* does not correlate with age

[85]. To our knowledge the relationship between other

demographic parameters and T2* has not been assessed

yet.

Studies included in this review

Generally a T2* value - measured at the interventricular

septum using a multiecho GRE sequence at 1.5T - of

>20 ms is considered normal while the mean myocardial

T2* is around 40 ms [81].

Examples of studies that used the current multiecho

GRE technique with a sample size of >10 healthy sub-

jects are presented in Table 44.

Depending on the risk to develop heart failure as a

consequence of myocardial iron overload, a grading sys-

tem for disease severity has been published (Table 45)

[87].

Regional Measurements and Cardiac Strain
CMR acquisition parameters

A number of imaging methods have been developed to

acquire cardiac strain information from CMR including

cine CMR, tagged MR, phase-contrast CMR (PC-CMR),

velocity encoded CMR, displacement encoding with sti-

mulated echoes (DENSE), and strain-encoding (SENC)

[88,89]. However, tagged CMR remains a widely vali-

dated reproducible tool for strain estimation. The

method is used in clinical studies and is considered the

reference standard for assessing regional function

[90,91].

CMR analysis methods

Cardiac strain is a dimensionless measurement of the

deformation that occurs in the myocardium. Cardiac

strain can be reported as three normal strains (circum-

ferential, radial, and longitudinal) and six shear strains—

the angular change between two originally mutually

orthogonal line elements, with the more clinically inves-

tigated shear strain in the circumferential-longitudinal

shear strain (also known as torsion).

There are a number of different methods to quantify

strain: registration methods, feature-based tracking

methods, deformable models, Gabor Filter Banks, optic

flow methods, harmonic phase analysis (HARP) [92],

and local sine wave modeling (SinMod) [88]. Technical

review papers for these methods can be found in the fol-

lowing literature [93-96]. HARP has become one of the

most widely used methods for analyzing tagged MR im-

ages for cardiac strain, in part due to its large scale use

in the Multi-Ethnic Study of Atherosclerosis (MESA)

trial [92,97].

Strain patterns are reported according to the 16 and

17 segment model of the American College of Echocar-

diology. Consistent manual tracing of the endocardial

and epicardial contours is necessary to reproducible

strain results. With tagged CMR, midwall strain is pre-

ferred to epicardial and endocardial strain to maximize

the amount of tagging data available for strain calcula-

tions [95,98]. With HARP analysis such as that used in

the MESA trial [92], careful selection of the first har-

monic is necessary.

Table 44 References (examples), normal myocardial T2* values

First author, year CMR technique N, male: female Age range (yrs) Mean ± SD (ms)

Kirk, 2010 [85] GRE, 8 echo times (2.6-16.74 ms) 38:25 18-77 36.3*

Pepe 2006 [86] GRE, 9 echo times (2.2-20.3) 14:6 (33 ± 9**) 36.4 ± 6.7

Anderson, 2001 [82] GRE, 8 echo times (2.2-20.1 ms) 9:6 26-39 52 ± 16

GRE = gradient-echo; yrs = years; * = SD not indicated in original publication; ** =mean ± SD, range not mentioned in original publication.

Figure 21 Measurements for myocardial T2* are obtained in

the septum.

Table 45 Grading of iron overload based on T2*

measurements according to [81,87]

Iron overload T2* (ms)

normal >20

iron overload <20

severe iron overload <10
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Demographic parameters

With tagged CMR, it has been noted that age is associ-

ated with decrease in peak circumferential or longitu-

dinal shortening [99,100]. In tagged CMR studies,

gender also affects normal values. Cardiac strain values

for women are higher than those of men [101,102].

Studies included in this review

Several studies have presented cohorts of normal indi-

viduals for determining normal strain of the left ven-

tricle. For the purpose of this review, only cohorts of 30

or more normal subjects using SPAMM tagging have

been included. (Feature tracking methods are being de-

veloped for strain, but are being validation in compari-

son to SPAMM tagging.) Inclusion criteria include a full

description of the subject cohort (including the analysis

methods used), age and gender of subjects. Table 46 rep-

resents a summary of publications reporting normal

values for midwall strain that fit the criteria [89,90,98].

With tagged CMR, normal midwall circumferential

[89,92,93,98,101,104] and longitudinal [89,96,98,104]

strain values are relatively comparable between studies.

For radiation strain, moderate differences between pub-

lished results exist for reference values, probably due to

low tag density by most methods in the radial direction

[90,96-98,101,104].

Conclusions
Cardiovascular magnetic resonance enables quantification

of various functional and morphological parameters of the

cardiovascular system. This review lists reference values

and their influencing factors of these parameters based on

current CMR techniques and sequences.

Advantages of a quantitative evaluation are a better

differentiation between pathology and normal condi-

tions, grading of pathologies, monitoring changes under

therapy, and evaluating prognosis and the possibility of

comparing different groups of patients and normal

subjects.

