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NORMALITY AND REPELLING PERIODIC POINTS

JIANMING CHANG AND LAWRENCE ZALCMAN

Abstract. Let k ≥ 3(≥ 2) be an integer and F be a family of functions
meromorphic in a domain D ⊂ C, all of whose poles have multiplicity at least

2 (at least 3). If in D each f ∈ F has neither repelling fixed points nor repelling
periodic points of period k, then F is a normal family in D. Examples are
given to show that the conditions on poles are necessary and sharp.

1. Introduction and main results

A family F of meromorphic functions defined in a plane domain D ⊂ C is said to
be normal in D if each sequence {fn} ⊂ F contains a subsequence which converges
spherically locally uniformly in D to a meromorphic function or ∞; see [16, 20, 24].

In recent years, there have been many interesting results on normal families of
holomorphic or meromorphic functions defined by conditions on fixed points or
periodic points. This subject starts from a problem of L. Yang [23, Problem 8].
To state this problem and related results, we require the following notation and
definitions.

Let f : D → C be a meromorphic function. Then the iterates fn : Dn → C of
f are defined inductively by D1 = D, f1 = f and

Dn = f−1(Dn−1) = {z ∈ D : f(z) ∈ Dn−1}, fn = fn−1 ◦ f for n ≥ 2.

Note that Dn+1 ⊂ Dn ⊂ D for all n ∈ N. See [2, 3, 11, 14, 15].
Let z0 ∈ D. If there exists a smallest integer p ∈ N such that z0 ∈ Dp, f

p(z0) =
z0, then z0 is said to be a periodic point of period p of f and the corresponding
cycle {z0, f(z0), · · · , fp−1(z0)} is said to be a periodic cycle of period p of f in D.
A periodic point of period 1 is said to be a fixed point. Define the multiplier of
the periodic point z0 (and the corresponding cycle) by λ = (fp)′(z0). According to
|λ| < 1, |λ| = 1, or |λ| > 1, the periodic point z0 (and the corresponding cycle) is
said to be attracting, neutral, or repelling. If |λ| = 1, then according to whether
there is some integer m such that (λ)m = 1 or not, z0 is said to be rationally neutral
or irrationally neutral. A fixed point which is either repelling or has multiplier 1 is
said to be weakly repelling; see [2, 3, 4, 7, 8, 14, 22].
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5722 JIANMING CHANG AND LAWRENCE ZALCMAN

The problem of Yang mentioned above can be stated as follows.

Problem 1. Let F be a family of entire functions and D ⊂ C be a domain. If
there exists an integer k ≥ 2 such that each f ∈ F and its k-th iterate fk has no
fixed points in D, must F be normal in D?

Essén and Wu [14, 15] answered Problem 1 affirmatively with the following more
general result.

Theorem A. Let F be a family of functions holomorphic in D. If for each f ∈ F
there exists an integer k = k(f) ≥ 2 such that the k-th iterate fk has no repelling
fixed points in D, then F is normal in D.

The following result [10] is a generalization of Theorem A, in which only the fixed
points and the periodic points of period k of f ∈ F are considered. We remark
that every periodic point of period j of f with j a divisor of k is a fixed point of
the k-th iterate fk, and vice versa.

Theorem B. Let K < ∞ be a positive number, D ⊂ C be a domain, and F be a
family of functions holomorphic in D. If for every f ∈ F , |(f)′(η)| ≤ K for every
fixed point η of f in D and there exists a positive integer k = k(f) such that f has
no repelling periodic points of period k in D, then F is normal in D, provided that
one of the following conditions holds:

(a) K < 3 and k ≥ 2 for all f ∈ F ;

(b) K < 2
√
2 + 1 and k ≥ 3 for all f ∈ F ;

(c) K < ∞ and k ≥ 4 for all f ∈ F .

Thus it is natural to study the following problem for families of meromorphic
functions [11].

Problem 2. Let F be a family of functions meromorphic in a domain D ⊂ C. If
there exists an integer k ≥ 2 such that for each f ∈ F the k-th iterate fk has no
repelling fixed points in D, must F be normal in D?

The family {1/(nz)}, which is not normal at z = 0, shows that the answer to
Problem 2 is negative [11, Example 1]. However, we have proved the following
result [13, Theorem 2].

Theorem C. Let F be a family of functions meromorphic in a domain D ⊂ C

and δ < 1 be a positive number. If there exists an integer k ≥ 2 such that for each
f ∈ F all the fixed points η ∈ D of the k-th iterate fk satisfy |(fk)′(η)| ≤ δ, then
F is normal in D.

The condition in Theorem C, that the fixed points of fk for all f ∈ F are
uniformly attracting, is necessary and cannot be replaced by assuming that the
fixed points of fk for all f ∈ F are attracting [13, Theorem 1].

Here, we continue to study Problem 2. We show that under some appropriate
additional conditions, the answer to Problem 2 is positive.

Theorem 1. Let k ≥ 3 be an integer and F be a family of meromorphic functions
in D such that each function in F has neither repelling fixed points nor repelling
periodic points of period k in D. If for each f ∈ F there exists a constant a =
a(f) ∈ C \D such that all a-points of f in D have multiplicity at least 2, then F is
normal in D.
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Since ∞ ∈ C \D, we have the following corollary.

Corollary 2. Let k ≥ 3 be an integer and F be a family of meromorphic functions
in D such that each function in F has neither repelling fixed points nor repelling
periodic points of period k in D. If for each f ∈ F all poles of f in D have
multiplicity at least 2, then F is normal in D.

The example {1/(nz)} shows that the condition on the poles is necessary in
Corollary 2 and that the constants a cannot be in D in Theorem 1 as 1/(nz) 
= 0
for all n. The following example shows that Corollary 2 (and Theorem 1) does not
hold for k = 2.

Example 1. Let

F =

{
fn(z) =

z

3
+

2

3n3z2
: n = 1, 2, 3, · · ·

}
.

Then each fn has a single double pole and has neither repelling fixed points nor
(repelling) periodic points of period 2 in C, since

fn(z) = z − 2(z3 − 1/n3)

3z2
, f2

n(z) = z − 8(z3 − 1/n3)3

9z2(z3 + 2/n3)2
.

However, we have fn(0) = ∞ and fn(1/n) = 1/n → 0 as n → ∞. It follows that
the family F = {fn} is not equi-continuous. Hence F is not normal at z = 0.

For k = 2, we have

Theorem 3. Let F be a family of meromorphic functions in D such that for each
function f ∈ F , f2 has no repelling fixed points in D. If for every f ∈ F there
exists a constant a = a(f) ∈ C\D such that all a-points of f in D have multiplicity
at least 3, then F is normal in D.

