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Abstract

Information extraction systems and techniques have been largely used to deal with the increas-

ing amount of unstructured data available nowadays. Time is among the different kinds of

information that may be extracted from such unstructured data sources, including text doc-

uments. However, the inability to correctly identify and extract temporal information from

text makes it difficult to understand how the extracted events are organised in a chronolog-

ical order. Furthermore, in many situations, the meaning of temporal expressions (timexes)

is imprecise, such as in “less than 2 years” and “several weeks”, and cannot be accurately

normalised, leading to interpretation errors. Although there are some approaches that enable

representing imprecise timexes, they are not designed to be applied to specific scenarios and

difficult to generalise. This paper presents a novel methodology to analyse and normalise

imprecise temporal expressions by representing temporal imprecision in the form of member-

ship functions, based on human interpretation of time in two different languages (Portuguese

and English). Each resulting model is a generalisation of probability distributions in the form

of trapezoidal and hexagonal fuzzy membership functions. We use an adapted F1-score to

guide the choice of the best models for each kind of imprecise timex and a weighted F1-score

(F13D) as a complementary metric in order to identify relevant differences when comparing

two normalisation models. We apply the proposed methodology for three distinct classes of

imprecise timexes, and the resulting models give distinct insights in the way each kind of

temporal expression is interpreted.
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1 Introduction

The extraction of temporal information from text is fundamental for language understand-

ing [12] and an important sub-task for several language processing applications [45], such as

text summarisation and knowledge base population. Processing a temporal expression (timex)

from text, i.e. extracting and modelling the expression, includes tasks such as recognition and

representation of the temporal information [26]. Solving challenging computational problems

involving time has been a critical component in the development of information extraction

(IE) systems [4], e.g. understanding how such elements that describe temporal concepts can

be formally represented and what procedures should be performed by an algorithm to deal

with the set of operations that we as humans seem to perform relatively easy [14].

In many situations, however, extracted temporal expressions are not accurately described

in the text, i.e. the expressions denote an imprecise amount or point in time, as in “about

3 months ago”, “less than a year”, “few days”, and “recently”. More than 30% of temporal

information in some text types, e.g. clinical notes, can be imprecise, affecting, for example,

the results of searches for events related to such temporal data. In addition, an inaccurate

interpretation may yield different values for the same expression. For this reason, for a given

application, it is important to estimate standardised values for the existing imprecise timexes,

i.e. to normalise them.

TimeML [34] is the major initiative for temporal information annotation being an ISO

standard since 2010. It is designed to connect the processes of temporal analysis of a text

with a representation and formal meaning of time, providing a model and annotation scheme

for temporal information in text, including the TIMEX3 scheme for representing tempo-

ral expressions. Although TimeML is capable of describing imprecise timexes in terms of

language structure, it does not provide mechanisms to correctly normalising them. There-

fore, the normalisation of imprecise temporal data in terms of values can be ambiguous or

incomplete, e.g. it provides one mod attribute that allows the modification of expressions, but

only in a very constrained way (12 preset non-disjoint modifiers). In order to overcome this

lack, existing approaches [20,32,38,39] use fuzzy sets to represent individual timexes and

relations. However, they describe specific historical events or generic periods of time (e.g.

holidays), relying on external sources of data, such as the result of Internet search queries or

image timestamps collected from social media, and they do not provide a generic or reusable

methodology for the normalisation of imprecise timexes. In these situations, the normali-

sation is done based on the extracted time spans, which are often focused on one kind of

expression and with restricted interpretation of the timexes, being difficult to be applied to

broader domains.

This paper contributes with an analysis of a previously unstudied set of imprecise temporal

expressions and presents a novel method for their normalisation and representation. The main

contributions are the following:

Imprecise timexes quantification and classification The classification was done based on

the expressions extracted from clinical narratives. This classification is used as basis for the

presented approach.

Methodology for imprecise timex normalisation We introduce a novel methodology for

the normalisation of imprecise temporal expressions extracted from text. Our methodology

comprises a set of steps, starting from creating a set of questionnaires used to capture how

people interpret vague descriptions of time in text. The questionnaires were designed from

scratch, since there is not a data set or standard for evaluation of imprecise timexes. Answers

were used as input data, from which we created histograms and fuzzy membership functions

123



Normalisation of imprecise temporal expressions extracted from text 1363

(MSF) during the pre-processing step. Then, we applied statistical regression and machine

learning (ML) techniques in order to evaluate which would be the most suitable model for each

kind of temporal imprecision being evaluated. The result is a grounded probability density

function for the period over which the timex was attained. We use F1-score to calculate how

similar two membership functions are, and to choose the most suitable representation model

for each kind of imprecise temporal expression.

Weighted F1-score We presented a new weighted F1-score variation, called F13D, that

better identifies the relevant differences between two membership functions in terms of

confidence, by checking whether the differences are more concentrated in the top or in the

bottom when comparing two membership function shapes or two normalisation models. We

apply the presented methodology for three kinds of imprecise timexes, and we compare

the normalisation models results in English and Portuguese. The results showed that the

normalisation models were able to capture the vagueness carried out by the imprecise timexes.

This paper is organised as follows: Sect. 2 presents the background and related work

regarding the temporal information extraction and the normalisation of imprecise timexes;

Sect. 3 presents a quantification of imprecise expressions comparing clinical and non-clinical

domains and proposes a classification for imprecise timexes; In Sect. 4, we propose a

methodology for the normalisation of imprecise temporal expressions; Sect. 5 depicts the

normalisation models resulted for three types of imprecise expressions and compares the

normalisation models for two different languages (Portuguese and English); lastly, in Sect.

6, we present the final conclusions and future work.

2 Background and related work

Time is a primary element that allows us to observe, describe, and reason about what surrounds

us in the world, providing a substrate for the human management of perception and action.

As a cognitive and linguistic component for describing changes which happen through the

occurrence of events, processes, and actions, time provides a way to record, order, and measure

the duration of such occurrences [4]. As a pervasive element of human life, the absence of

a correct identification of the temporal ordering may result in a bad comprehension, leading

to a misunderstanding [14].

2.1 Temporal information extraction

The general process of reading and understanding a text includes the inference about whether

the presented situations stand in particular points in time [14]. Organising events in a chrono-

logical order is important to find the temporal relations (e.g. before/after relations) among

them. Temporal information extraction plays an important role in this respect. Temporal

expressions are written in natural language and can refer directly to time points or intervals

(e.g. “6 years ago”), serving as anchors for linking concepts and events extracted from the text

to a timeline, providing the correct distribution of such extracted elements in time [1]. Nev-

ertheless, this seemingly easy task takes into account a set of complex information involving

different linguistic entities and sources of knowledge [14].

The recognition (or annotation) of temporal expressions (timexes) in text is the task of

finding the corresponding labels (y1, . . . , yn) to a given input string of tokens (x1, . . . , xn)

so that the resulting labelling can be decoded into textual spans that constitute the tokens and

denote time in the input string [26]. According to Fagerberg [18], the temporal information
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extraction process comprises: (a) temporal expressions have to be recognised within some

kind of document and extracted from it; and (b) extracted temporal expressions should be cat-

egorised and normalised to a canonical form—normalisation is not just a formatting problem,

but a task in which the appropriate value of the extracted expression has to be calculated.

TimeML1 [34] became a ISO2 standard in 2010, as a language for temporal information

annotation, designed to connect the processes of temporal analysis of a text with a repre-

sentation and formal meaning of time. As a specification language for event and temporal

expressions in natural language text, TimeML is able to capture distinct phenomena in tem-

poral markup.

Temporal information extraction approaches are usually focused on recognising temporal

expressions in text and normalising those expressions by using a function that transforms

the matched expression into a normalised form based on <TIMEX3>tags [7,18]. In Llorens

et al. [30], authors use the argument that temporal expression normalisation can only be

effectively performed with a large knowledge base and set of rules.

