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NORMAL VIBRATIONS OF SODIUM™

By

Tomiyuki Toya*™
(Received September 15, 1958)

§1. Introduction

Frequencies of the normal vibrations of a metzl® are usually
calculated by assuming short range forces alone, taking interactions
of neighbouring ions only into aceount. TForce constants are introduced
as parameters, which are adjusted to the observed elastic constants or
the DrBvE temperature.

This treatment is not, however, very reliable as exemplified by
its application to the computation of the frequencies of Cu. Jacossex?
has evaluated nine force constants according to the theory of Bor~ and
Bronie between nearest, second nearest and third nearest neighbouring
ions of Cu from the frequency versus wave vector relations determined
by the temperature-diffuse X-ray scattering. The force constants be-
tween nearest and third nearest neighbours have thus been found of
the same order of magnitude, indicating the longe range character of
the forces between ions in metals®.

The potential between ions in a metal is the sum of (i) the coulomb
repulsion v, (ii) the interaction induced by valence electrons v, inclusive
of the electron-eléctron interactions, and (iii) the sum v, of the exchange
repulsion and van peEr WaAars attraction. The v, and v, are those of
long range foree so that all interaetions of ions in the distance must
be reckoned except in the case of the complete shielding. However,
the compensation by valence electrons for the perturbing ionic field
accompanying lattice vibrations is not complete, so that the resultant
perturbing field is of primary importance, as discussed in the foregoing
paper®,

The frequencies of lattice vibrations of a metal may be evaluated
without introducing any arbitrary parameters, if the contributions v,
vz and v, to the adiabatic potential are computed directly. The con-
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tribution v, may be computed by the Ewarp’s method” and that vp,
which decreases very rapidly with distance, by taking only the neigh-
bouring ions into account. The contribution vz has been derived in the
foregoing paper® by the extention of the HarTree-Fock method to the
electron-lattice vibration interaction, The frequencies of the normal
vibrations of Na which propagate along the three principal directions
are thus calculated in the present paper and compared with those from
usual caleulations mentioned above. The appropriate elastic constants
at the long wave-length limit are found coincident with those derived
by Wicener, Serrz® and Fucas”, while the formulation is verified for

short wave-length.

$2. The Equations for the Normal Modes
and Frequencies

The displacement u,(u,, %, %,,) of an ion from the equilibrium
position R!, accompanying the lattice vibration of wave number q, is
given as

uﬁ:N*%d%emnmeﬂﬁenm"mRm, @.1)

where a, is the amplitude of the wave, e, its polarization vector and
N is the number of ions in unit volume. The adiabatic potential s.&
for the vibration is

O = 1L 22 {U(Rz_ Rz')} (Ure—Urz) (Uay—Uiry)- (2.2)

=l 2y zy

The v(R;—R,) in Eq. (2.2) is the interaction potential between ions at
positions R, and R,, which consist of three parts, i.e,

V= ’UE+1)C+’UR s

where v, v; and v, are defined in §1, and the subscripts zy, efc. of
{v(R=(X, Y, 2))},, signify partial differential coefficient 5v/3X3Y, eic.
The dipole-dipole or dipole-quadrupole interacions between ion-cores are
neglected in comparison with the exchange repulsions.

Defining v5;(R;=0)+v;(R,=0) and vx(R,=0) as

2 {ox(R)+2(R)],, = 0, (2. 3a)
2R}, =0, 2. 3b)

we have from Eq. (2.2)
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b = z} D o R—R) sty 2.4

1114

or, substituting Eq. (2.1) for u,; into Eq. (2.4),

0 = u?E+ b 2L N 72 (2.5)

S = — — Iaqlz { [20]” +[29]™ | €0uer - (@.55)
0.7 =~ la,f* T {[al + (=)} el (2.5C)
T = — —2— @] 2 {mw)" + (2]} enceun (2.5F)

where coupling coefficients [zy]” etc., are given as,

[24]" = 2 {vs(R,)}, exp (iaR,), (2. 6E)
)’ = 2 {#e(R)} exp (iaRy), - 2.60)
fxy]® = ; {”k(Rz)}weXp (qR,) . (2.6R)

For a crystal of cubic symmetry, [zy]?=[2y]", efc., and the equations
for the normal modes of vibration of wave number vector g are given
from Eq. (2.5) as (M : the atomic mass)