Corollary 4. Let F be a family of meromorphic functions in D such that for each
function f ∈ F , f2 has no repelling fixed points in D. If for every f ∈ F all poles
of f in D have multiplicity at least 3, then F is normal in D.

We also have the following result which is a generalization of Theorem C.

Theorem 5. Let k ≥ 2 be an integer and F a family of functions meromorphic
in D ⊂ C having no repelling periodic points of period k in D. If there exists a
positive number δ < 1 such that for each f ∈ F , |f ′(z)| ≤ δ whenever z is a fixed
point of f in D, then F is normal in D.

The plan of this paper is as follows. In Section 2, we state and prove a number
of auxiliary results, some of which are of independent interest. In Section 3, we
give the proofs of theorems.

2. Auxiliary results

In this section, we state some known results and prove the main lemmas that
are required in the proofs of our results.

Lemma 1 ([3, Theorem 5]). Let f be a transcendental meromorphic function and
k ≥ 2 a positive integer. Then f has infinitely many repelling periodic points of
period k in C.
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This result, which answers a problem of Baker, does not hold for rational func-
tions of degree at least 2. Baker [1] proved that there are rational functions of
degree at least 2 which have no periodic point of period k = 2 or k = 3. For
rational functions, we proved

Lemma 2 ([12, Theorem 2]). Let R be a rational function of degree d ≥ 2 and let
k ≥ 2 be an integer. Denote by Nrp(k) the number of repelling periodic points of
period k of R. Then

Nrp(k) ≥ dk −
∑

j|k,j<k

dj − 4k(d− 1).

As a corollary to Lemma 2, we have

Lemma 3. Let R be a rational function of degree ≥ 2 and let k ≥ 5 be an integer.
Then R has at least two repelling periodic cycles of period k, and hence at least one
of them lies in C.

Proof. Suppose that R has at most one repelling periodic cycle of period k. Then
Nrp(k) ≤ k. Thus, by Lemma 2,

(1) fk(d) := dk −
∑

j|k,j<k

dj − 4k(d− 1)− k ≤ 0.

Let m be the largest integer less than k that divides k. Then m ≤ k/2. Note that
k ≥ 5 and d ≥ 2, so that dk/2 − 1 > d2 − 1 ≥ 3(d− 1) ≥ 3. Thus

dk ≤
∑

j|k,j<k

dj + 4k(d− 1) + k ≤
m∑
j=1

dj + 5k(d− 1)

=
d

d− 1
(dm − 1) + 5k(d− 1) <

(
2 +

5k

3

)
(dk/2 − 1)

≤ 31k

15
(dk/2 − 1) <

31k

15
dk/2,

so that

(2) d <

(
31k

15

)2/k

.

Let φ(x) = (31x/15)2/x. Then for x > 2,

φ′(x) =
2

x2

(
31x

15

)2/x(
1− log

31x

15

)
< 0.

Thus φ(x) is decreasing for x > 2. It follows from (2) that d < φ(k) ≤ φ(5) =
(31× 5/15)2/5 < 3. Moreover, if k ≥ 9, then d < φ(k) ≤ φ(9) = (31× 9/15)2/9 < 2.
Hence d = 2 and 5 ≤ k ≤ 8. However, by direct calculations we have f5(2) = 5,
f6(2) = 20, f7(2) = 91, f8(2) = 194. This contradicts (1). The lemma is proved.

It is interesting that Lemma 3 does not hold for k ≤ 4.

Example 2 ([1, Example 1]). Let

R(z) = z +
(−2 +

√
2 i)(3z2 + 2− 2

√
2 i)

6z
.
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Then

R2(z) =z − 3z4 + 4z2 + 4

2z(z2 + 2)
and

R4(z) =z − (3z4 + 4z2 + 4)(z4 + 4z2 − 4)3

4z(z2 + 2)(z2 + 2z + 2)(z2 − 2z + 2)(z8 + 8z6 + 40z4 + 32z2 + 16)
.

Thus R has no repelling periodic cycle of period 4.

However, for k ≤ 4 we have the following four results, which are proved below.

Lemma 4. Let R be a rational function of degree at least 2. Then R has either a
repelling fixed point in C or a repelling periodic cycle of period 4 in C.

Lemma 5. Let R be a rational function of degree at least 2. Then R has either a
repelling fixed point in C or a repelling periodic cycle of period 3 in C, unless R is
affinely conjugate to one of the functions

z − 3z2

2(z − 1)
, z +

(−3±
√
3 i)z(z − 1)

2(2z − 1)
, or

z − c(z − z0)
2[z0(z − z0) + 1]

cz0(z − z0)2 + (c+ z0 + 1)(z − z0) + 1
,

where the constants c, z0 satisfy c2 + 3c+3 = 0 and z30 + (4c+6)z20 + 2cz0 − 2 = 0.

Here and in the sequel, for two rational functions U and V , we say that U is
affinely conjugate to V if there exist constants a( 
= 0) and b such that aU(z) + b ≡
V (az + b); see [1].

Lemma 6. Let R be a rational function of degree at least 2 such that R has no pole
with multiplicity ≤ 2. Then R has either a repelling fixed point in C or a repelling
periodic cycle of period 2 in C.

Lemma 7. Let R be a rational function of degree at least 2 such that R has no
fixed point in C with multiplier 1 or −1. Then R has either a repelling fixed point
in C or a repelling periodic cycle of period 2 in C.

To prove Lemmas 4–7, we require the following results (Lemmas 8–15) from
complex dynamics.

Lemma 8 ([17, Corollary 12.7]; cf. [21, Lemma 25]). Let R be a rational function
of degree ≥ 2. Then R has a weakly repelling fixed point in C.

Now let {z0, R(z0), · · · , Rp−1(z0)} be an attracting periodic cycle of period p
of R. Then the Fatou set of R has p components Uj (0 ≤ j ≤ p − 1) such that

Rj(z0) ∈ Uj and Rnp(z) → Rj(z0) in Uj as n → ∞. The union
⋃p−1

j=0 Uj is
called the immediate basin of attraction associated to the attracting periodic cycle
{z0, R(z0), · · · , Rp−1(z0)}; see [8, p. 58].

Lemma 9 ([8, p. 59, Theorem 2.2]). The immediate basin of attraction associated
to an attracting periodic cycle contains at least one critical point.