The TempEval series in SemEval (International Workshop on Semantic Evaluation) has

been exploring the task of extracting temporal expressions, events, and temporal relations

from text, with the purpose of advancing research on temporal information processing.

SemEval-2015 Task 6 Clinical TempEval3 [6] and SemEval-2016 Task 12 Clinical Tem-

pEval [8] were temporal information extraction tasks over the clinical domain, using clinical

notes and pathology reports for cancer patients. Results of TempEval-34 and Clinical TempE-

val (20155 and 20166) were given in terms of precision, recall, and F1-score [17] relevance

measures.

In addition to SemEval TempEval series, the i2b2 Natural Language Processing Challenge

for Clinical Records [43] focused on the temporal relations in clinical narratives, attracting

18 participating teams to analyse discharge summaries, annotating time expressions, events,

and relations between them.

2.2 Normalisation of temporal expressions

Normalisation of temporal expressions (or Timex Normalisation) is the process of tagging a

timex, by setting attribute values that describe that expression in terms of an amount of time

or a point in time [27]. The timex normalisation task consists of obtaining the absolute value

of a timex regardless of the linguistic expression used [30]. After a timex is recognised, its

temporal value must be defined, which means finding the value attribute for such temporal

expression. The normalisation process is usually implemented as a rule-based system to

overcome some problems, including: (a) the infinite number of possible labels and (b) the

large number of ways a calendar value can be expressed in natural language [26].

Current annotation standards are restricted to normalise imprecise timex in terms of lan-

guage structure or language elements [19,36,37,42]. An expression like “few weeks” is

normalised to represent an “undetermined period of time” or an “undetermined number of

weeks”, making it hard to connect that expression to a timeline without any numerical value.

1 http://timeml.org/.
2 https://www.iso.org/standard/37331.html.
3 http://alt.qcri.org/semeval2015/task6/.
4 https://www.cs.york.ac.uk/semeval-2013/task1.
5 http://alt.qcri.org/semeval2015/task6/index.php?id=results.
6 http://alt.qcri.org/semeval2016/task12/index.php?id=results.
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Table 1 Timex categories [26]
Category Examples

Temporal units Day, month, year

Temporal modifiers Last, previous, next

Temporal quantifiers Several, few

Temporal directions Ago, further, later

Temporal approximators Almost, about

Day names Monday, Tuesday

Month names January, February

Cardinal numbers One, 1, two, 2

Ordinal numbers First, 1st, second, 2nd

Coreference timex Period, time

Fixed timex Today, yesterday, now

When improving the normalisation guidelines to consider a timex description in terms of

uncertain values or periods of time (e.g. range of values), events related to imprecise timexes

can be chronologically placed, and temporal reasoning can be applied.

Although it is relatively easy to recognise temporal expressions using rule-based systems

or supervised machine learning approaches, normalisation (interpreting them accurately)

is a complex task that requires human knowledge, since any practical approach to timex

normalisation requires a handcrafted rule set [30]. Kolomiyets [26] presents a TimeML-

based normalisation technique that comprises three sub-tasks:

1. Timex classification: a classifier has to distinguish between four different labels of DATE,

TIME, DURATION, and SET, to define the type of time expression, as it is defined in

TimeML; a rule-based method performs the semantic analysis of time expression con-

stituents (token labelling), identifying different categories (Table 1) with a comprehensive

vocabulary and a set of context-dependent normalisation rules specific for that category.

2. Estimation of temporal values: temporal values are estimated (normalised); this is not con-

sidered a difficult task for absolute temporal expressions, because such kinds of timexes

contain all components required for calculating the final value. Relative expressions (“last

week”, “next month”) also can be represented using ISO standards [23] representation

facilities.

3. Aggregation of temporal values: an aggregation of temporal values is performed, when

one temporal expression consists of a set of shorter temporal expressions that are obtained

by pre-normalisation; in this case, partially estimated values are aggregated to obtain a

final temporal value.

2.3 Imprecise temporal representation

Considerable effort has been carried out to extract temporal information from natural language

texts, allowing question answering systems to deal with more complex temporal questions.

However, temporal relationships expressed in natural language are often vague (which is

inherently associated with real-world temporal information), and it is necessary to extend

traditional temporal reasoning formalisms to cope with this kind of vagueness [39].

In temporal question answering systems, answering a complex question may require

decomposing the original question into partial questions, to answer such partial questions
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and combine the partial answers into the final answer. Temporal questions are an important

class of complex questions, in which the accurate representation of the time span of events

is essential to the treatment of such complex questions [38].

However, a lot of time information is ill-defined, subjective or uncertain, and the bound-

aries of time periods can often be vague. Thus, the time span representation should be tolerant

of imprecision in temporal question answering systems. Zhou et al. [48] summarised the com-

mon types of temporal expressions, based on an exhaustive analysis of 147 clinical records,

establishing temporal expression classification from such expressions. Despite including

uncertain temporal expressions in the resulted classification, the authors state that the auto-

matic extraction work was hampered by the existence of such expression type. Although

TimeML is able to distinguish imprecise temporal expressions, it is restricted to describe

imprecision in terms of language structure, clouding later temporal processing. For example,

in the sentence “frequent headaches for less than one month”, a patient tries to describe how

long a headache has lasted. The corresponding amount of time, however, cannot be accu-

rately defined, due to the modifier “less than”. The target imprecise expression “less than one

month” is annotated in TimeML as <TIMEX3 value=“P1M” mod=“LESS_THAN”>.

As a consequence, when interpreting this expression and its annotated features, it is not clear

whether we should consider each possible number of days between 0 and 30 as equally

likely, or whether for example, 20–25 days ago is more likely than 5–10 days ago or even

“yesterday”.

The fuzzy set theory is a representation formalism suitable for this purpose, allowing

the definition of a gradual beginning and ending of events [32]. A fuzzy set is the basic

concept that underlies the fuzzy systems theory [33] and involves capturing, representing, and

working with linguistic notions, being employed in those circumstances where impreciseness,

unpredictability, and vagueness are in concern. A fuzzy set S is characterised by a membership

function A mapping the elements of a (finite or not) domain, space, or universe of discourse

T into the unit interval [0, 1]. That is, A(t) : T → [0, 1] [47]. A membership function A

can be defined in different forms, such as triangular or trapezoidal functions, or continuously

differentiable curves with smooth transitions, such as normalised Gaussian functions. The

height of a fuzzy set S is the largest membership grade of any element in that set (Eq. 1),

whereas a fuzzy set S is called normal when height(S) = 1, and subnormal otherwise [33].

height(S) = max {A(t), t ∈ T } (1)

The support of S, supp(S), is the crisp set with all the elements of T satisfying A(t) > 0.

Likewise, the core of S, core(S), is the crisp set with all the elements of T satisfying A(t) = 1,

whereas its boundary, bound(S), encompasses all the elements of T with membership grades

in the range ]0, 1[, as shown in Fig. 1 [16].

Although some proposed approaches and systems can identify temporal information in

text [5,15,28,41], they do not deal with imprecise temporal expressions, like “a few weeks

ago” or “the coming months”, in terms of defining more specific attributes to describe and

connect those expressions to a timeline. Such approaches do not implement temporal-related

logics to manipulate such inaccurate information, for example, to compare events associated,

respectively, with expressions such as “about 2 months ago” and “a few weeks ago”, indicating

which one happened before or after [29].

In Nagypáal and Motik [32], a fuzzy interval-based temporal model capable of representing

imprecise temporal knowledge is described. It generalises Allen’s [2] temporal relations on

intervals, by providing a definition of crisp interval relations based on set theory, and then

generalises them to the fuzzy case. The presented temporal model is intended for use in

ontology modelling, following a modular semantics pattern which tries to keep the semantics
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Fig. 1 Concepts related to a
fuzzy set [16]

of each model separate and to provide clean interfaces between them. Examining the different

properties of the fuzzy temporal relations (like transitivity), one can observe basic inferences

even in case of fuzzy intervals.

