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NORMAL VIBRATIONS OF SODIUM*) 

By 

Tomiyuki Toy A **) 

(Received September 15, 1(58) 

§ 1. Introduction 

Frequencies of the normal vibrations of a metaP) are usually 
calculated by assuming short range forces alone, taking interactions 
of neighbouring ions only into account. Force constants are introduced 
as parameters, which are adjusted to the observed elastic constants or 
the DEBYE temperature. 

This treatment is not, however, very reliable as exemplified by 
its application to the computation of the frequencies of Cu. JACOBSgNZ

) 

has evaluat~d nine force constants according to the theory of BORN and 
BrcoBlE between nearest, second nearest and third nearest neighbouring 
ions of Cu from the frequency versus wave vector relations determined 
by the temperature-diffuse X-ray scattering. The force constants be­
tween nearest and third nearest neighbours have thus been found of 
the same order of magnitude, indicating the longe range character of 
the forces between ions in metals'). 

The potential between ions in a metal is the sum of (i) the coulomb 
repulsion vc, (ii) the interaction induced by valence electrons VE , inclusive 
of the electron-electron interactions, and (iii) the sum V R of the exchange 
repulsion and VAN DER WAALS attraction. The Vc and VE are those of 
long range force so that all interactions of ions in the distance must 
be reckoned except in the case of the complete shielding. However, 
the compensation by valence electrons for the perturbing ionic field 
accompanying lattice vibrations is not complete, so that the resultant 
perturbing field is of primary importance, as discussed in the foregoing 
paper'). 

The frequencies of lattice vibrations of a metal may be evaluated 
without introducing any arbitrary parameters, if the contributions vc, 
V E and V R to the adiabatic potential are computed directly. The con-

*) Supported in part by the Grant in Aid of the Fundamental Research of the Ministry 
of Education, 

**) Research Institute for Catalysis, Hokkaido University, Sapporo. 
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tribution Vc may be computed by the EWALD'S methodS) and that Vn , 

which decreases very rapidly with distance, by taking only the neigh­
bouring ions into account. The contribution VE has been derived in the 
foregoing paper') by the extention of the HARTREE-FoCK method to the 
electron-lattice vibration intera.ction. The frequencies of the normal 
vibrations of Na which propagate along the three principal directions 
are thus calculated in the present paper and compared with those from 
usual calculations mentioned above. The appropriate elastic constants 
at the long wave-length limit are found coincident with those derived 
by WWNER, SEITZ6

) and FUCHS'), while the formulation is verified for 
short wave-length. 

§ 2. The Equations for the Normal Modes 
and Frequencies 

The displacement uz(uzx, UZy , uzz) of an ion from the equilibrium 
position R~, accompanying the lattice vibration of wave number q, is 
given as 

(2.1) 

where aq is the amplitude of the wave, eq its polarization vector and 
N is the number of ions in unit volume. The adiabatic potential a$ 
for the vibration is 

a$ = ~~, LJ {v(Rz- RI')} (uzx-UI''') (UZy-uI'Y)' (2.2) 
4 Z'TI' xy xy 

The v(Rz-Rz') in Eq. (2.2) is the interaction potential between ions at 
positions Rz and RI" which consist of three parts, i.e., 

where vE , Vc and Vn are defined in § 1, and the subscripts xy, etc. of 
{v(R=(X. Y, Z))}XY signify partial differential coefficient a2vjaXaY, etc. 
The dipole-dipole or dipole-quadrupole interacions between ion-cores are 
neglected in comparison with the exchange repulsions. 