Here and in the sequel, a point z0 ∈ C is called a critical point ofR (of multiplicity
p) if z0 is a zero of R′ (of multiplicity p) or a multiple pole of R (of multiplicity
p + 1); ∞ is a critical point of R (of multiplicity p) if 0 is a critical point of g (of
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multiplicity p), where g(z) = R(1/z). A useful fact is that a rational function of
degree d ≥ 2 has at most 2d− 2 critical points counting multiplicity; see [8, p. 54].

Now let {z0, R(z0), · · · , Rp−1(z0)} ⊂ C be a rationally neutral cycle of period p.
Then there exists a smallest integer m ≥ 1 such that [(Rp)′(z0)]

m = 1. Hence there
exists a constant c 
= 0 and a positive integer k such that near z0

(3) Rpm(z) = z + c(z − z0)
km+1[1 + o(1)];

see [8, p. 41] and [6, p. 8]. Furthermore, for any n ∈ N,

(4) Rnpm(z) = z + nc(z − z0)
km+1[1 + o(1)].

According to the Leau-Fatou petal theorem (see [22, p. 75], the Flower Theorem),
for each 0 ≤ j ≤ p−1, the Fatou set of R has km components Uj,i (1 ≤ i ≤ km) such
that Rj(z0) ∈ ∂Uj,i; in Uj,i, R

np(z) → Rj(z0), (n → ∞). These Uj,i are called Leau
domains or attracting petals. They can be divided into k groups, where each group
G has pm Leau domains such that R(G) = G. That is, each group G can be written
as G = {Rj(U), 0 ≤ j ≤ pm− 1}(Rpm(U) = U). The group G is called a cycle of
Leau domains associated to the rationally neutral cycle {z0, R(z0), · · · , Rp−1(z0)}.
The union

⋃pm−1
j=0 Rj(U) is called the immediate basin of attraction associated to a

rationally neutral cycle {z0, R(z0), · · · , Rp−1(z0)}. See [6, p. 8], [8, p. 60] and [22,
pp. 72–77].

By conjugation, one can define the cycles of Leau domains or immediate basins
of attraction associated to a rationally neutral cycle of period p containing ∞.

Lemma 10 ([8, p. 60, Theorem 2.3]). Each immediate basin of attraction associ-
ated to a rationally neutral periodic cycle contains a critical point.

The relation between critical points and irrationally neutral periodic cycles is
more complicated. Using quasi-conformal surgery, Shishikura [21, Proposition 1]
proved that for a rational function R of degree d ≥ 2, the number of critical points
(ignoring multiplicity) of R contained in the Fatou set but not in the inverse images
of Herman rings plus the number of irrationally neutral periodic cycles of R does
not exceed the number of critical points (ignoring multiplicity) of R. As a corollary,
we have

Lemma 11 ([21, Proposition 1]). For a rational function R of degree d ≥ 2, the
number of critical points (ignoring multiplicity) of R contained in the immediate
basins of attraction associated to the attracting periodic cycles and rationally neutral
cycles plus the number of irrationally neutral periodic cycles of R does not exceed
the number of critical points (ignoring multiplicity) of R, and hence is at most
2d− 2.

By Lemmas 9–11, we have

Lemma 12 ([21, Corollary 1]). Let R be a rational function of degree ≥ 2. Then
R has at most 2d− 2 non-repelling periodic cycles.

Lemma 13 ([12, Lemma 4]). Let R be a rational function of degree d ≥ 2 such
that ∞ is a weakly repelling fixed point of R. Then R has the form

(5) R(z) = z + c
Q(z)

P (z)
,

where c 
= 0 is a constant and P, Q are co-prime monic polynomials with degrees p
and q, respectively, such that q ≤ p+1 = d and that 0 < |c+1| < 1 when q = p+1.
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Furthermore, for k ≥ 2,

(6) Rk(z) = z + ck
Qk(z)

Pk(z)

with constant ck 
= 0 and co-prime monic polynomials Pk and Qk satisfying deg(Qk)
= q + (p+ 1)k − (p+ 1).

Remark 1. When q ≤ p, ∞ is a fixpoint with multiplier 1, and near z = 0,

(7)
1

R
(
1
z

) = z − czp−q+2[1 + o(1)].

It follows that there are p− q+1 cycles of Leau domains (each cycle consists of one
Leau domain) associated to the fixed point ∞, so that by Lemma 11 there are at
least p− q + 1 critical points associated to the fixed point ∞.

The following lemma follows from the proof of Lemma 2; cf. the proof of Theorem
2 in [12].

Lemma 14. Let R be a rational function of degree d ≥ 2 of the form (1) with
constant c 
= 0 and co-prime monic polynomials P, Q satisfying the properties
stated in Lemma 13. Then the polynomial Qk in Lemma 13 has the following
representation:

(8) Qk(z) =
∏
j|k

⎧⎪⎨⎪⎩
mj∏
i=1

⎡⎣ ∏
ζ∈Γj,i

(z − ζ)

⎤⎦ν
(k)
j,i +1

nj∏
i=mj+1

⎡⎣ ∏
ζ∈Γj,i

(z − ζ)

⎤⎦
⎫⎪⎬⎪⎭ ,

so that by Lemma 13,

(9) q + (p+ 1)k − (p+ 1) =
∑
j|k

mj∑
i=1

jν
(k)
j,i +

∑
j|k

jnj .

Here Γj,i(⊂ C) are the periodic cycles of period j, nj ≥ 0 and mj ≥ 0 are the
number of periodic cycles of period j contained in C and the number of non-repelling

periodic cycles of period j contained in C, respectively, and ν
(k)
j,i ≥ 0 are integers.

Remark 2. By (3) and (4), for k1|k2, if ν(k1)
j,i > 0, then ν

(k2)
j,i = ν

(k1)
j,i .

Remark 3. By Lemmas 9 and 10 (see the proof of Theorem 2 in [12]),

(10)
∑
j|k

mj∑
i=1

jν
(k)
j,i ≤ kN ′

c,

where N ′
c is the number of critical points of R (ignoring multiplicity) which lie in

the Leau domains associated to the rationally neutral periodic cycles (of periods
j|k) contained in C.

Remark 4. Let k ≥ 2 be a prime integer and set

I = {i : ν(k)1,i = 0}, I1 = {i ∈ I : Γ1,i is irrationally neutral},

J = {i : ν(k)k,i = 0}, J1 = {i ∈ J : Γk,i is irrationally neutral}.(11)

Denote by N ′′
c the number of critical points of R (ignoring multiplicity) which

lie in the the immediate basins of attraction associated to the attracting periodic
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cycles (of periods j|k) contained in C, by Nc the number of critical points of R
(ignoring multiplicity) in C = C∪{∞}, and by n∞ the number of critical points of
R (ignoring multiplicity) which lie in the Leau domains associated to the rationally
neutral fixed point ∞. By Remark 1, we see that for q = p+ 1, n∞ = 0, while for
q ≤ p, n∞ ≥ p− q + 1.