Schockaert et al. [39] present a framework to represent, compute, and reason about tem-

poral relationships between events that have imprecise time spans, represented by fuzzy sets

(fuzzy time intervals). The proposed model preserves many of the Allen’s relations’ prop-

erties, and it uses a transitivity table for efficient fuzzy temporal reasoning. The qualitative

relations between two fuzzy intervals are defined in terms of the ordering of the gradual

beginning and endings of these intervals (ordering of the time points belonging to these

intervals). It also defines four basic fuzzy relations to order two time points a and b (long

before, before or at approximately at the same time, approximately at the same time, just

before). Four basic fuzzy relations are defined to order two time points a and b (long before,

before or at approximately at the same time, approximately at the same time, just before).

Schockaert [38] suggests an approach based on fuzzy sets to define the beginning and

ending of events and provides a fully automatic procedure which uses statements on the Web

to construct the membership functions. To obtain useful statements from the Web, authors

used the snippets returned by Google7 for some automatically generated queries. In most

applications, all membership functions are defined by an expert. However, this is considered

the first attempt to construct membership functions for fuzzy time periods in an automatic

way. Figure 2 shows an example that considers the time span of the World War 2. There does

not exist a unique point in time that corresponds to the beginning or ending of this war.

A similar approach was used in Blamey et al. [10] to represent a temporal expression S by

a function f (t), which is a probability density function for the continuous random variable

Ts , using photographs uploaded to the photograph-sharing site Flickr.8 After collecting a list

of timestamps for an specific temporal term, the target is to find a probability density function

to provide a convenient representation and smooth the data appropriately. Authors argue that

temporal expressions can communicate more than points and intervals, and their cultural

meaning is much more complex—often difficult to be precisely defined. Thus, a distributed

definition can capture such cultural meaning in a more detailed way, as shown in Fig. 3 for

the expression “Christmas”.

Even though the related work described uses fuzzy sets to represent individual temporal

expressions and temporal relations, by relying on external sources of data in order to describe

7 http://www.google.com.
8 http://www.flickr.com.
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Fig. 2 Fuzzy set representing the time span of World War 2 [38]

Fig. 3 Distribution of “Christmas” images on Flickr [10]

specific historical events or generic periods of time (e.g. holidays), the approaches proposed

are focused on specific expressions or periods of time, and they do not attempt to create a

generic normalisation model to describe imprecision in temporal data among the different

kinds of imprecise temporal expressions. Our work does goes further, not tackling exactly

the same problem as the related work, and that it is therefore not directly comparable.

In this work, we assume that query times are grounded and known. However, this is in itself

a significant task, covered in the literature [25]. Knowledge base population has included a

simplified version of the temporal bounding task, with maximum and minimum bounds for

start and end times, and a corresponding evaluation scheme [3,24].

3 Imprecise temporal data in text

Considerable effort has been put into the extraction of temporal information from natural

language texts, allowing systems to deal with complex temporal questions. However, the

temporal intervals expressed in natural language are often vague, making it necessary to

extend traditional temporal reasoning formalisms to cope with the vagueness [39]. Imprecise
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Fig. 4 Example of an event (e2) placed in an imprecise point in time

timexes make it hard to evaluate whether events should be included in a query result that

involves timeline evaluation.

Figure 4 illustrates the importance of dealing with imprecise points in time. A query

system performing searches over extracted events should be able to find those bounded by a

certain period of time. Given two events e1 and e2, each one is associated with a temporal

expression t1 and t2, where t1 is a precise DATE that makes it possible to place e1 in a specific

point within a timeline, and t2 is an imprecise reference in the form “approximately N days

later” which makes it impossible to know the exact day when event e2 occurred. However, it

can be reasoned the e2 occurred after e1. Considering a query that performs a search within

the period bounded by qb and qe, where: qb < t1 < qe and qe < t1 + N , we can surely affirm

that e1 would be part of the search result. On the other hand, it is not possible to evaluate

whether e2 is part of the same query result, as the numerical reference that surrounds the

placement of e2 within the timeline comprises a degree of vagueness that makes it impossible

to say the exact date when e2 happened.

In this section, we show the motivation of this work by quantifying the number of imprecise

temporal expressions found in different corpora. We also propose a classification for imprecise

timexes.

3.1 Quantifying imprecise timexes

In order to understand the relevance of normalising imprecise temporal information in dif-

ferent domains, we analysed a set of three clinical and six non-clinical corpora in English

and Portuguese (Table 2) to compare the occurrence of imprecise timexes in both general and

specific domain data. We used the HINX system [44] to identify the occurrence of imprecise

timexes. HINX asserts a specific annotation feature (precision = “imprecise′′) to iden-

tify imprecise timexes, based on a set of rules to identify words, expressions, and specific

language structures that represent imprecision.

Table 3 compares the number of imprecise temporal expressions against the total number

of timexes in each corpus and shows that imprecise timexes in clinical corpora can reach

almost 35% (SLAM corpus, 34.8%) of the temporal expressions. The percentage of imprecise

expressions found in newswire was no more than 13% (WikiWars corpus).

Table 4 describes the distribution of imprecise timexes in terms of temporal granularity.

The temporal granularity is the time granularity used to compose the timex, as DAY in “in less

than 15 days”, or UNDEFINED in “more recently”. The set of expressions with granularity

YEAR, MONTH, WEEK, and DAY represents more than 60% of the total amount of impre-

cise expressions in both clinical and non-clinical corpora. Imprecise expressions denoting
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Table 2 English (En) and Portuguese (Pt) corpora analysed about the occurrence of precise and imprecise
temporal expressions

Corpus Lang Docs Description

AQUAINT En 73 News reports, also referred to as the Opinion Corpus, annotated with
time expressions [36]

TE3 Platinum En 20 The corpus used to rank participant systems in the TempEval-3
evaluation exercise, consisting of newswire documents and blog
posts annotated for events, time expressions, and relations [46]

TE3 Silver En 2452 Documents automatically annotated as a silver standard in
TempEval-3 [46]

TimeBank En 183 News articles annotated with temporal information, events, times, and
temporal links between events and times [35]

WikiWars En 22 Documents sourced from Wikipedia, within the domain of military
conflicts, containing timex annotated with TIMEX2 [31]

CSTNews4 Pt 50 A discourse-annotated corpus for fostering research on single- and
multi-document summarisation from news texts [13]

THYMEa En 248 Clinical narratives data sets used in SemEval-2015 Clinical TempEval
Task [6]

SLAMa En 1000 Medical records without any pre-annotated timexes provided by the
Biomedical Research Centre and Dementia Biomedical Research
Unit at South London and Maudsley NHS Foundation Trust and
King’s College London [40]

InfoSaudea Pt 3360 Medical records without any pre-annotated timex extracted from the
InfoSaude system, Public Health Department in Brazil [11]

aClinical corpora

Table 3 Occurrence of imprecise
timexes in (a) non-clinical and (b)
clinical corpora

Total number
of timexes

Imprecise
timexes

Imprecise
(%)

(a) Non-clinical corpora

AQUAINT 463 35 7.6

TE3 Platinum 158 20 12.7

TE3 Silver 15,191 863 5.7

TimeBank 478 60 12.6

WikiWars 862 112 13.0

CSTNews4 444 32 7.2

Total (micro) 17,596 1122 6.4

Total (macro) 9.8

(b) Clinical corpora

Thyme 3358 659 19.6

SLAM 35,120 12,226 34.8

InfoSaude 503,005 53,830 10.7

General 134, 388 13,785 10.3

Gynaecology 66,021 5452 8.3

Nutrition 64,282 6286 9.8

Psychiatry 238,314 28,307 11.9

Total (micro) 541,483 66,715 12.3

Total (macro) 21.7
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Table 4 Occurrence of imprecise
timexes by temporal granularity

Temporal granularity Non-clinical
corpora (%)