Abbreviations

CMR: Cardiovascular magnetic resonance; SSFP: Steady-state free precession;

LV: Left ventricle; Yrs: Years; FGRE: Fast gradient echo; EDV: End-diastolic

volume; BSA: Body surface area; ESV: End-systolic volume; SV: Stroke volume;

EF: Ejection fraction; SD: Standard deviation; SDp: Pooled standard deviation;

Meanp: Pooled weighted mean; RV: Right ventricle; PFRE: Peak filling rate

early; PFRA: Peak filling rate active; AVPD: Atrioventricular plane descent;

3D: 3-dimensional; CI: Confidence interval; RA: Right atrium; LA: Left atrium;

AP: Anteroposterior; 4ch: 4-chamber view; 2ch: 2-chamber view; 3ch: 3-

chamber view; Max.: Maximal; Min.: Minimal; CI: Cardiac index; LVMT: Left

ventricular myocardial thickness; SVC: Superior vena cava; IVC: Inferior vena

cava; Vol.: Volume; PC: Phase contrast; 4D: 4-dimensional; Venc: Flow

encoding velocity; AHA: American Heart Association; MRA: Magnetic

resonance angiography; MDT: Mitral deceleration time; E/A ratio: Ratio of the

mitral early (E) and atrial (A) components of the mitral inflow velocity profile;

CT: Computed tomography; BMI: Body mass index; Prox.: Proximal;

Decs.: Descending; AS: Aortic sinus; STJ: Sinotubular junction; AA: Ascending

Table 46 Normal values for circumferential, longitudinal und radial strain (maximal strain in %; mean±SD) according

to previous publications

Author n Age
(yrs)

Acquis.
method

Estimation
method

Tagged
resol.

FS
(T)

base mid ap sept ant lat inf

Circumferential Strain

Moore (2000)
[98]

31 37 ± 11 SPAMM FindTags 6 mm 1.5 −0.19
±0.04

−0.19
±0.05

−0.22
±0.05

−0.17
±0.03

−0.22
±0.05

−0.22
±0.04

−0.18
±0.05

Cupps (2010)
[89]

50 32.8
±10.6

SPAMM finite element
model

7 mm 1.5 −0.19
±0.04

−0.21
±0.04

−0.20
±0.04

−0.18
±0.03

−0.20
±0.04

−0.23
±0.04

−0.19
±0.04

Del-Canto (2013)
[90]

36 58.8 ±
11.6

SPAMM SinMod 7 mm 1.5 −0.17 ±
0.03

−0.20 ±
0.03

−0.20 ±
0.03

−0.16 ±
0.04

−0.20 ±
0.04

−0.22
±0.04

−0.18 ±
0.04

Venkatesh (2014)
[103]

129 58.8 ±
9.3

SPAMM HARP 7 mm 1.5 −15.1 ±
3.2

−18.0 ±
2.2

−17.9 ±
2.5

Longitudinal Strain

Moore (2000)
[98]

31 37 ± 11 SPAMM FindTags 6 mm 1.5 −0.15
±0.03

−0.15
±0.03

−0.19
±0.04

−0.16
±0.04

−0.16
±0.04

−0.16
±0.04

−0.16
±0.04

Cupps (2010)
[89]

50 32.8
±10.6

SPAMM finite element
model

7 mm 1.5 −0.13
±0.04

−0.15
±0.03

−0.18
±0.05

−0.16
±0.04

0.15
±0.04

−0.15
±0.04

−0.15
±0.05

Radial Strain

Moore (2000)
[98]

31 37 ± 11 SPAMM FindTags 6 mm 1.5 0.45
±0.26

0.42
±0.26

0.48
±0.33

0.41
±0.19

0.54
±0.28

0.46
±0.23

0.38
±0.38

Del-Canto (2013)
[90]

36 58.8 ±
11.6

SPAMM SinMod 7 mm 1.5 0.13 ±
0.04

0.09 ±
0.04

0.12 ±
0.04

0.09
±0.05

0.10
±0.05

0.12
±0.07

0.14
±0.07

Venkatesh (2014)
[103]

129 58.8 ±
9.3

SPAMM HARP 7 mm 1.5 27.4 ±
5.6

24.8 ±
5.3

23.4 ±
6.7

yrs = years; Acquis. = Acquisition; resol. = resolution; FS = field strength; T = Tesla; SPAMM= spatial modulation of the magnetization; mid =mid cavity; ap = apical

level; sept = septal; ant = anterior; lat = lateral; inf = inferior.
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aorta; BCA: Proximal to the origin of the brachiocephalic artery; IR: Isthmic

region; DA: Descending aorta; PWV: Pulse wave velocity; ECV: Extracellular

volume; MOLLI: Modified Look-Locker Inversion Recovery; ShMOLLI: Shortened

Modified Look-Locker Inversion Recovery; SASHA: Saturation Recovery

Single-Shot Acquisition; EQ-CMR: Equilibrium cardiovascular magnetic

resonance; FLASH: Fast low angle shot; G(R)E: Gradient echo; BH: Breath

hold; VAST: Variable sampling of k-space; LL: Look-Locker; Hb: Heart beat;

SAX: Short axis; DENSE: Displacement encoding with stimulated echoes;

SENC: Strain encoding; HARP: Harmonic phase analysis; SinMod: Sine wave

modeling; MESA: Multi-Ethinic Study of Atherosclerosis; Resol: Resolution;

SPAMM: Spatial modulation of the magnetization; mid: Mid cavity;

ap: Apical level; sept: Septal; ant: Anterior; lat: Lateral; inf: Inferior; FS: Field

strength.
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