Then by Lemma 9 and Lemma 10, we have

(12)
∑

i∈I\I1

1 +
∑

i∈J\J1

1 +

m1∑
i=1

ν
(1)
1,i +

1

k

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(k)
1,i +

mk∑
i=1

ν
(k)
k,i ≤ N ′

c +N ′′
c ,

and by Lemma 11,

(13) N ′
c +N ′′

c + n∞ +
∑
i∈I1

1 +
∑
i∈J1

1 ≤ Nc.

Note that

m1 ≤
∑
i∈I

1 +

m1∑
i=1

ν
(1)
1,i +

1

k

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(k)
1,i ,(14)

mk ≤
∑
i∈J

1 +

mk∑
i=1

ν
(k)
k,i .(15)

Thus, by (12)–(15),

m1 +mk

≤
∑
i∈I

1 +
∑
i∈J

1 +

m1∑
i=1

ν
(1)
1,i +

1

k

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(k)
1,i +

mk∑
i=1

ν
(k)
k,i

≤Nc − n∞,(16)

and by (9),

q = n1 +

m1∑
i=1

ν
(1)
1,i ,(17)

q + (p+ 1)k − (p+ 1) = n1 +

m1∑
i=1

ν
(k)
1,i + knk + k

mk∑
i=1

ν
(k)
k,i .(18)

Thus

(19) (p+ 1)k − (p+ 1) = knk +
∑

1≤i≤m1,ν
(1)
1,i=0

ν
(k)
1,i + k

mk∑
i=1

ν
(k)
k,i .
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Hence by (16)–(19),

1

k
[(p+ 1)k − (p+ 1)]

=nk +
1

k

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(k)
1,i +

mk∑
i=1

ν
(k)
k,i

=(n1 −m1) + (nk −mk)−
(
n1 +

m1∑
i=1

ν
(1)
1,i

)
+m1 +mk

+

m1∑
i=1

ν
(1)
1,i +

1

k

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(k)
1,i +

mk∑
i=1

ν
(k)
k,i(20)

≤(n1 −m1) + (nk −mk)− q + 2(Nc − n∞)−
(∑

i∈I

1 +
∑
i∈J

1

)
(21)

≤(n1 −m1) + (nk −mk)− q + 2(Nc − n∞).(22)

Lemma 15 ([15, Theorem 4]). Let P be a polynomial of degree ≥ 2. Then for any
integer k ≥ 2, P k has at least one repelling fixed point in C.

Remark 5. By Lemma 15, for k = 2 or 3, every polynomial P of degree ≥ 2 either
has at least one repelling fixed point in C or at least one repelling periodic cycle of
period k in C. Indeed, this claim holds for all k ≥ 2; see [9].

We now give the proofs of Lemmas 4–7 as follows.

Proof of Lemma 4. Suppose that the lemma does not hold, that is, R has neither
repelling fixed points in C nor repelling periodic cycles of period 4 in C. We consider
two cases.

Case 1. ∞ is a repelling fixed point of R. Then by assumption, n1 = m1, n4 = m4,
and R has the form (5) with q = p+ 1 = d and 0 < |c+ 1| < 1.

Thus, by Lemma 14,

p+ 1 =m1 +

m1∑
i=1

ν
(1)
1,i ,(23)

(p+ 1)2 =m1 +

m1∑
i=1

ν
(2)
1,i + 2n2 + 2

m2∑
i=1

ν
(2)
2,i ,(24)

(p+ 1)4 =m1 +

m1∑
i=1

ν
(4)
1,i + 2n2 + 2

m2∑
i=1

ν
(4)
2,i + 4m4 + 4

m4∑
i=1

ν
(4)
4,i .(25)

By (24) and (25),

(26)

m1∑
i=1

ν
(2)
1,i +2

m2∑
i=1

ν
(2)
2,i +(p+1)4−(p+1)2 = 4m4+

m1∑
i=1

ν
(4)
1,i +2

m2∑
i=1

ν
(4)
2,i +4

m4∑
i=1

ν
(4)
4,i ,

and by Lemma 12,

(27) m1 +m2 +m4 ≤ 2p.
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By (10),

(28)

m1∑
i=1

ν
(4)
1,i + 2

m2∑
i=1

ν
(4)
2,i + 4

m4∑
i=1

ν
(4)
4,i ≤ 8p.

Thus, by (26)–(28),

(29) 4(m1 +m2) +

m1∑
i=1

ν
(2)
1,i + 2

m2∑
i=1

ν
(2)
2,i + (p+ 1)4 − (p+ 1)2 ≤ 16p.

By (23) and the fact that ν
(2)
1,i ≥ ν

(1)
1,i (1 ≤ i ≤ m1), we have

(30) m1 +

m1∑
i=1

ν
(2)
1,i ≥ m1 +

m1∑
i=1

ν
(1)
1,i = p+ 1.

By (23), m1 ≥ 1. Thus by (29), (30) and the facts that m2 ≥ 0 and ν
(2)
2,i ≥ 0,

(31) (p+ 1)4 − (p+ 1)2 − 15(p+ 1) + 19 ≤ 0.

This is impossible.

Case 2. ∞ is not a repelling fixed point of R. Then R has no repelling fixed point
and by Lemma 8, R has a fixed point z0 ∈ C with multiplier 1. Let T be a linear
transformation such that T (z0) = ∞ and T (∞) = z0. Then the rational function

R̂ = T ◦R◦T−1 has a fixed point ∞ with multiplier 1, has no repelling fixed points,
and has at most one repelling periodic cycle of period 4 contained in C, since R has
no repelling periodic cycles of period 4 contained in C.

Thus we may assume that ∞ is a fixed point of R with multiplier 1, so that R
has the form (5) with q ≤ p and d = p + 1, and by assumption, n1 − m1 = 0,
0 ≤ n4 −m4 ≤ 1.