Clinical corpora
(%)

Year 28.5 21.1

Month 20.1 21.2

Week 7.7 6.8

Day 10.7 17.6

Time (hour, minute
and second)

4.9 2.8

Undefined 23.8 15.2

Othersa 4.3 15.3

a“Others” includes century, decade, quarter, and season

Table 5 Occurrence of imprecise timexes by class in clinical corpora

Corpus DATE TIME

Tot Imp % Tot Imp %

(a) Classes DATE and TIME

THYME 2588 460 17.8 118 13 11.0

SLAM 22,678 9296 41.0 919 27 2.9

SMS 210,596 19,082 9.1 63,468 71 0.1

General 59,835 4838 8.1 15,530 11 0.1

Gynaecology 33,965 1642 4.8 3996 4 0.1

Nutrition 23,324 1969 8.4 8444 15 0.2

Psychiatry 93,472 10,633 11.4 35,498 41 0.1

Avg (micro) 235,862 28,838 12.2 64,505 111 0.2

Avg (macro) 22.6 4.7

Corpus DURATION SET

Tot Imp % Tot Imp %

(b) Classes DURATION and SET

THYME 434 150 34.6 218 36 16.5

SLAM 8001 2801 35.0 1558 102 6.5

SMS 190,411 34,524 18.1 38,530 153 0.4

General 49,829 8900 17.9 9194 36 0.4

Gynaecology 24,088 3783 15.7 3972 23 0.6

Nutrition 26,933 4285 15.9 5581 17 0.3

Psychiatry 89,561 17,556 19.6 19,783 77 0.4

Avg (micro) 198,846 37,475 18.8 40,306 291 0.7

Avg (macro) 29.2 7.8

time (HOUR, MINUTE, and SECOND) represent less than 5% of imprecise expressions in

non-clinical data and less than 3% in clinical corpora.

Finally, Table 5 shows the distribution of imprecise temporal expressions found in clin-

ical corpora according to each of the main temporal classes defined by TimeML (DATE,

TIME, DURATION, and SET). The occurrence of imprecise timexes is concentrated on the
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classes DATE and DURATION for clinical documents. In a similar analysis, we observed

the occurrence of imprecise timexes is concentrated on the class DURATION in non-clinical

documents.

3.2 Classification of imprecise timexes

We analysed the full set of imprecise expressions found in clinical corpora in order to under-

stand the different ways the imprecision can be expressed in natural language. We defined

six main groups of imprecise timexes according to their main language elements:

1. Present Reference (PR): a time reference related to the present, based on the document

creation time (DCT) (e.g. “now”, “recently”, “currently”);

2. Modified Value (MV): an imprecise timex comprising a modified precise amount of

time (e.g. “approximately 10 days”, “less than a month”);

3. Imprecise Value (IV): an expression built around a certain imprecise amount of time

(e.g. “some days”, “several weeks”), or formed with undetermined amount of time, in

which granularity is usually presented in the plural, with the absence of numeric values

(e.g. “years”);

4. Range of Values (RV): an amount of time defined by boundaries (e.g. “every 3–

4 months”, “between 8 and 10 years”);

5. Partial Period (PP): a portion of time within a larger time frame (e.g. “the end of last

year”, “middle of January”);

6. Generic Expression (GE): an expression denoting a generic period or amount of time

(e.g. “this time”, “at the same time”).

Table 6 details the number of imprecise timexes found in each clinical corpus according

to the imprecise group. A similar distribution was also observed in non-clinical corpora. We

chose to apply and test our proposed methodology starting by the three most representative

kinds of imprecise expressions in terms of occurrence (PR, MV, and IV). The PR imprecise

type represents more than 50% of imprecise timexes in the clinical domain. However, it com-

prises expressions devoid of a temporal granularity, requiring distinct questionnaire design

and input data representation.

Table 6 Timexes by imprecise
type in clinical corpora

Imprecise type Clinical corpora

THYME SLAM InfoSaude

PR 55.7% 58.0% 30.2%

MV 15.5% 6.6% 27.0%

IV 11.9% 14.4% 24.9%

RV 10.2% 4.0% 13.6%

PP 6.2% 3.2% 4.3%

GE 0.5% 13.8% 0.0%

Total 659 12,229 53,830
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4 Normalisation of imprecise timexes

Normalisation of an imprecise temporal expression depends on how people reason about

imprecise information. Reasoning about an imprecise timex in a specific context, such as in

clinical text, may depend on a broader narrative analysis and an understanding of the context

in which the expression was created. Despite this possible influence of different contexts

on the interpretation of imprecise timexes, we present a methodology on how to produce

normalisation models for each different imprecision type according to the people’s common

cognitive perception of temporal imprecision. Therefore, we collected and pre-processed

data on how people interpret vague descriptions of time in text, and we compared different

approaches in order to create and select the most appropriate normalisation model.

4.1 Specification of the input data

In order to collect data on how people interpret vague descriptions of time in text, we designed

questionnaires9 in two different languages (Portuguese and English). The design of the

questionnaires was necessary since there is not an available data set/standard for analysing

imprecise timexes. Each question aims to capture the perception about an imprecise value for

a given imprecise timex, showing a sentence comprising two to three descriptions of time that

could be precise or imprecise. The target imprecise timex to be evaluated is underlined. The

Portuguese questionnaire comprises 125 questions split into five questionnaires (25 questions

each), each question made with modified (in order to guarantee de-identification) sentences

found in a set of medical records from the InfoSaude corpus. The English version has a total

of 150 questions split into ten questionnaires (15 questions each), each question designed

using fictional text to capture the perception about specific imprecise value for a given set of

imprecise timexes (non-clinical).

Inter-annotator agreement (IAA) is usually used to measure the quality of a data set, by

seeing how closely people agree on some objective task that is assumed to have a definitive

answer, e.g. extraction of some phenomenon from text. In such a case, we would expect

annotators to converge on a common value, assuming the data quality is high. Although we

are asking people to fill in a questionnaire with a subjective opinion (i.e. not asking them to

extract an objective fact from the text), we used Fleiss’ kappa [21] as a statistical measure

for assessing the reliability of agreement when a fixed number of raters assign categorical

ratings to a number of items. The types of questions covered by each questionnaire, average

number of answers, and the inter-annotator agreement are detailed in Table 7.

MV and IV questions in the Portuguese survey asked for a specific number of days,

weeks, months, or years (e.g. for “more than 10 days”, one specific number of days should

be selected, with options ranging from 7 to 60 days). The same type of question in English

asked for a possible range of time (e.g. for “more than 5 days”, a range of days start-end

should be selected, with start point ranging from 0 to 40 days and end point ranging from

0 to 60 days). An additional option “more than 60 days” was also included on the questions

covering the MV imprecise type. PR questions (“now”, “currently”, “recently”) asked for a

temporal granularity that would better describe when the associated event starts. We wanted

to test different ways to answer each question, leading to the mentioned differences in the

design of each questionnaire in terms of how the answers should be entered. Figure 5 shows

examples of questions extracted from the questionnaires in English.

9 https://github.com/HeglerTissot/itn/tree/master/Questionnaire.
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Table 7 Types of questions in each questionnaire and inter-annotator agreement

Imprecise type Question type #Questions #Answers (avg) Fleiss’ kappa agreement

Port Eng Port Eng Port Eng

MV Approximately 30 38 70.4 88.7 0.329 0.322

Less than 18 26 71.3 88.8 0.285 0.324

More than 24 26 70.5 89.5 0.248 0.347

IV Imprecise value 41 48 70.2 89.4 0.198 0.201

PR Present reference 12 12 69.4 91.2 0.321 0.427

Total 125 150 70.3 89.3 0.268 0.297

Fig. 5 Example of questions used to design the questionnaire in English

As most of the imprecise temporal expressions found in the documents we had previously

analysed refer to the classes DATE and DURATION, we considered “1 day” as being the basic

and minimal unit of time in the experiments. We used a discrete set of an integer number of

days, disregarding granularities having TimeML TIMEX3 type TIME (hours, minutes and

seconds).