Defining vE(Rz=O)+vc(Rz=O) and vn(Rz=O) as 

~ {vE(Rz)+vc(Rz)ty = 0 , 

LJ (vn CRz)} = 0 , 
Z "'6 

we have from Eq. (2.2) 
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or, substituting Eq. (2.1) for U z into Eq. (2.4), 

(J$= a£E+a..ffC+allR 

~ wE' _ _ 1 1 12 "" {[ JE [ JE*} U~ - - aq L.J xy + xy eq",eqV ' 
2 xv 

where coupling coefficients [Xy]E, etc., are given as, 

[xyJ' = ~ {vE(Rz)tv exp (iqRz) , 

[xYl =, ~ {vc(Rz)Ly exp (iqR t ) , 

[xyJR = ~ {vR(R z)} exp (iqRz) • 
1 xv' 

(2.4) 

(2.5) 

(2.5E) 

(2.5C) 

(2.5R) 

(2.6E) 

(2.6C) 

(2.6R) 

For a crystal of cubic symmetry, [Xy]E=[xy]E", etc., and the equations 
for the normal modes of vibration of wave number vector q are given 
from Eq. (2.5) as (M: the atomic mass) 

[xxJeq", + [xy]eqV + [xz]eqZ = -Mo/eq", , 

[yxleqx + [yy]eqy + [yzJeqZ = -Mo/eqy , 

[zx]eqX + [zy]eqV + [zz]eq • = -Mo/eq• , 

(2.7) 

where [xY]=[Xy]E+[xy]C+[xy]R and the circular frequencies ware given 

by the secular equation 

[xx]+Mo/ 

[xy] 

[xz] 

[yx] 
[yy] +Mu/ 

[yz] 

[zx] 
[zy] = 0 . (2.8) 

[zz] + Mo/ 

Eqs. (2. 7) and (2.8) are simplified by the geometrical symmetry for the 
waves propagating along the principal directions, i. e., q =(q, 0, 0), q = 
(q, q, 0) and q =(q, q, q). 

(i) (q, 0, 0); inthis case [yy]=[zz] and [Xy]=[yz]=[zx]=O. The modes 
and their frequencies are given as, 

(L) eq = (1,0,0) , Mw2 = -[xx] , 
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(TJ eq = (0,1,0) , Mal = -[yy] , 

(T.) eq = (0,0,1) , Mal = -[yy] . (2.9T2) 

(ii) (q, q, 0); [xx] = [yy]. [xz] =[yz] =0, and hence, 

(L) eq =(1/l2. 1/12,0), Mw'= -f[xx]+[xy]}, (2.10L) 

(T,) eq =(II/2:, -1//2,0), Mai= -{[xx]-[xy]} , (2. lOT,) 

(T.) eq = (0, 0, 1) , Mw' = - [zz]. (2. lOT.) 

(iii) (q, q, q); this case is symmetrical in x, y, z. Therefore it follows 
that [xx]=[yy]=[zz] and [xy] =[yz] = [zx], and hence 

(L) eq =(l/13, 1/l3, (1/l3), Mw'= -{[xx] + 2 [xy]} , (2.11L) 

(T,) eq = (1/12, -1//2,0),· Mw2 = -{[xx]- [xy]}, (2. llT,) 

(T2 ) eq =(1/l6,l/ls, -2//6), Mw2 =-{[xx]-[xy]}. (2. 11T2) 

The transversal modes T, and T2 for q=(q,O,O) and q=(q,q,q) degenerate 
as readily seen from the symmetry properties. 

§ 3. The Coupling Coefficients [xy] 

The coefficients [xy] are given explicitly in this section. The [xyy 
is given immediately from Eqs. (4.11), (5.1), (7.3), (7.9) and (7.10) in the 
preceding paper4b

) for the contribution from the valence electrons to 
the adiabatic potential, as 

[xyJlil = [xy]M + [xy]EtI , (3.1) 

[Xy]1L'I = Ne2 
{ + ~7r a",y} , (3. lEI) 

[xy]liU = Ne2 f -47r I1 (q",+K"",)(qy+K"Y)G(t)" F(tt'/(t)l , (3.1 Ell) 
l "lq+K,,1 J 

where KII(K""" K"y. K"e) is the reciprocal lattice vector and t= lq + KIlI/2kFt 
"Ii' being the wave number vector of an electron at the FERm surface. 
With the wave function 

if' (k) = Uo(r) exp (ikr) 

of an electron of wave number vector k and of its HARTREE energy 
Eo(k) = Eo+Cli!/2m)k". the functions G(t), F(t) and I(t) are given as dis­
cussed in. the preceding paper4b

\ 
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G (f) -.: {1 +T (V(r.)-Eo) ~ t"lJ g (2kF r. t) , 
PC. 