Thus by Lemma 14,

q =m1 +

m1∑
i=1

ν
(1)
1,i ,(32)

q + (p+ 1)2 − (p+ 1) =m1 +

m1∑
i=1

ν
(2)
1,i + 2n2 + 2

m2∑
i=1

ν
(2)
2,i ,(33)

q + (p+ 1)4 − (p+ 1) =m1 +

m1∑
i=1

ν
(4)
1,i + 2n2 + 2

m2∑
i=1

ν
(4)
2,i + 4n4 + 4

m4∑
i=1

ν
(4)
4,i

≤ m1 +

m1∑
i=1

ν
(4)
1,i + 2n2 + 2

m2∑
i=1

ν
(4)
2,i + 4(m4 + 1) + 4

m4∑
i=1

ν
(4)
4,i .(34)

By (33) and (34),
(35)
m1∑
i=1

ν
(2)
1,i +2

m2∑
i=1

ν
(2)
2,i +(p+1)4−(p+1)2 ≤ 4(m4+1)+

m1∑
i=1

ν
(4)
1,i +2

m2∑
i=1

ν
(4)
2,i +4

m4∑
i=1

ν
(4)
4,i .
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By Lemma 12, m1 + m2 + m4 ≤ 2p − 1, since ∞ is a fixed point with multiplier
1. By Remark 1 of Lemma 13, N ′

c ≤ 2p − (p − q + 1) = p + q − 1. Thus, by (10)
and (35),

(36) 4(m1 +m2) +

m1∑
i=1

ν
(2)
1,i + 2

m2∑
i=1

ν
(2)
2,i + (p+ 1)4 − (p+ 1)2 ≤ 8p+ 4(p+ q − 1).

It follows from (36) and q ≤ p that p = 1, q = 1 and m1 = 0. However, this
contradicts (32). Lemma 4 is proved.

Proof of Lemma 5. Suppose that the lemma does not hold, that is, R has neither
repelling fixed points in C nor repelling periodic cycles of period 3 in C. Next we
consider five cases.

Case 1. ∞ is a repelling fixed point of R. Then by assumption, n1−m1 = n3−m3 =
0 and R has the form (5) with q = p+ 1 = d and 0 < |c+ 1| < 1.

Thus, by Lemma 14,

p+ 1 =m1 +

m1∑
i=1

ν
(1)
1,i ,(37)

(p+ 1)3 =m1 +

m1∑
i=1

ν
(3)
1,i + 3m3 + 3

m3∑
i=1

ν
(3)
3,i .(38)

By Lemmas 9–11 and (16),

m1 +m3

≤
∑
i∈I

1 +
∑
i∈J

1 +

m1∑
i=1

ν
(1)
1,i +

1

3

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(3)
1,i +

m3∑
i=1

ν
(3)
3,i

≤2p.(39)

Thus, by (37)–(39),

1

3
[(p+ 1)3 − (p+ 1)]

=m3 +m1 −
(
m1 +

m1∑
i=1

ν
(1)
1,i

)
+

m1∑
i=1

ν
(1)
1,i +

1

3

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(3)
1,i +

m3∑
i=1

ν
(3)
3,i

≤4p− (p+ 1) = 3p− 1.(40)

It follows that p = 1, m1 +m3 = 2. By (37), 1 ≤ m1 ≤ p + 1 = 2, so that either
m1 = m3 = 1 or m1 = 2 and m3 = 0.

If m1 = m3 = 1, then by (40), ν
(1)
1,1 = ν

(3)
1,1 = 1 and ν

(3)
3,1 = 1. Thus

P (z) = z − a, Q(z) = (z − b)2,

Q3(z) = (z − b)2[(z − z1)(z −R(z1))(z −R2(z1))]
2,(41)

where a, b are distinct constants and {z1, R(z1), R
2(z1)} ⊂ C. By a suitable conju-

gation z → αz + β, we may assume a = 1 and b = 0. Thus

R(z) = z + c
z2

z − 1
.
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A computation shows that Q3(z) = z2H(z), where

H(z) = z6 − 4c+ 6

(c+ 1)2
z5 +

8c+ 15

(c+ 1)3
z4 − 10c3 + 52c2 + 96c+ 60

(c2 + 3c+ 3)(c+ 1)4
z3

+
9c2 + 39c+ 45

(c2 + 3c+ 3)(c+ 1)4
z2 − 6c+ 18

(c2 + 3c+ 3)(c+ 1)4
z +

3

(c2 + 3c+ 3)(c+ 1)4
.(42)

It follows from Q3(z) = z2H(z) and (41) with b = 0 that H is a square of a cubic
polynomial, say

H(z) = (z3 + αz2 + βz + γ)2

= z6 + 2αz5 + (α2 + 2β)z4 + (2γ + 2αβ)z3 + (2αγ + β2)z2 + 2βγz + γ2,(43)

where α, β, γ are constants. Equating coefficients in (42) and (43) and solving the
equations obtained yields that c = −3/2. Thus in this case, R is affinely conjugate
to the first function stated in Lemma 5.

If m1 = 2 and m3 = 0, then by (40), ν
(1)
1,1 = ν

(1)
1,2 = 0 and ν

(3)
1,1 = ν

(3)
1,2 = 3. Thus

(44) P (z) = z − a, Q(z) = (z − b1)(z − b2), Q3(z) = (z − b1)
4(z − b2)

4.

By a suitable conjugation z → αz + β, we may assume b1 = 1 and b2 = 0. Thus

R(z) = z + c
z(z − 1)

z − a
,

with a 
= 0, 1. A computation shows that Q3(z) = z(z − 1)H(z), where

H(z) = z6 − A5

(c+ 1)2
z5 +

A4

(c+ 1)3
z4 − A3

(c2 + 3c+ 3)(c+ 1)4
z3

+
A2

(c2 + 3c+ 3)(c+ 1)4
z2 − A1

(c2 + 3c+ 3)(c+ 1)4
z +

A0

(c2 + 3c+ 3)(c+ 1)4
,(45)

with

A5 =(4c+ 6)a+ 3c2 + 4c,

A4 =(8c+ 15)a2 + (10c2 + 17c)a+ 3c3 + 5c2,

A3 =(10c3 + 52c2 + 96c+ 60)a3 + (16c4 + 79c3 + 138c2 + 84c)a2

+ (8c5 + 38c4 + 65c3 + 40c2)a+ c6 + 5c5 + 9c4 + 6c3,

A2 =(9c2 + 39c+ 45)a4 + (15c3 + 60c2 + 66c)a3

+ (9c4 + 34c3 + 36c2)a2 + (2c5 + 7c4 + 7c3)a,

A1 =(6 c+ 18)a5 + (9c2 + 24c)a4 + (5c3 + 12c2)a3 + (c4 + 2c3)a2,

A0 =3a6 + 3ca5 + c2a4.