The Portuguese survey was approved by the InfoSaude Research Committee and submitted

to 50 universities in Brazil, covering students and staff member from different departments,

from which we gathered a total of 352 submissions—each question had on average 70

responses. The English survey was approved by the University of Sheffield’s Research Ethics

Committee and submitted to all student and staff members of an opt-out mailing list in that

institution. We gathered a total of 890 submissions in English—each question had on average

90 responses.

4.2 Membership functions

We aim to normalise imprecise expressions through the use of fuzzy membership functions

(MSF). The MSF would place an imprecise timex in the timeline with a certain confidence

level. In addition, a search result would have additional information indicating the confidence

score for each event associated with an imprecise timex. Given a list of MSFs for the same

kind of imprecise expression (e.g. of the form “less than N days”), we want to produce a

generic model where, given N as an input, the model can calculate the parameters to describe

a MSF for all expressions of that type.
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We used two types of MSFs in our experiments: trapezoidal (four-point-based) and

hexagonal (six-point-based) membership functions. Trapezoidal and hexagonal membership

functions were chosen because: a) they are asymmetrical and can have their shapes adapted

flexibly to match different patterns, and b) their linear boundaries make them easier to use in

terms of computing fuzzy logical and relational operations.

A trapezoidal MSF is defined by a set of four parameters (p, r , s, v), such as M4(x) : I →

[0; 1], and p < r ≤ s < v. Definition parameters p and v are the boundary limits where

the confidence is 0, r and s are the boundary limits where the confidence is 1. When r = s,

the MSF shapes like a triangular function. The MSF parameters p, r , s, v are equivalent to

values a, b, c, d in Fig. 1.

Similarly, a hexagonal (six-point-based) MSF is defined by a set of six parameters

(p, q, r , s, t, v), such as M6(x) : I → [0; 1], and p < q < r <= s < t < v, and

additionally the trapezoidal boundaries, q and t are the values where the confidence is 0.5.

In this work, we refer to trapezoidal and hexagonal MSFs as by their definition parameters,

using the notation M4(x, [p, r , s, v]) and M6(x, [p, q, r , s, t, v]).

For each question within the questionnaires, we attempted to best approximate the cor-

responding M4 and M6 membership functions with respect to their definition parameters.

For each question, we calculated a histogram based on the number of answers given to

each possible option. Then, each histogram was approximated to a trapezoidal and to

a hexagonal membership function, using a full search method in order to minimise the

approximation error. We looked for the best combination of values for the parameters

(p, r , s, v) or (p, q, r , s, t, v), and the best MSF height in the y axis, which corresponds

to the number of given answers. Figure 6a shows the histogram and trapezoidal function

obtained for the expression “less than 30 days” from the survey in Portuguese, defined as

LessT han P30D(xdays, [16, 19, 21, 31]) – parameters (p, r , s, v) represent number of days,

and the confidence = 1 at the height = 8 in the histogram. Similarly, Fig. 6b presents the his-

togram and approximated trapezoidal function for the expression “about 3 months” from the

questionnaire in English, defined as ApproxP3M (xdays, [71, 87, 92, 110]) – the confidence

= 1 at the height = 32 in the histogram.

4.3 Normalisationmodels

We compared different approaches, such as linear regression and multilayer perceptron [9],

to model each kind of imprecision. In order to identify which method best models each

group of imprecise timex, we explored a diverse set of alternatives. The following steps were

performed to analyse the data collected from the questionnaire described in Sect. 4.1:

1. We started by splitting the total set of answers into two data sets (50%:50%) to be used as

training and test data sets. Input data collected from the questionnaire was pre-processed.

For every question, we calculated the distribution of answers in the form of a histogram.

A trapezoidal and a hexagonal membership functions were approximated to describe the

given histogram, as described in the previous subsection.

2. For those questions using temporal granularity other than “DAY”, we attempted to use

both options when training the models, (a) the original granularity and the numeric value

(Val) extracted from the temporal expression as it was with its original granularity (e.g.

“3” in “about 3 months”), and (b) the same expression converted to the granularity of

days (Day) (e.g. “3” in “about 3 months” was converted to “90 days”).

3. For each expression type, we defined range-based unsupervised parameters to use as

baseline, which were arbitrary, manually chosen. Figure 7 shows the unsupervised inter-
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Fig. 6 Histogram and trapezoidal
MSF for two imprecise timexes

(a)

(b)

Fig. 7 Unsupervised baseline
parameters for IV and MV
expressions

val parameters defined for MV and IV questions. Each range [b, e] was mapped to a

M SF(x, [b − 1, b, e, e + 1]) along the experiments. For the modifier MANY, for exam-

ple, the range value [6, 8] is equivalent to a M SF(x, [5, 6, 8, 9]).

4. In order to produce a generic model that could be used to calculate any membership

function for a given imprecise timex type, we applied four different variations of a linear

regression to generalise each one of the parameters used to define trapezoidal (p, r , s, v)

and hexagonal (p, q, r , s, t, v) membership functions for each given type of imprecise

timex: (a) the usual (y = a+b∗x) linear regression (Lin-A); (b) we forced the independent

constant a in the linear formula to be equal to zero (Lin-0); (c) the linear regression with
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Table 8 MLP design

Parameter Description (value)

(a) Features

Granularity Four input values to set the temporal granularity —“Val” variation

Reference value Number extracted for MV expressions —“Val” variation

Reference days Number of days extracted for MV expressions —“Day” variation

Temporal context Number of days that represents the temporal context – IV expressions

Imprecise value Five input values to set the imprecise value—IV expressions

(b) Training parameters

maxIteration Maximum number of training iterations to be performed (5000)

minIteration Minimal number of iterations to be performed before stopping (1000)

maxNoBetter Training stops after 200 iterations with no improvement (200)

K Number of folds in K -fold cross-validation (4)

learningRate Learning rate used by the backpropagation algorithm (0.05)

(c) MLP layers

hiddenLayer Number of neurons in the hidden
layer((input Layer Si ze − 1) ∗ (output Layer Si ze − 1) )

outputLayer Number of neurons in the hidden layer to produce trapezoidal MSFs (4) or trapezoidal
MSFs (6)

the natural logarithm values of each expression (ln(y) = a + b ∗ ln(x)), in an attempt

to map that expression given in terms of years (e.g. “5 years” = “1825 days”) as close to

those describing periods of days or weeks (Log-A); and lastly, (d) the linear regression

based on the logarithm values was extended to force a = 0 (Log-0).

5. For those timexes comprising imprecise values (IV), we also calculated the mean

(MEAN) values of each membership function parameter, combining the normalised val-

ues described in 2 (Val and Day) and 4 (Lin and Log).

6. For those timexes comprising imprecise values (IV) and present references (PR), we

used the temporal context as input value. We considered the “Temporal Context” as the

distance in days between the current date (DCT-document creation time) and the last

timex mentioned in the sentence prior to the imprecise timex being evaluated. For the

designed questionnaires, DCT was defined as the date when each questionnaire was

published. This approach was used in an attempt to evaluate whether the perception of a

present reference imprecise timex would be influenced by the temporal context distance.

7. For MV and IV types of imprecise expression, we used a multilayer perceptron (MLP)

with the backpropagation algorithm [22] to learn how to return the membership func-

tion parameters for a given imprecise timex. We also combined the normalised values

described in 2 (Val and Day) and 4 (Lin and Log). We used k-fold cross-validation to

select the best model with k = 4. The internal MLP structure and learning parameters

were chosen in a previous tuning step, after testing and comparing different configura-

tion settings. Table 8 describes features and parameters used in the training step. In order

to test the hypothesis that Present Reference (PR) expressions understanding could be

influenced by the temporal context, we only tested the linear regression approach for that

kind of expressions.