F(t) = {(D./D)(2/P) t"+ (1-Bt")i(t)} , 

i ft) = .l + 1-t" 10 Il+t I 
'I 2 4t g I-t ' 

(3.2) 

(3.3) 

(3.4) 

where T=U:(r.), p=tfkFln:co, Co the FERMI energy in the HARTREE approxi­
mation, g(x)=3 (sin x-x cosx)/x', V(r.) the HARTREE potential energy at 
the surface of atomic sphere of radius r .. D or Do the density of states 
with or without the exchange and correlation energies taken into 
account, and B, which allows for the effect of the exchange and cor­
relation interactions on the screening field, is assumed to be independent 
of q+K". The function G(t) should vanish at K,,(h~O), but that given 
above is not vanish, though its value at t= IKllol/2kF is so small (-0.0005) 
that we may disregard the deviations. 

The [xyT is readily formulated by the EWALD'S methodS) with the 
result, 

where 

and 

with 

and 

{ 

3~6n s.azy} for (b. c. c.) 

[XYT=Ntf[ ~G:<y+H:<y+ J, 
_B_ s' a i 31 n :<y for ( . c. c.) 

2 fez 
(jJ(e,t) = 1- In ° e-e'a,e. 

-JH1-

(b. c. c.) 
(i. c. c.) 

(3.5) 
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In the above equations, the lattice point vector RI , the recipL'ocallattice 
point vector K" and the wave number vector q are expressed as (2ro: 
the lattice constant) 

Rl = ro (lx, ly, l.), l .ll' lO l~ (lx, ly, l. are all odd or all = y x+ y+ ., 
even for b. c. c.) 

«hx + hy + h.) is even for b. c. c.) 

and 

q = 17:/ro (iix, qy, q.) , 

respectively. The constant e should be chosen so that the two series 
~ and ~' rapidly converge. 
" 10,0 

The VR is given, according to BORN and MA YER"\ 

(3.6) 

where b=lO-l' erg., P=O.345·l0-"cm, Cu =1.25 and r B =O.875·l0-"cm. The 
[xy]R is eXPressed from Eqs. (3.6) and (2.6R), as 

[xy]R = Cub ~'exp{(2rB-Rz)/P} . fl--L OXy 
p Zo,o Rz 

+ (~+~) XzYzl • {exp(iqRz)-l}. 
P Rz R~ J 

(3.7) 

By the definitions (2.3a) and (2.3b), the [xyJ's have to satisfy the 
equations 

(3.8) 

and 

lim [xyJR = 0, (3.9) 
q->O 

as actually the case according to Eqs. (3.1), (3.5) and (3.7), since 

lim [xy]E = Ne'J +~a 4-17: '" K"xK"y) 
.l 3 lIJy 7: IK"I' J ' 

neglecting the contributions from G(t= K,,/2kF), h:3;:O, which do not vanish 
because of the approximate formulation, and 

lim [xyJc = Ne2 f
l
- ~ aXY + 417: ~ 

3 " 
Eq. (3.9) is apparent from Eq. (3.7). 
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§ 4. Numerical Results 

Frequencies are calculated as functions of wave number vector by 
Eqs. (2.8), (2.9), (2.10), (2.11),(3.1), (3.5) and (3.7) along the (100), (110), and 
(111) directions. The results are given in Table 1, II, and III, in which 
C, R, EI, Ell or T means the contribution from [Xy)C, [xyJR, [xyyr, [xyJEII, 
or their total [xy] in units of Ne2jM respectively, and the circular 
frequency (I) is given in the last column in units of (Ne2jM).I/2 The column 
h~O of Ell gives the contributions from Umklapp processes satisfying 
the condition iq+hKj<jKlloj. For Na. 7=1. V(r8)-E~=0.08eV, (0= 