From Q3(z) = z(z − 1)H(z) and (44) with b1 = 1 and b2 = 0, we obtain H =

z3(z − 1)3. It follows from (45) that a = 1/2 and c = (−3 ±
√
3i)/4. In this case,

R is affinely conjugate to the second function stated in Lemma 5.

Case 2. ∞ is a fixed point of R with multiplier 1, so that R has the form (5) with
q ≤ p and d = p+ 1, and by assumption, n1 = m1, n3 = m3.
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Thus, by Lemma 14,

q =m1 +

m1∑
i=1

ν
(1)
1,i ,(46)

q + (p+ 1)3 − (p+ 1) =m1 +

m1∑
i=1

ν
(3)
1,i + 3m3 + 3

m3∑
i=1

ν
(3)
3,i .(47)

Thus, as above, we have

1

3
[(p+ 1)3 − (p+ 1)]

=m3 +m1 −
(
m1 +

m1∑
i=1

ν
(1)
1,i

)
+

m1∑
i=1

ν
(1)
1,i +

1

3

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(3)
1,i +

m3∑
i=1

ν
(3)
3,i

≤2(2p− n∞)− q

≤2p+ q − 2 ≤ 3p− 2.

This is impossible.

Case 3. ∞ is a fixed point of R but not a weakly repelling fixed point of R. Then
by Lemma 8 and the assumption that R has no repelling fixed points in C, R has
a fixed point z0 ∈ C with multiplier 1. Let

(48) φ(z) = z0 +
1

z − z0
.

Define

(49) R̃(z) = φ−1 ◦R ◦ φ(z).

Then ∞ is a fixed point of R̃ with multiplier 1, so that R̃ has the form (5) with
q ≤ p and d = p+1, and by assumption, n1 = m1, n3 = m3, where nj(mj) denotes

the number of (non-repelling) periodic cycles of period j of R̃ in C.
By Case 2, this is impossible.

Case 4. ∞ is a periodic point of R of period 3. Then by Lemma 8 and the
assumption that R has no repelling fixed points in C, R has a fixed point z0 ∈ C

with multiplier 1. Let φ be defined in (48) and R̃ be defined in (49). Then ∞ is

a fixed point of R̃ with multiplier 1, so that R̃ has the form (5) with q ≤ p and
d = p + 1, and by assumption, n1 = m1, n3 ≤ m3 + 1, where nj(mj) denotes

the number of (non-repelling) periodic cycles of period j of R̃ in C. By Case 2,

n3 = m3 + 1. Therefore, z0 is a repelling periodic point of R̃ of period 3.

Thus, by applying Lemma 14 to R̃, we have

q =m1 +

m1∑
i=1

ν
(1)
1,i ,(50)

q + (p+ 1)3 − (p+ 1) =m1 +

m1∑
i=1

ν
(3)
1,i + 3(m3 + 1) + 3

m3∑
i=1

ν
(3)
3,i .(51)
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Hence by (50), (51) and Remark 4,

1

3
[(p+ 1)3 − (p+ 1)]

=1 +m3 +m1 −
(
m1 +

m1∑
i=1

ν
(1)
1,i

)
+

m1∑
i=1

ν
(1)
1,i +

1

3

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(3)
1,i +

m3∑
i=1

ν
(3)
3,i

≤1 + 2(2p− n∞)− q −
∑
i∈I

1−
∑
i∈J

1

≤2p+ q − 1 ≤ 3p− 1.

(52)

It follows that p = 1, q = 1, m1 = 1, m3 = 0, ν
(1)
1,1 = 0 and ν

(3)
1,1 = 3. Thus R̃ has

the form

(53) R̃(z) = z + c
z + b

z + a
,

where a, b are distinct constants, and

(54) R̃3(z) = z+ c3
Q̃3(z)

P̃3(z)
with Q̃3(z) = (z+ b)4(z− z1)(z−R(z1))(z−R2(z1)),

where {z1, R(z1), R
2(z1)} ⊂ C. By a suitable conjugation z → τz + ω, we may

assume a = 1 and b = 0. After some computation, we have

Q̃3(z) = z

[
z6 + (4c+ 6)z5 + (5c2 + 17c+ 15)z4 +

(
2c3 +

40

3
c2 + 28c+ 20

)
z3

+

(
7

3
c3 + 12c2 + 22c+ 15

)
z2 +

(
2

3
c3 + 4c2 + 8c+ 6

)
z +

1

3
c2 + c+ 1

]
.

(55)

This, with (54) (b = 0), shows that c2 + 3c+ 3 = 0, so that

(56) c =
−3±

√
3i

2
.

Computation then yields

R̃3(z) = z +
(−18± 6

√
3i)z4[z3 ± 2

√
3iz2 + (−3±

√
3i)z − 2]

[2z4 + (−1± 3
√
3i)z3 + 2z + 2][2z2 + (1±

√
3i)z + 2](z + 1)

.

Since z0 is a periodic point of R̃ of period 3,

(57) z30 ± 2
√
3iz20 + (−3±

√
3i)z0 − 2 = 0.

Thus by (48), (49) and (53) with a = 1 and b = 0,

(58) R(z) = φ−1 ◦ R̃ ◦ φ(z) = z − c(z − z0)
2[z0(z − z0) + 1]

cz0(z − z0)2 + (c+ z0 + 1)(z − z0) + 1
,

where the constants c, z0 satisfy c2 +3c+3 = 0 and z30 + (4c+6)z20 +2cz0 − 2 = 0.
Thus in this case, R is affinely conjugate to the third function stated in Lemma 5.

Case 5. ∞ is not a fixed point of R3. Then by the assumption that R has no
repelling fixed points in C and Lemma 8, R has a fixed point z0 ∈ C with multiplier

1. Then ∞ is a fixed point of the function R̃ defined in (49) with multiplier 1, and
n1 = m1, n3 = m3. By Case 2, this is impossible.
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Lemma 5 is proved.

Proof of Lemma 6. By Lemma 15, we may assume that R is not a polynomial.
Thus R has least one pole in C. By assumption, the multiplicity of this pole is at
least 3, and hence d = deg(R) ≥ 3.

Now suppose that the lemma does not hold, that is, R has neither repelling fixed
points in C nor repelling periodic cycles of period 2 in C. We consider two cases.

Case 1. ∞ is a fixed point of R. We claim that d ≥ 4 and that

(59) Nc ≤
5

3
(d− 1) and N ′

c +N ′′
c ≤ 4

3
(d− 1).