8. In order to evaluate each model, we compared each individual membership function

generated by the given model with the equivalent membership functions from the testing
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(a) (b)

(c)

Fig. 8 F1-score representation between membership functions A and B—partial areas that do not overlap are
considered false positive and false negative areas, and the overlap is considered as a true positive area (See
Eq. 2)

data set. We used the areas of each membership function to produce the F1-score (Eq. 2),

which defines how much the two functions areas overlap. Partial areas that do not overlap

are considered false positive and false negative areas, and the overlap is considered as

a true positive area. When F1 = 1, both membership functions are exactly the same,

and when F1 = 0, there is no overlap between those given functions. The F1-score for

the entire model was calculated using the average F1-score from all the membership

functions used to test the model.

F1(A, B) =
2 × Common Area(A, B)

Area(A) + Area(B)
(2)

Figure 8 shows two hexagonal membership functions—A(x,[1,3,10,13,14,17]) and

B(x,[2,3,5,7,9,14])—and the visual representation of the F1-score between A and B,

meaning the percentage of the common area relative to the total area of both functions.

In the illustrated example, F1-score resulted 0.6567.

9. Finally, for each type of imprecise timex, we used the average F1-score obtained from

all the different expression variations and between the trapezoidal and hexagonal mem-

bership functions in order to compare and select the most appropriate normalisation

model.

The linear regression model is motivated by the hypothesis that some kinds of

imprecise temporal expressions (e.g. “less than x days ago” or “in approximately

x weeks”) could be linearly dependent on the input amount of time x . Given this

hypothesis, the simplest and least data-hungry tools to apply are linear regression

and MLP. While SVM offers higher expressivity, it also risks making mistakes with

lower amounts of data, and certainly if good results can be found through LR or

MLP, this result is strong on its own. Additionally, we contrasted the linear regres-
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Fig. 9 Graphical representation of a normalisation model

sion results with a nonlinear approach. We adopted MLP as a nonlinear alternative to

train normalisation models for each kind of imprecise timex and provided comparisons

there.

In order to graphically represent the normalisation models, we developed a chart for-

mat where we plot both the testing data and the produced generalisation model. Figure

9 shows how this graphical representation works. Each known membership function pro-

duced from the input data (e.g. subfigure in the top left side represents the expression “less

than 30 days”) is plotted as a vertical bar, with a dark central area representing the top

of the MSF, where confidence is 1—the bottom and the top of each vertical bar repre-

sent the MSF limits where confidence is 0. The grey area in the chart’s background is the

normalisation model resulted for the expression type “LessT han”. Thus, when we need

to normalise an unknown expression, the normalisation model will give us the param-

eters that describe the corresponding MSF definition for the given expression type, by

taking the limits of each dark and light grey area. For example, the selected red area

at the right side represents the limits for an unknown expression “less than 90 days”,

which would be defined as trapezoidal MSF LessT han P90D(xdays, [23, 65, 85, 96]).

Other examples of known MSFs represented in the same figure as vertical bars include

“less than 10 days”, “less than 2 weeks”, and “less than 2 months”—the figure shows

ten MSFs corresponding to the test data set for the given type of imprecise expres-

sion.10

10 There are actually two distinct MSFs corresponding to the expression “less than 30 days” in Fig. 9, resulted
from two different questions in the survey, but their representation is cloudy.
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Table 9 F1-scores for MV temporal expressions in Portuguese and English

Method Var Portuguese English

M4 M6 Avg M4 M6 Avg

Baseline 0.673 0.646 0.660 0.741 0.731 0.736

Regression Lin(A) 0.635 0.558 0.597 0.615 0.613 0.614

Regression Lin(0) 0.762 0.740 0.751 0.797 0.794 0.796

Regression Log(A) 0.772 0.746 0.759 0.814 0.806 0.810

Regression Log(0) 0.669 0.661 0.665 0.678 0.693 0.686

MLP Day/Lin 0.321 0.584 0.452 0.340 0.514 0.427

MLP Day/Log 0.729 0.755 0.742 0.679 0.786 0.733

MLP Val/Lin 0.785 0.742 0.763 0.738 0.787 0.763

MLP Val/Log 0.757 0.738 0.747 0.760 0.774 0.767

5 Evaluation

In this section, we present the results11 of the analysis for the evaluated imprecise types

(MV, IV, and PR), based on the representation model described in the previous section. We

have performed a statistical hypothesis t-test for verifying the significance of the F1 scores

reported for each approach. The significance threshold was set at 0.05.

5.1 Modified value (MV) expressions

Table 9 compares the results of each model used to produce trapezoidal (M4) and hexagonal

(M6) membership functions for the group of expressions comprising “less than”, “more than”,

and “approximately” subtypes for both languages (Portuguese and English). Different models

are compared using the average (Avg) score between M4 and M6. We highlight in boldface

the best Avg score for each approach (regression and MLP) in each language (English and

Portuguese).

The Log-A variation achieved the best score for this kind of expression among all the

linear regression variations for both languages. The MLP approach produced a result that is

better than the Log-A regression variation in Portuguese. However, MLP achieved a result

that is similar to the baseline in English.

For both languages, the t-test evidences significant differences when comparing the best

MLP against the best regression F1 scores, considering the significance threshold set at 0.05:

(a) in English, p value=0.000481 when comparing the results between regression-

Log(A) and MLP-Val/Log approaches; (b) in Portuguese, p value=0.003243 when

comparing the results between regression-Log(A) and MLP-Val/Lin approaches. In addi-

tion, we also compared the results between regression-Lin(0) and regression-Log(A), from

which we found no significant differences for both languages (p value=0.183702 for

English; p value=0.314776 for Portuguese. The Lin(0) variation does not rely on loga-

rithmic transformations, and this model can be directly calculated by applying simple linear

transformations on the input imprecise expression.

11 See https://github.com/HeglerTissot/itn for further details about the questionnaires used in this work and
the resulting models for the studied imprecise time expressions.
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(a)

(b)

Fig. 10 Generalisation of “less than X days” expressions within the period of 0–90 for two different approaches
in English

Figure 10a shows the model using the Log-A linear regression variation, and Fig. 10b shows

the model from MLP-Val/Log, both used to produce trapezoidal functions for expressions

of the form “less than N days” in English. The MLP model is consistent when producing

membership function parameters that are inside the limit boundaries used to train the given

model. However, it is not consistent when trying to produce membership function parameters

that are outside those limits. For instance, it finds values for the parameters r and s that are

greater than N for “less than N days” for each N > 60 (darker grey area in the chart).
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Table 10 Linear regression factors [Bp, Br , Bs , Bv] used to produce the parameters [p, r , s, v] that define
Lin-0 trapezoidal MSFs for MV expressions in Portuguese (Pt) and English (En)

Modifier Pt En
[Bp, Br , Bs , Bv] [Bp, Br , Bs , Bv]

Approx(Ntgran ) [0.7185, 0.9375, 0.9964, 1.2335] [0.7101, 0.9325, 1.0602, 1.2965]

LessThan(Ntgran ) [0.6921, 0.8290, 0.8554, 0.9888] [0.3693, 0.7964, 0.9371, 1.0803]

MoreThan(Ntgran ) [0.9705, 1.2111, 1.2605, 1.4995] [0.8799, 1.0704, 1.2036, 1.7093]

Similar differences between linear regression and MLP approaches were observed in the

Portuguese models. Linear regression models are more consistent when generalising MV

imprecise timexes.