[xx]e, + [zyle,, + [x2]e, = —Mo'e,, ,
[?/CL‘] € + [7/?/] €y T [yz] €y = —“szeqy ’ (2. 7)
[zx]e,. + [2y]e,, + [22]e, = —Mo'e, ,

where [xy]=[xy]"+[zy]°+[2y]* and the circular frequencies » are given

by the secular equation

[zz] + Mo [yx] [2x] .
[zy] [yy]l + Mo*  [2y] =0. (2.8)
[x2] [vz] [2z]+ Mo

Eqs. (2.7) and (2.8) are simplified by the geometrical symmetry for the
waves propagating along the principal directions, i.e., q=(q,0,0), a=

(¢.4,0) and q=(g, ¢, )
(i) (g,0,0); in this case [yy]=[2z] and [ay]=[yz]=[2z]=0. The modes

and their frequencies are given as,
(L) e, =(1,0,0), Mo*= —[ax], (2.9L)
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(T) e,=(0,1,0, Mo = —[p], 2.97T)

(T)) e, =(0,0,1), M= —[yy]. (2.9T,)
@ @ 0); [zx]=[wy], [x2]=[yz]=0, and hence,

(L) e=@1/2,1//2,0), Mo'=—{[z]+[zy)}, (. 10L)

T) e=1/N2, ~1/2,0), Mo*= —{[zx]—[ay)}, (2 10T)

T) &=00,0,1), Mo = —[22]. (2.10T.)

(iii) (g,q,q); this case is symmetrical in z,y,2. Therefore it follows
that [zx]=[yy]=[22] and [ay]=[vz]=[2x], and hence

(L) e=Q1//3,1/3, AN3), Mw*=—{[zz]+2[xy]}, (2.11L)
T) e=A/2, —1//2,0), - Mo'=—{[zz]—[ay]}, (2.11T))
(T2) e,=(UN6,1//6, —2//6), M*=—{[xz]—[ay]} . (2.11T)
The transversal modes T, and 7, for a=(g,0,0)and qz(d, q,9) degenerate
as readily seen from the symmetry properties.
§3. The Coupling Coeflicients [xy]

The coefficients [zy] are given explicitly in this section. The [xy])®
is given immediately from Egs. (4.11), (6.1), (7.3), (7.9) and (7.10) in the
preceding paper*® for the contribution from the valence electrons to
the adiabatic potential, as

[2y]” = [ay]™ +[zy]™ , 3.1)

[2y]™ = Ne? { + ig«a,y} , 8.1E1)

ar _ e f - (@ Koo} (@y + Koy) v e Y\
[y Ne l 4 %} a K. G@EPF(t) f(t)f , (8.1 ElI)

where K,(K,., K,,, K,,) is the reciprocal lattice vector and t=|q+K,|/2k,,
kr being the wave number vector of an electron at the Ferwr surface.
With the wave function

¢ (k) = U,(r) exp (ikr) ,
of an electron of wave number vector k and of its HArTREE energy
E,(k)= E,+(%#*/2m)k*, the functions G(t), F(¢) and f(f) are given as dis-
cussed in the preceding paper®,
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G0 = {L+7(Ve)—E) ;"c £] 9@y ), (3.2

F@) = {(D/D)@/) #+1—BO) f®)} , 3.3)
and

f@) = %Jr 14:"2 log }i: I 3. 4)

where 7=U;(r,), B=€ks/nls ¢, the FErMI energy in the HARTREE approxi-
mation, g(x)=3(sinx—x cosx)/z’, V(r,) the HarTrer potential energy at
the surface of atomic sphere of radius r,, D or D, the density of states
with or without the exchange and correlation energies taken into
account, and B, which allows for the effect of the exchange and cor-
relation interactions on the screening field, is assumed to be independent
of q+K,. The function G(f) should vanish at K,(h2c0), but that given
above is not vanish, though its value at t=|K,,,|/2ks is so small (—~0.0005)
that we may disregard the deviations.

The [zy]° is readily formulated by the Ewarp’s method® with the
result,

31/6:636:? for (b.c.c.)
[w = Ne* [—G,,+H,_,,+ 8" , 3.5)
3’/;83% for (f.c.c.)
where
— (h.+q.)h, +d,) [ 7 v
G = 4r 2] bh+af Tl 4% (h+a)
and
— 4 svf_ Ll = (b.c.c)
sz—zjz%[ F()on+9()=r-cosz (@, D] oo
with
_ 2 e o(e)
F)= 7? € I + r
g() = /i? ee™ + 7% e %:E + ~*—3¢l(f'll .
and /
1 i LN
o(el) =1 /?L et
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In the above equations, the lattice point vector R,, the reciprocal lattice
point vector K, and the wave number vector q are expressed as (2r,:
the lattice constant)

K, = n/r,(h,, by, h,) , ((ho+h,+h,) is even for b.c.c)
and
qQ = 7/To(Tas Tys 02) »
respectively. The constant & should be chosen so that the two series
%} and 20’ rapidly converge.