In fact, we have

R(z) =
U(z)

V (z)

with d = deg(R) = u = deg(U) ≥ deg(V ) + 1 = v + 1 and

V (z) =
t∏

j=1

(z − zj)
sj

with sj ≥ 3, so that v =
∑t

j=1 sj ≥ 3t ≥ 3. Thus d ≥ 4. Computation shows that

R′(z) =
U ′∏t

j=1(z − zj)− U
∑t

j=1 sj
∏

i �=j(z − zi)∏t
j=1(z − zj)sj+1

.

Thus N ′
c + N ′′

c ≤ u − 1 + t ≤ 4
3 (d − 1) and Nc ≤ u − 1 + t + t ≤ 5

3 (d − 1). This
proves (59).

Case 1.1. ∞ is a repelling fixed point of R. Then by assumption, n1 − m1 =
n2 −m2 = 0 and R has the form (5) with q = p + 1 = d and 0 < |c + 1| < 1. By
(59),

(60) Nc ≤
5

3
p.

By Lemma 14,

p+ 1 =m1 +

m1∑
i=1

ν
(1)
1,i ,(61)

(p+ 1)2 =m1 +

m1∑
i=1

ν
(2)
1,i + 2m2 + 2

m2∑
i=1

ν
(2)
2,i .(62)

By Lemmas 9–11, (16) and (60),

m1 +m2

≤
∑
i∈I

1 +
∑
i∈J

1 +

m1∑
i=1

ν
(1)
1,i +

1

2

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(2)
1,i +

m2∑
i=1

ν
(2)
2,i(63)

≤5

3
p.(64)
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Thus by (61)–(64), we get

1

2
[(p+ 1)2 − (p+ 1)]

=m2 +m1 −
(
m1 +

m1∑
i=1

ν
(1)
1,i

)
+

m1∑
i=1

ν
(1)
1,i +

1

2

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(2)
1,i +

m2∑
i=1

ν
(2)
2,i(65)

≤10

3
p− (p+ 1)−

(∑
i∈I

1 +
∑
i∈J

1

)

≤7

3
p− 1.

It follows that p = 3 and
∑

i∈I 1 +
∑

i∈J 1 = 0. Thus d = 4, and by (63), (12) and
(59),

(66) m1 +m2 ≤
m1∑
i=1

ν
(1)
1,i +

1

2

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(2)
1,i +

m2∑
i=1

ν
(2)
2,i ≤ 4.

Thus by (61), (65) and (66), we get a contradiction: 6 ≤ 8− 4 = 4.

Case 1.2. ∞ is a fixed point of R with multiplier 1. Then by assumption, n1−m1 =
n2 −m2 = 0 and R has the form (5) with q ≤ p, p+ 1 = d. We also have (60).

Thus, by Lemma 14,

q =m1 +

m1∑
i=1

ν
(1)
1,i ,(67)

q + (p+ 1)2 − (p+ 1) =m1 +

m1∑
i=1

ν
(2)
1,i + 2m2 + 2

m2∑
i=1

ν
(2)
2,i .(68)

By Lemmas 9–11, (16) and (60),

m1 +m2

≤
∑
i∈I

1 +
∑
i∈J

1 +

m1∑
i=1

ν
(1)
1,i +

1

2

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(2)
1,i +

m2∑
i=1

ν
(2)
2,i

≤5

3
p− (p− q + 1) =

2

3
p+ q − 1.(69)

Thus by (67)–(69), we have

1

2
[(p+ 1)2 − (p+ 1)]

=m2 +m1 −
(
m1 +

m1∑
i=1

ν
(1)
1,i

)
+

m1∑
i=1

ν
(1)
1,i +

1

2

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(2)
1,i +

m2∑
i=1

ν
(2)
2,i

≤2

(
2

3
p+ q − 1

)
− q −

(∑
i∈I

1 +
∑
i∈J

1

)

≤4

3
p+ q − 2 ≤ 7

3
p− 2.(70)

It follows that p = 1 so that d = 2, a contradiction.
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Case 1.3. ∞ is a fixed point of R, but not a weakly repelling fixed point of R. Since
R has no repelling fixed point in C, by Lemma 8, R has a fixed point z0 ∈ C with
multiplier 1. Let

(71) φ(z) = z0 +
1

z − z0
.

Define

(72) R̃(z) = φ−1 ◦R ◦ φ(z).

Then ∞ is a fixed point of R̃ with multiplier 1, so that R̃ has the form (5) with

q ≤ p and deg(R̃) = p + 1, and by assumption, n1 = m1, n2 = m2, where nj(mj)

denotes the number of (non-repelling) periodic cycles of period j of R̃ in C. By
(59),

(73) Nc ≤
5

3
p.

Then, as in Case 1.2, we get (70), and hence p = 1 so that d = 2, a contradiction.

Case 2. ∞ is not a fixed point of R. We claim that

(74) Nc ≤
5

3
d− 2.

In fact, since ∞ is not a fixed point of R, R can be written as

R(z) = c+
U(z)

V (z)
,

where c is a constant, u = deg(U) < deg(V ) = v = d = deg(R). Then as in Case 1,
Nc ≤ u− 1 + 2t ≤ 5

3d− 2. This proves the claim.

Case 2.1. ∞ is a periodic point of R of period 2. Again since R has no repelling
fixed point in C, by Lemma 8, R has a fixed point z0 ∈ C with multiplier 1. Let

φ(z) and R̃ be as in Case 1.3. Then ∞ is a fixed point of R̃ with multiplier 1 so

that R̃ has the form (5) with q ≤ p and d = p + 1, and by assumption, n1 = m1,
n2 ≤ m2 + 1, where nj(mj) denotes the number of (non-repelling) periodic cycles

of period j of R̃ in C, since z0 may be a repelling periodic point of R̃ of period 2.
By (74),

(75) Nc ≤
1

3
(5p− 1).

By Lemma 14,

q =m1 +

m1∑
i=1

ν
(1)
1,i ,(76)

q + (p+ 1)2 − (p+ 1) =m1 +

m1∑
i=1

ν
(2)
1,i + 2n2 + 2

m2∑
i=1

ν
(2)
2,i

≤2 +m1 +

m1∑
i=1

ν
(2)
1,i + 2m2 + 2

m2∑
i=1

ν
(2)
2,i .(77)
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By Lemmas 9–11, (16) and (75),

m1 +m2

≤
∑
i∈I

1 +
∑
i∈J

1 +

m1∑
i=1

ν
(1)
1,i +

1

2

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(2)
1,i +

m2∑
i=1

ν
(2)
2,i

≤Nc − (p− q + 1) ≤ 1

3
(2p− 4) + q.(78)

Thus, by (76)–(78), we have

1

2
[(p+ 1)2 − (p+ 1)]

≤1 +m1 +m2 −
(
m1 +

m1∑
i=1

ν
(1)
1,i

)
+

m1∑
i=1

ν
(1)
1,i +

1

2

∑
1≤i≤m1,ν

(1)
1,i=0

ν
(2)
1,i +

m2∑
i=1

ν
(2)
2,i

≤1 + 2

[
1

3
(2p− 4) + q

]
− q −

(∑
i∈I

1 +
∑
i∈J

1

)

≤7p− 5

3
.