Although the MLP approach resulted better for one of the languages, its inconsistency

when dealing with imprecise expressions outside the limit boundaries used to train the model

imposes limitations and restrictions for its use. Lin-0 and Log-A models are more efficient

and stable on generalising this kind of temporal imprecision, and their statistical similarity

led us to believe the simplicity and straightforward applicability of the Lin-0 model make

it strongly recommended to model MV imprecise expressions. In Table 10, we present the

factors [Bp, Br , Bs, Bv] used to calculate the parameters [p, r , s, v] that define trapezoidal

MSFs for MV temporal expressions in both languages for a given amount of time in a temporal

granularity (Ntgran). For example, the expression “less than 30 days” in English is defined

as:

LessT hanndays
= M SF(xdays, [n ∗ 0.3693, N = n ∗ 0.7964, n ∗ 0.9371, n ∗ 1.0803])

LessT han30days = M SF(xdays, [30 ∗ 0.3693, 30 ∗ 0.7964, 30 ∗ 0.9371, 30 ∗ 1.0803])

= M SF(xdays, [11, 23, 28, 32])

(3)

5.2 Imprecise value (IV) expressions

Table 11 compares the results of each model used to produce trapezoidal and hexagonal

membership functions for the IV type of temporal expressions. Linear regression and MLP

methods used the distance in days (Temporal Context) to the last precise temporal expression

found in the text prior to the target imprecise timex as an input parameter when creating each

model. We used two MLP approaches: (a) one to learn each temporal granularity (“days”,

“weeks”, “months”, “years”) and (b) one to learn each imprecise value (“few”, “some”,

“many”, “several”). We highlight in boldface the best Avg score for each approach in each

language.

The best average F1-scores for each evaluated method are similar in each language (rang-

ing from 0.76 to 0.79 in Portuguese, and from 0.84 to 0.88 in English). The best average

F1-score was achieved by the MLP model trained based on granularities in Portuguese

and by the linear regression (Val/Lin) in English. However, those models do not show any

significant difference against the corresponding best model using the mean method consid-

ering the significance threshold set at 0.05: (a) in English, p value=0.075434 when

comparing the mean Day/Lin and the regression (Val/Lin) approaches; (b) in Portuguese, p

value=0.199188 when comparing the mean Val/Lin and the MLP-Val/Lin (granularity)

approaches. The main advantage of the mean approach refers to the fact it can be applied

independently of an input value or temporal context.
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Table 11 F1-scores for IV temporal expressions in Portuguese and English

Method Var Portuguese English

M4 M6 Avg M4 M6 Avg

Baseline 0.325 0.311 0.318 0.318 0.298 0.308

Mean Day/Lin 0.661 0.847 0.754 0.866 0.847 0.857

Day/Log 0.657 0.848 0.753 0.867 0.846 0.856

Val/Lin 0.669 0.850 0.760 0.859 0.845 0.852

Val/Log 0.656 0.847 0.751 0.844 0.831 0.837

Regression Day/Lin 0.660 0.850 0.755 0.892 0.871 0.881

Day/Log 0.660 0.846 0.753 0.884 0.868 0.876

Val/Lin 0.673 0.858 0.765 0.889 0.877 0.883

Val/Log 0.668 0.841 0.755 0.847 0.848 0.848

MLP (granularity) Day/Lin 0.610 0.779 0.695 0.792 0.827 0.809

Day/Log 0.694 0.728 0.711 0.849 0.814 0.831

Val/Lin 0.820 0.767 0.793 0.848 0.832 0.840

Val/Log 0.751 0.726 0.738 0.848 0.819 0.834

MLP (imprecise value) Day/Lin 0.626 0.582 0.604 0.760 0.757 0.759

Day/Log 0.712 0.551 0.632 0.862 0.843 0.853

Val/Lin 0.784 0.738 0.761 0.821 0.811 0.816

Val/Log 0.762 0.766 0.764 0.841 0.762 0.802

Figure 11 shows the hexagonal functions created by the method Mean(Day/Lin) for

the IV timexes in Portuguese and English. Table 12 presents the parameters [p, r , s, v]

used to define trapezoidal MSFs for IV temporal expressions in both languages. The set of

parameters [p, r , s, v] is given by the granularity value (Val/Lin) and by the absolute num-

ber of days (Day/Lin). For example, the expression “few weeks” in English is defined as

FewW eeks(xweeks, [1, 3, 3, 9]) (by the Val/Lin approach) or as FewW eeks(xdays, [9, 20,

25, 59]) (by the Day/Lin approach). Note that the approaches Val/Lin and Day/Lin produce

MSFs with different temporal granularities, respectively, identified by xweeks and xdays in

each MSF definition. The former describes imprecision in the same temporal granularity

as in the original expression; the latter always expresses the probabilistic distribution of a

imprecise temporal expression in number of days.

5.3 Present reference (PR) expressions

Present reference (PR) imprecise timexes comprise those expressions including “currently”,

“recently”, and “now”. For this kind of imprecise timexes, we asked people to choose the

most appropriate option to express the amount of time since when the event associated with

the target expression occurred. Figure 12 shows two examples of questions extracted from the

English questionnaire. In each question, the target imprecise expression should be defined by

another imprecise timex. Options included four IV expressions: “days”, “weeks”, “months”,

and “years”.

We calculated the histogram of the given answers for each PR question, and we used the

percentage of answers given to each IV expression option to create a combined membership

function using a percentage of the parameters extracted from each IV expression. To calculate
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(a)

(b)

Fig. 11 Hexagonal membership functions for IV imprecise timexes comprising modifiers “few”, “some”,
“many”, and “several” combined with distinct temporal cardinalities (“days”, “weeks”, “months”, and
“years”)—y-axes are the result (µ) of each MSF, and x-axes represent the amount of time in the same temporal
granularity corresponding to the label of each chart

the linear regression model, we used the percentage of answers given for each PR question in

order to produce a generic model based on the temporal context (in days). Figure 13 shows the

models for two different periods (50 weeks and 20 years), including the resulted membership

functions representation for each PR question in English and Portuguese. Table 13 shows

the weights used to combine IV expressions with different temporal granularities in order to

produce a membership function that describes each PR expression.

For example, in question number 7 (Fig. 12) the expression “recently” can be mapped to

a MSF by combining the IV parameters from the mean approach:
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Table 12 Parameters [p, r , s, v]

produced by the mean approach
used to define trapezoidal MSFs
for IV temporal expressions in
Portuguese and English

Modifier Granularity Val/Lin[p, r , s, v] Day/Lin [p, r , s, v]

(a) Portuguese

<none> Days [1, 2, 3, 10]

Weeks [1, 3, 3, 7] [9, 18, 22, 50]

Months [1, 2, 4, 11] [39, 65, 110, 312]

Years [1, 3, 10, 14] [485, 1259, 3577, 4802]

Few Days [1, 2, 4, 14]

Weeks [1, 2, 3, 7] [8, 12, 23, 50]

Months [1, 2, 3, 7] [43, 58, 96, 198]

Years [1, 2, 3, 6] [183, 588, 1164, 2274]

Some Days [1, 2, 5, 14]

Weeks [1, 3, 3, 6] [6, 18, 23, 44]

Months [1, 2, 4, 9] [38, 65, 129, 250]

Years [1, 2, 5, 8] [345, 671, 1681, 2789]

Many Days [3, 5, 11, 30]

Weeks [1, 3, 3, 9] [9, 19, 23, 64]

Months [3, 6, 8, 21] [76, 195, 254, 630]

Years [1, 10, 13, 16] [356, 3784, 4528, 5764]

Several Days [2, 8, 12, 28]

Weeks [1, 3, 3, 9] [9, 19, 23, 64]

Months [1, 3, 5, 22] [57, 93, 128, 663]

Years [1, 3, 10, 16] [596, 1029, 3428, 5849]

(b) English

<none> Days [1, 3, 5, 14]

Weeks [1, 2, 4, 11] [7, 18, 30, 73]

Months [1, 3, 5, 10] [26, 92, 134, 296]

Years [1, 3, 4, 16] [239, 1125, 1498, 5550]

Few Days [1, 2, 4, 8]

Weeks [1, 3, 3, 9] [9, 20, 25, 59]

Months [1, 3, 4, 7] [25, 80, 107, 205]

Years [1, 3, 4, 8] [315, 993, 1304, 2806]