3.17eV, DjDo=0.90, B=1.25 and r8=3.96 BOHR radius'). 
The contributions from exchange repulsions are about 10% of the 

adiabatic potentials as shown in the table, and negative for the modes 
T, of (q, q, 0), from which we may conclude that the b. c. c. structure 

TABLE I. Frequencies w versus wave number vector q=(n/ro) (q,O,O) 

The Cor R denotes the contributions from the coulomb repulsion between 
ions (Eq. (3.5)) or those from the exchange repulsions between ion-cores 
(Eq. (3.7)). The El or EII is the values of Eq. (3.1 El) or (Eq. 3.1 EII), 
representing the electron-ion and electron-electron interactions. and 
1'=C+R+El+EII. The units are (Ne2/M)=1.54x1026/sec2. The circular 
frequencies are given in the last column in units of (Ne2

/ M)l/2 = 1.24 x 
10'3/sec. 

Longitudinal branch (L), eq = (1,0, 0). 

ij C R El 

0.2 7.791 0.044 4.189 

0.4 6.062 0.142 4.189 

0.6 3.501 0.233 4.189 

0.8 1.041 0.282 4.189 

1.0 0 0.295 4.189 

I 
! 
I 

! 

EII I h~O 
h=O i(Umklapp) 

- 11.523 - 0.050 

- 8.800 - 0.190 

- 5.430 - 0.239 

- 2.522 - 0.223 

- 0.798 - 0.798 

Transversal branch (T, or T2), eq = (0, 1, 0) or eq = (0, o. 1). 

Ell I g C R EI i h~O 
h=O (Umklapp) 

0.2 - 3.895 0.027 4.189 0 - 0.039 

0.4 - 3.031 0.098 4.189 0 - 0.263 

0.6 - 1.750 0.189 4.189 0 - 0.748 

0.8 - 0.521 0.265 4.189 0 - 1.330 

1.0 0 0.295 4.189 0 - 1.596 

-189-

T 

0.451 0.67 

1.403 1.18 

2.252 1.50 

2.738 1.65 

2.888 1.70 

T CIJ 

0.282 0.53 

0.993 1.00 

1.880 1.37 

2.603 1.61 

2.888 1.70 
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is unstable for metals with large exchange repulsion. It is interesting; 
to note that [xyY'II contributes appreciably to the transversal modes of 
shorter wave-length through Umklapp processes. 

The elastic constants may be determined from the ratio of the 
frequency and the wave number in th·3 long wave-length limit; i. e. 
Cll or c .. from the ratio of the L or T, branch of (q, 0, 0), and Cll -C'2 
from the ratio of the T, branch of (q, q, 0). The Cll or the compressibility 
IC= {cll -(2/3) (Cll-Cl,)}-l thus determined coincides with that given by 
the theory of WIGNER and SEITZ6

), as we have seen in ~§6 and 7 of the 
foregoing paper. 

TABLE II. Frequencies w versus wave number vector (q = r./rol (q, q, 0) 

Longitudinal branch (L), el =(1/,12, 1/,1 2-,0). 

Ell 
ij C R EI 

h=O I 
h~O 

(U kl 
T OJ 

I m apP)i 

0.1 8.216 0.034 

I 

4.189 - 12.035 - 0.043 0.351 
I 

0.60 

0.2 7.791 0.121 4.189 - 10.548 -- 0.270 1.283 1.13 

0.3 7.256 0.230 

I 
4.189 , - 8.401 - 0.861 2.413 

I 
1.55 

0.4 6.818 0.318 4.189 - 6.003 - 2.006 3.312 I 1.82 

0.5 6.649 0.351 
I 

4.189 - 3.766 - 3.766 3.657 I 1.91 
--" -- ----- - . 