The v, is given, according to Borx and Maver®,
va(R) = Cub-exp{@2r,—R)P}, (3.6)

where b=10""erg., £=0.345-10"%*cm, C,,=1.25 and r;=0.875-10"*cm. The
[zy]F is expressed from Eqgs. (8.6) and (2.6R), as

R __ Cnb ’ 1 .
[xy] _ngn exp{(ZrB—Rz)/P} y {— E, Ouy

XY, :
* <%+"11%’> R - {expaR) -1} @7

By the definitions (2.8a) and (2.8b), the [zy]’s have to satisfy the
equations

1:51 { [y]”+ [xy}”-} =0 8.8)

and
lim [2y]® = 0, (3.9
Q>0

as actually the case according to Egs. (3.1), (3.5) and (3.7), since

lim [zy)* = Ne’f+ilf_5m'y4_ KKy ) '
N g A R

neglecting the contributions from G@#=K,/2k,), h=-0, which do not vanish
because of the approximate formulgtion, and

lim C:N’I——é_n_gzy_f_‘l Kthhy] i
S B Rk Y

Eq. (3.9) is apparent from Eq. (3.7).
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§4. Numerical Results

Frequencies are calculated as functions of wave number vector by
Eaqs. (2.8), (2.9), (2.10), (2.11), (3.1), (3.5) and (3.7) along the (100), (110), and
(111) directions. The results are given in Table I, II, and III, in which
C, R, El, EIl or T means the contribution from [zy]’, [xy)%, [zy]*, [xy]™,
or their total [zy] in units of Ne?/M respectively, and the circular
frequency o is given in the last column in units of (Ne*/M)."”* The column
h20 of E'II gives the contributions from Umklapp processes satisfying
the condition |q+"K|<|K,.|. For Na, r=1, V(r)—E;=0.08eV, ¢, =
3.17eV, D/D,=0.90, B=1.25 and r,==3.96 Bour radius®,

The contributions from exchange repulsions are about 109 of the
adiabatic potentials as shown in the table, and negative for the modes
T, of (g.q,0), from which we may conclude that the b.c.c. structure

TasLe 1. Frequencies o versus wave number vector q=(n/r,) (4,0, 0)

The C or R denotes the contributions from the coulomb repulsion between
ions (Eq. (3.5)) or those from the exchange repulsions between ion-cores
(Eq. (3.7)). The ET or EII is the values of Eq. (3.1 EI) or (Eq. 3.1 EII),
representing the electron-ion and electron-electron interactions, and
T=C+-R+-EI4-EII The units are (Ne?/ M)=1.54x10%/sec?. The circular
frequencies are given in the last column in units of (Ne¥M)/?=1.24x
10'%/sec.
Longitudinal branch (L), e, = (1,0, 0).

_ EII
q C R EI b= h30 T w
=0 (Umklapp)

0.2 7.791 0.044 4.189 — 11.523 | — 0.050 0.451 0.67
0.4 6.062 0.142 4,189 — 8.800 | —0.190 1.403 1.18
0.6 3.501 0.233 4.189 — 5.430 | — 0.239 2.252 1.50
0.8 1.041 0.282 4.189 — 2522 | — 0.223 2.738 1.65
1.0 0 0.295 4.189 — 0.798 | — 0.798 2.888 1.70

Transversal branch (T: or T%), eq = (0,1,0) or eq = (0,0.1).

EIT
q C R Er e 720 T »
=0 (Umiklapp)
0.2 — 3.895 0.027 4.189 0 — 0.039 0.282 0.53
0.4 — 3.031 0.098 4,189 0 — 0.263 0.993 1.00
0.6 — 1.750 0.189 4.189 0 -~ 0.748 1.880 1.37
0.8 — 0.621 0.265 4.189 0 — 1.330 2.603 1.61
1.0 0 0.295 4,189 0 — 1.596 2.888 1.70
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is unstable for metals with large exchange repulsion. It is interesting
to note that [xy]* contributes appreciably to the transversal modes of
shorter wave-length through Umklapp processes.

The elastic constants may be determined from the ratio of the
frequency and the wave number in the long wave-length limit; 7.e.
¢, or ¢, from the ratio of the L or T, branch of (¢,0,0), and ¢,—c,
from the ratio of the T, branch of (g,q,0). The ¢,; or the compressibility
t={c,—(2/8) (cn,—cy)} ' thus determined coincides with that given by
the theory of Wiener and Sertz®, as we have ssen in §§6 and 7 of the
foregoing paper.