Some Days [1, 3, 6, 29]

Weeks [1, 2, 3, 6] [6, 18, 22, 45]

Months [1, 2, 4, 11] [27, 72, 120, 310]

Years [1, 3, 5, 13] [235, 1134, 1776, 4675]

Many Days [2, 5, 13, 37]

Weeks [1, 4, 5, 15] [6, 31, 36, 102]

Months [2, 6, 8, 17] [59, 191, 233, 504]

Years [2, 4, 7, 12] [709, 1737, 2573, 4150]

Several Days [1, 4, 5, 10]

Weeks [1, 3, 5, 11] [8, 24, 34, 76]

Months [1, 3, 5, 14] [52, 81, 145, 401]

Years [1, 3, 5, 14] [261, 1280, 1583, 5081]
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Fig. 12 Example of questions covering PR imprecise timexes in English

Mrecently = 0.180 × Mdays + 0.528 × Mweeks + 0.281 × Mmonths + 0.010 × Myears

which is equivalent to:

Mrecently = M(x, [0.180 × 1 + 0.528 × 7 + 0.281 × 26 + 0.010 × 239,

0.180 × 3 + 0.528 × 18 + 0.281 × 92 + 0.010 × 1125,

0.180 × 5 + 0.528 × 30 + 0.281 × 134 + 0.010 × 1498,

0.180 × 14 + 0.528 × 73 + 0.281 × 296 + 0.010 × 5550])

or:

Mrecently = M(xdays, [13, 47, 70, 180])

PR expressions in English are more linearly dependent on the temporal context than the

same expression in Portuguese. That means “recently” represents more in terms of amount

of time in English when used in a temporal context of “10 years” than when it is used in a

temporal context of “6 months”. On the other hand, the equivalent expression in Portuguese

seems to have a similar understanding independently of the temporal context being used.

The linear dependency in English and the nonlinear dependency in Portuguese are con-

firmed by the statistical t test when considering the significance threshold set at 0.05. We

compared the PR models produced by mean and linear regression approaches from IV impre-

cise expressions: (a) the mean approach is a non-temporal dependent method that uses the

mean values obtained from IV expressions in order to compound PR expressions based on the

average of distinct IV modifiers; (b) the linear regression approach uses the temporal context

as input parameter to produce MSFs. In Portuguese, mean and linear regression approaches do

not evidence significant differences when comparing their final scores (p-value=0.438141),

while the same models in English present significantly different (p value=0.015191).

We found the set of PR imprecise temporal expressions much more challengeable to model

in terms of fuzzy representation. We believe further experiments focused in this specific type

of imprecise temporal reference are required in order to better understand the interpretability

of each possible PR expression in different contexts.
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(a)

(b)

(c)

(d)

Fig. 13 Hexagonal membership function model for PR imprecise timexes
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Table 13 Weights used to combine temporal granularities from IV membership functions to produce the
parameters that define trapezoidal MSFs for PR expressions in Portuguese (Pt) and English (En)

Lang IV approach PR expression I Vdays I Vweeks I Vmonths I Vyears

Pt Mean Now 0.729 0.182 0.074 0.015

Recently 0.313 0.462 0.168 0.056

Currently 0.379 0.308 0.231 0.081

Regression Now 0.784 0.130 0.075 0.011

Recently 0.325 0.439 0.157 0.079

Currently 0.512 0.379 0.095 0.013

En Mean Now 0.385 0.175 0.338 0.102

Recently 0.180 0.528 0.281 0.010

Currently 0.343 0.390 0.208 0.059

Regression Now 0.557 0.161 0.339 − 0.056

Recently 0.239 0.574 0.189 − 0.003

Currently 0.437 0.474 0.078 0.012

5.4 Comparing languages

We compared models created for imprecise temporal expressions in English and Portuguese.

We calculated the F1-score between both languages as the average of each F1-score calcu-

lated for each expression format for the trapezoidal and hexagonal MSFs. All expressions

within the same type were combined to calculate a partial F1-score (e.g. “some days” in

Portuguese and the same expression in English) as the average between F1-score for the

trapezoidal and hexagonal MSFs. The calculated average F1 score among all the expressions

resulted in the similarity between Portuguese and English.

However, when calculating the F1-score using the MSF area, it was not possible to iden-

tify whether the differences are more concentrated in the top (confidence = 1) or the bottom

(confidence = 0) of such functions. In order to identify how relevant such differences are, we

used a variation of F1-score that we called F13D. We considered each MSF as a tridimensional

object, from which the third dimension identifies how deep each MSF is, varying from 0 at the

bottom to 1 at the top. Instead of using the MSF areas, we then used the MSF volumes to calcu-

late F13D (Eq. 4). Figure 14 illustrates the difference between F1 and F13D, comparing three

MSFs (A, B, and C). A and B have a difference in the top, while A and C have the exactly same

difference in terms of area, in the bottom instead. Thus, F1(A, B) = F1(A, C) = 0.9655.

When calculating the F13D, we can observe F13D(A, B) < F13D(A, C), which means A

and B have differences more concentrated in the top comparatively to the differences between

A and C—differences at the top have more influence to decrease F13D than differences at

the bottom due to the MSF depth.

F13D(A, B) =
2 × CommonV olume(A, B)

V olume(A) + V olume(B)
(4)

We used the following normalisation models to compare the results in English and Por-

tuguese: (a) Log(A) regression models to compare MV expressions; (b) mean models to

compare IV expressions; and (c) Lin(A) regression models to compare PR expressions.

Table 14 shows the F1 and F13D-scores between English and Portuguese. We can observe

F1 > F13D for all the three types of imprecise temporal expressions analysed, indicating
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Fig. 14 Contrasting F1 and F13D scores used to calculate the similarity between membership functions

Table 14 F1 and F13D-scores
between Portuguese and English

Imprecise type F1 F13D

MV 0.731 0.692

IV 0.767 0.719

PR 0.391 0.304

that differences tend to be concentrated more closely to the top of the MSFs, where the

confidence is higher, and differences can be considered more relevant.

6 Conclusions

We have presented an analysis of previously unstudied imprecise time expressions (timexes)

in text. This analysis helps to address the overall problem of dealing with temporal expressions

in information extraction. Our work introduces three novel techniques for this analysis.

First, we provide a novel classification of imprecise timexes. Second, we develop a novel

methodology to obtain membership functions for timexes, based on human interpretation

of imprecise timexes. Third, as well as the usual F1-score for evaluation, we introduce

a novel metric for identifying the differences between membership functions, along three

dimensions—the F13D. Our models were applied to both English, and for the first time, to

Portuguese expressions.
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The resulting models give an insight into the way in which imprecise expressions are

interpreted in different languages. For example, the linear regression-Log(A) membership

function that defines the expression “less than 90 days” in Portuguese includes possible

interpretations—albeit at a low level of confidence—of 91 to 95 days. This leads us to believe

that temporal imprecision is not mathematically reasoned and that there is a level of uncer-

tainty that is able to cross the boundary limits defined by the numerical values found within

the temporal expressions.

In future work, we plan to perform experiments to obtain normalisation models corre-

sponding to the other types of imprecise expressions (PP, RV, and GE), and examine whether

the differences between languages can be influenced by the knowledge domain or by cultural

differences. We also plan to further examine the relation between the F1 and F13D scores

and compare their interpretability against other probability distribution divergence metrics,

such as the Kullback–Leibler (KL) divergence. Additionally, we plan to compare the mem-

bership function models against other probabilistic representations (e.g. Gaussian or gamma

distributions) and validate in what extent such probabilistic generalisations are able to mimic

the results we found in this work.

Up to 35% of temporal expressions may be imprecise in some domains. By normalising

these imprecise expressions, we can greatly increase the amount of extracted events connected

to a timeline. We plan to perform search-based experiments over the extracted events from

medical records, in order to provide an extrinsic evaluation of the impact of dealing with

such imprecise temporal data on the overall IE process.
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