Transversal branch (TI ). eq = (1//2. 1//2,0). 

c R EI Ell I h-O h~O-
- I (Umklapp) 

T w 

I 

0.1 -- 4.170 - 0.004 4.189 0 - 0.009 0.005 0.08 

0.2 - 4.118 - 0.016 4.189 0 - 0.029 0.026 0.16 

0.3 - 4.051 - 0.030 4.189 0 - 0.062 0.046 0.21 

0.4 - 3.994 - 0.042 4.189 0 - 0.096 0.057 0.24 

--=-=-

I 0.5 - 3.972 
i 

- 0.046 4.189 0 - 0.111 
I I 

0.060 0.245 

Transversal branch (T,). eq = (0,0,1) 

c R EI 
Ell . I 

_ \ h~O I T w 

-

0.1 - 4.047 0.013 4.189 0 - 0.018 0.137 0.37 

0.2 - 3.673 0.048 4.189 0 - 0.058 0.506 0.71 

0.3 -- 3.205 0.091 4.189 0 - 0.124 0.951 0.98 

0.4 - 2.824 0.125 4.189 0 - 0.192 

I 
1.298 1.14 

0.5 -2.677 0.139 4.189 0 ~ 0.222 1.429 1.20 
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TABLE III. Frequencies (J) versus wave number vector q=(11/ro)(ij,·q,ij,) 

Longitudinal branch (L), eq = (,;~, 7~' ,;~). 

c R EI Ell I 
I 

h"==O 
h=O (Umklapp) i 

T w 

--

I 
-11.776 I 

I 

0.1 8.178 0.061 4.189 - 0.062 
! 

0.590 0.72 

0.2 7.433 0.196 4.189 - 9.544 I - 0.322 
I 

1.952 1.40 

0.3 5.826 0.300 4.189 - 6.786 I - 0.697 I 2.832 1.68 

0.4 3.206 0.296 4.189 - 3.975 , - 0.879 2.837 1.685 
I 

0.5 0 0.190 4.189 - 1.832 
I 

- 0.611 1.942 1.39 
~ 

Transversal branch (T! or T 2), eq = (,;~. - ,;~ , 0) or (/6-' ,;~. - /6) . 

q C R EI EII I h~O 
h=O i(Umklapp) 

T w 

0.1 - 4.089 0.007 4.189 0 - 0.0215 0.0855 I 0.29 

0.2 - 3.716 0.029 4.189 0 - 0.164 0.338 0.58 

0.3 - 2.913 0.071 4.189 0 - 0.576 0.771 0.88 

0.4 - 1.603 0.129 4.189 0 - 1.373 1.345 1.16 

0.5 0 0.190 4.189 0 - 2.443 1.942 1.39 

The c" is derived by expanding the coefficient [yyJ of (q,O,O) with 
respect to. q2. The constant term (signified by subscript 0) in the 
expansion is 

[yy Jo = [yy J~ + [yy]f + [yy J~ 

= Ne2 [_ 4rr + f -4rr LJ h~ exp (_ ;::2 h2) 
_ 3 l h h2 4S2 

+4 ~,(- f(l)+g(l)~) + 1~_ s21 +oJ 
1,<0 l2 31n j 

= Ne2f- 4rr + 4rrJ = 0 
3 3 ' 

and the coefficient of q2 (signified with subs~ript 2) 

[YY]2 = [yy]f + [yy Jf + [yy J~ 

with 

[yylf = 0, 

and 
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[yyJ = Ne'[4rr Ii h~ (4 h'x --~+~h;-~ 
"h' h' h' 810" 4c' 

+ rr' h!)exp(-~h')-2rr' Ii'fl-f(l)+g(l)l~jll~J (4.2C) 
10' h' 4c' '''0 l' 