TasLE II. Frequencies w versus wave number vector (q=r/7,)(q, 4, 0}

Longitudinal branch (L), e; =(1/¥2, 1/¥'2, 0).

Bl |
q c E ET h—0 R0 T ®
| ) 7 (Umklapp); B
0.1 8.216 0.034 4.189 — 12.035 | — 0.043 0.351 0.60
0.2 7.791 0.121 4.189 — 10.548 - 0.270 1.283 1.13
0.3 | 7.256 0.230 4,189 — 8.401 — 0.861 2.413 1.55
0.4 6.818 0.318 4.189 — 6.003 | — 2.006 3.312 1.82
0.5 6.649 0.351 4,189 — 3.766 — 3.766 3.657 1.91
Transversal branch (TW), eq = (1/V' 2, 1/VZ, O}
EIr
q c R i EI T o
| =0 | mitapp)
0.1 — 4.170 — 0.004 4.189 0 — 0.009 0.005 0.03
0.2 — 4.118 — 0.016 4.189 Q — 0.029 0.026 0.16
0.3 — 4.051 — 0.030 4,189 0 — 0.062 0.046 0.21
0.4 — 3.994 — 0.042 4.189 0 — 0.096 0.057 0.24
0.5 — 3.972 — 0.046 4.189 0 — 0.111 0.060 0.245
Transversal branch (7%, eq = (0,0,1).
_ ’ EIT i
q c R EI F<0 T o
P70 (Wmkiapp)|

0.1 — 4.047 0.013 4.189 0 — 0.018 0.137 0.37
0.2 — 3.673 0.048 4,189 0 — 0.058 0.506 0.71
0.3 - 3.205 0.091 4.189 0 — 0.124 0.951 0.98
0.4 — 2.824 0.125 4.189 0 — 0.192 1.298 1.14
0.5 — 2.677 0.139 4.189 0 =~ 0.222 1.429 1.20
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TasLe III. Frequencies w versus wave number vector q={(r/7,)(q, q, §,)

. . 1 1 1
Longitudinal branch (L), e; = <ﬁ 73 ﬁ) .

q C R Er P ’ =0 I T ( w
(Umklapp) |

0.1 8.178 0.061 4.189 — 11.776 ‘ — 0.062 ‘J 0.590 0.72

0.2 7.433 0.196 4.189 — 9.544 l — 0.322 )‘ 1.952 1.40

0.3 5.826 0.300 4.189 — 6.786 ‘ —0.697 | 2.832 1.68

04 3.206 0.296 4.189 — 3975 |~ 0.879 ' 2.837 1.685

0.5 0 0.190 4.189 — 1.832 ‘ — 0.611 1.942 1.39

1 1
Transversal branch (7} or T%), eq = (ﬁ’ V2 0) or (ﬁ, 7%, _17—?6:) .

_ EIT
q C R Er b0 t 70 T 1 w
’( U mklapp)’ |

01 | — 4.089 0.007 4189 0o | —00215| 0.0855 *‘ 0.29
0.2 | —3.716 0.029 4189 0 — 0.164 0.338 | 058
03 | —2913 0.071 4.189 0o | —057 0771 | 088
04 | — 1603 0.129 4189 0 —13713 | 1385 ‘ L16
05 0 0.190 4189 0 \ — 2.443 i 1982 | 139

The ¢, is derived by expanding the coefficient [yy] of (¢,0,0) with
respect to ¢°. The constant term (signified by subseript 0) in the
expansion is

Cyy)s = [wy)e+ [yy ]S+ [yy)?

— Ne? _£+I~4 h’?/
Ne [ 3 l n§ : exp( )
. g B 16
+4 > —f{ +——c el 40
z(f<)+g<> )5 J
4‘1'
:N + — = O ’ .
el_ . J 4.1)
and the coefficient of ¢* (signified with subscript 2)
[vy). = [yy]7+ [yl + [wy)F 4.2)
with
[yl =0, (4.2E)
and

— 191 —



Journal of the Research Institute for Cotalysis

[kl = Ne[ar 3y 0 (4.0 Ly 2 20

R\ R R 8& © 4e’
=~ h

—-I‘i 2\ Dn? /!_ ) li] 2] .
e (= )2 FW+gth g k| @.20)

The ¢, is now given as,

_ Nnj

TL_Z

Cy —

{lwlf + )}

which is exactly the same expression as given by Fucus”. In the case

of alkali metals, V(r)—FE, is very small in general, so that [yy]* is
nearly zero, which justifies the assumption made by Fucss in his