The c" is now given as, 

which is exactly the same expression as given by FucHs7). In the case 
of alkali metals, V(rs)- Eo is very small in general, so that [yy]{} is 
nearly zero, which justifies the assumption made by FUCHS in his 

o 0.2 0.4 0.6 

Iqj in units of 1rjr, 

Fig. 1 Circular frequencies (() versus wave number 
vector q = rr/ro eg, 0, 0). 
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derivation of the shear moduli. In the case of noble metals (Cu, Ag 
and Au), V(rs)-Eo is of the order of 3-4 eV and the coulomb term 
[yy];' is compensated a good deal by [YY]f, as assumed by ZENEH and 
HUNTINGTON.'O) 

The Cl1 -C 12 is given similarly as 

Nr~ { J Cl1 -C'2 = - ~2- [XX]2-[XY]2 , 
IT 

where [XX]2 or [XY]2 is the coefficient of q2 in the expansion of [xx] or 
[xy] of (q, q, 0). The result is the same as that obtained by FucHH, as 
readily verified similarly as in the case of C". 

Figs. I, II and III show the results in comparison with the cal­
culations by BAUER") and by BHATIA'2'. BAUER has assumed central forces 
and introduced force constants a and r corresponding to the interactions 

o 

2.4 

2.0 __ : This paper 

1.6 

1.2 

0.8 

0.141 0.283 0.424 0.566 0.707 

Iqi in units of n/ro 

Fig. 2 Circular frequencies w versus 
wave number vector q = rr/ro 
(q,q, 0). 

-
~ 
~ 
'S 
2 . ., 
" .S 

o 

2.4 

2.0 

1.6 

1.2 

0.8 

-- : This paper 

---- : Bauer 

---: Bhatia 

0.173 0.346 0.520 0.692 

q in units of rr/ro 

Fig. 3 Circular frequencies OJ versus 
wave number vector q = rr!ro 
(q,q, q). 
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between the nearest and second nearest neighours, which are deter­
mined as a=roG" and r =a/4. The dispersion relations by BAUER are 
given by dotted line. BHATIA, on the other hand, has taken into account 
in a simple way the effects of valence electrons on the ionic motion, 
but only the interactions between nearest neighbours. Three para­
meters introduced was adjusted by the three independent elastic con­
stants G, ,, G'2 and c... Broken lines in Figs. show the results by BHATIA. 

§ 5. Verification of the Formulation for 
Short Wave-Length 

We will now examine the validity of our formulation for shorter 
wave-length. For the mode q=(rr/r" 0, 0), eq =(l,O,O) or q=(O,rr/ro,O), 
eq == (1,0, 0) in the metals of b. c. c. structure, each ion is displaced alter­
nately by +u or -u in the direction of x-axis from the equilibrium 

_1 
position, where u=N 2(aq +a:) by Eq. (1). The contribution from the 
coulomb repulsions of ions vanishes as seen in Table I, and those of 
valence electrons to the potential for the vibration may be calculated 
by cellur method l3>, admitting that the coulomb energy of valence 
electrons is approximately balanced by the exchange and correlation 
energies just as in perfect crystals. The circular frequency is given as 

Mol = 28 (u)/u2 + (increase of the exchange repulsions), (5.1) 

where 8 (u) is the perturbing energy when an ion is displaced from the 
centre of the atomic sphere, given, by taking the boundary condition 
as (d'f(r)/dr)r~r. = 0, as 

2c(u)/u! = (l/rs)(dVr/dr)r~,.s -(2m/'Ii;) {vr(rs)--1f;' ° r 
= Ne2 {4rr/3-(2rr/3)(rS /aHY(e2 /2aHt2(Vr (rs)- 1f;' 0)2} (5. 2) 

where vr(r) (_e 2 /r for r :Grs) is the potential of an ion, and 1f;' 0 is the 
energy of an electron with an ion at the centre of the atomic sphere 
and the same boundary condition as above. For Na, rs=3.96aH and 
VI(rs)-1f;' = 1.48 eV, which give by Eqs. (5.1) and (5.2), 

w = 1.73 (Ne2/My/2 

in good agreement with w= 1.70 (Ne2/My/2 in Table 1. 
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