.
k2.4 /
/
~2.0 /
,/ - pors
k1.6 4 R
/{ﬂ,,»
o 4 7
N L Y
7 )
E 7, Bhatia: Ty,
% 4 " 4
2 7 B Y
= 1.2 oy aner: T,
. K W 5 T,.
o 4 'II
8 Yy
: W/
k=i 2/
? los Y
- 'I by
4
Vi .
/'l,i,' ——— : This paper
l’l
,"/' ===~ : Bauer
e
0.4 ~=—~ : Bhatia
1 L. i L —
0 0.2 0.4 0.6 0.8

1.0
9] in units of #/r

Fig. 1 Circular frequencies w versus wave number
vector q = /7, (g, 0, 0).
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derivation of the shear moduli.

Normal Vibrations of Sodium

In the case of noble metals (Cu, Ag

and Au), V(r,—E, is of the order of 3~4eV and the coulomb term
[yy]S is compensated a good deal by [yy]f, as assumed by Zr~NEr and
HunrtiNGToN.®

The ¢,,—c¢,, is given similarly as

Nr?

nZ

Cy—Cp = —

HEIRSETIN

where [zx], or [zy], is the coefficient of ¢* in the expansion of [xz] or
The result is the same as that obtained by Fucus, as

[xy] of (g,¢.0).

readily verified similarly as in the case of c,,.
Figs. I, II and III show the results in comparison with the cal-
culations by Baver'™ and by Buaria'®, BAUER has assumed central forces
and introduced force constants a and 7 corresponding to the interactions

F2.4 )‘2.4
/ -
.20 . / F2.0 ’/
. —— : This paper /. /
1.6 / TeTTT T AN
’ ~
2 pad
= L ’ R\
= / ol
z ’
’ -
g ’ °
w L2 Vi S~
/
3 / ’ //
é‘ ’ 4
tf s 7
£ / ’ /,'/
’ Z
3 “ T2
0.8 /’ //
"y 7
(] 47
/ //,4’ Thi
’ = : This paper
7 ,,/ P
/3 ~=~~=-: Bauer
eoted 0.4 ’ = ~=——-« ; Bhatia
. " 1 L 1 " 1
0 0.141 0.283 0.424 0.566 0.707 0 0.173 0.346 0.520 0.692 .

Fig. 2 Circular frequencies » versus

[a] in units of =z/7,

wave number vector q = 7/r,

(g, ¢, 0)
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Fig. 3 Circular frequencies w versus

wave number vector q = x/7y
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between the nearest and second nearest neighours, which are deter-
mined as a=rc, and ¥=a/4. The dispersion relations by Baurr are
given by dotted line. BmuaTia, on the other hand, has taken into account
in a simple way the effects of valence electrons on the ionic motion,
but only the interactions between nearest neighbours. Three para-
meters introduced was adjusted by the three independent elastic con-
stants ¢, ¢, and ¢,,. Broken lines in Figs. show the results by Buatia,

§5. Verification of the Formulation for
Short Wave-Length

We will now examine the validity of our formulation for shorter
wave-length. For the mode q=(z/r,0,0), e,=(1,0,0) or q=(0, z/r,, 0),
e,=(1,0, 0) in the metals of b.c.c. structure, each ion is displaced alter-
nately by +u or —u in the direction of z-axis from the equilibrium
position, where u:N%(aana;*) by Eq. (1). The contribution from the
coulomb repulsions of ions vanishes as seen in Table I, and those of
valence electrons to the potential for the vibration may be calculated
by cellur method™, admitting that the coulomb energy of valence
electrons is approximately balanced by the exchange and correlation
energies just as in perfect erystals. The circular frequency is given as

Mo* = 2e(u)lw’ +(increase of the exchange repulsions), (5.1)

where &(u) is the perturbing energy when an ion is displaced from the
centre of the atomic sphere, given, by taking the boundary condition
as (d¢(r)/dr),_,, =0, as

26 () = (11 (dv/dr), ., —(@m /1) {0, (r)— 6o}
= Ne*{4n/3—(2n/3)(r,/as) (€*/2as) * (01 (r.)— €.} } 5.2)

where v,(r) (—e*/r for r=r,) is the potential of an ion, and %, is the
energy of an electron with an ion at the centre of the atomic sphere
and the same boundary condition as above. For Na, r,=3.96a; and
v(r)—%¥=148eV, which give by Egs. (56.1) and (5.2),

w = 173 (Ne*/ M)
in good agreement with «=1.70 (Ne*/M )" in Table I.

—194—
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