This is impossible.

Case 2.2. ∞ is not a fixed point of R2. Then by Lemma 8 and the assumption that
R has no repelling fixed point in C, R has a fixed point z0 ∈ C with multiplier 1.

Thus ∞ is a fixed point of the function R̃ defined in (60) with multiplier 1, and
n1 = m1, n2 = m2. In a similar way, this case cannot occur.

Lemma 6 is proved.

Proof of Lemma 7. Suppose that the lemma does not hold. Then R has no weakly
repelling fixed point in C, and thus by Lemma 8, ∞ must be a weakly repelling
fixed point of R. We consider two cases.

Case 1. ∞ is a repelling fixed point of R. Then by assumption, n1−m1 = n2−m2 =
0, and R has the form (5) with q = p+ 1 = d and 0 < |c+ 1| < 1.

Thus by Lemma 14,

p+ 1 =m1 +

m1∑
i=1

ν
(1)
1,i ,(79)

(p+ 1)2 =m1 +

m1∑
i=1

ν
(2)
1,i + 2m2 + 2

m2∑
i=1

ν
(2)
2,i .(80)

By assumption, ν
(1)
1,i = ν

(2)
1,i = 0. Then m1 =

∑
i∈I 1 = p + 1, and by (16) with

Nc ≤ 2p,

(81) m2 ≤
∑
i∈J

1 +

m2∑
i=1

ν
(2)
2,i ≤ p− 1.
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Thus by (80) and (81),

(p+ 1)2 = p+ 1 + 2m2 + 2

m2∑
i=1

ν
(2)
2,i ≤ 5p− 3,

which is impossible.

Case 2. ∞ is a fixed point of R with multiplier 1. Then by assumption, n1−m1 =
n2 −m2 = 0, and R has the form (5) with q ≤ p, p+ 1 = d.

Thus, by Lemma 14,

q =m1 +

m1∑
i=1

ν
(1)
1,i ,(82)

q + (p+ 1)2 − (p+ 1) =m1 +

m1∑
i=1

ν
(2)
1,i + 2m2 + 2

m2∑
i=1

ν
(2)
2,i .(83)

By assumption, ν
(1)
1,i = ν

(2)
1,i = 0. Then m1 =

∑
i∈I 1 = q, and by (16),

(84) m2 ≤
∑
i∈J

1 +

m2∑
i=1

ν
(2)
2,i ≤ p− 1.

Thus, by (83) and (84),

(p+ 1)2 − (p+ 1) = 2m2 + 2

m2∑
i=1

ν
(2)
2,i ≤ 4p− 4,

which is impossible.

This completes the proof.

We also require the following result of Pang and Zalcman.

Lemma 16 ([19, Lemma 2]; cf. [18, 25, 26]). Let F be a family of meromorphic
functions in a domain D, all of whose zeros have multiplicity at least k, and suppose
that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0 and f ∈ F . Then
if F is not normal at z0, there exist, for each 0 ≤ α ≤ k,

a) points zn ∈ D, zn → z0,
b) functions fn ∈ F , and
c) positive numbers ρn → 0

such that ρ−α
n fn(zn + ρnζ) = gn(ζ) → g(ζ) locally uniformly with respect to the

spherical metric, where g is a non-constant meromorphic function in C, all of whose
zeros have multiplicity at least k, such that

|g′(ζ)|
1 + |g(ζ)|2 ≤ |g′(0)|

1 + |g(0)|2 = kA+ 1.

We shall use the special case α = k = 1 of Lemma 16.

Lemma 17. Let k ≥ 2 be an integer and F a family of functions meromorphic
in a domain D such that each f ∈ F has neither repelling fixed points in D nor
repelling periodic points of period k in D. If F is not normal at some point z0 ∈ D,
then there exist points zn ∈ D with zn → z0, functions fn ∈ F and positive numbers
ρn → 0 such that

Hn(ζ) =
fn(zn + ρnζ)− zn

ρn
→ H(ζ)
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locally uniformly with respect to the spherical metric, where H is a non-constant
rational function, not of the form ζ+c with constant c ∈ C, such that H has neither
repelling fixed points in C nor repelling periodic points of period k in C, and

|H ′(ζ)− 1|
1 + |H(ζ)− ζ|2 ≤ |H ′(0)− 1|

1 + |H(0)|2 = 3.

Furthermore, if each f ∈ F has no fixed point in D with multiplier 1, then ∞ is a
weakly repelling fixed point of H unless deg(H) = 1.

Proof. Set

G = {g = f − id : f ∈ F},
where id denotes the identity function. Then for every g ∈ G, |g′(z)| ≤ 2 whenever
g(z) = 0, since each f ∈ F has no repelling fixed points in D.

Obviously, F is normal in D if and only if G is normal in D. Thus G is not
normal at z0 ∈ D. Hence by Lemma 16, we can find points zn → z0, positive
numbers ρn → 0 and functions gn = fn − id ∈ G such that

(93) Gn(ζ) =
gn(zn + ρnζ)

ρn
→ G(ζ)

locally uniformly with respect to the spherical metric on C, where G is a non-
constant meromorphic function on C such that

(94)
|G′(ζ)|

1 + |G(ζ)|2 ≤ |G′(0)|
1 + |G(0)|2 = 3.

Set

Mn(ζ) = zn + ρnζ,(95)

Hn(ζ) = Gn(ζ) + ζ.(96)

Then by (93) and (95)–(96),

(97) Hn(ζ) =
fn(Mn(ζ))− zn

ρn
.

This with (95) yields Mn(Hn(ζ)) = zn + ρnHn(ζ) = fn(Mn(ζ)). Hence we get

H2
n(ζ) = Hn(Hn(ζ)) =

fn(Mn(Hn(ζ)))− zn
ρn

=
f2
n(Mn(ζ))− zn

ρn
.

By mathematical induction,

(98) Hj
n(ζ) =

f j
n(Mn(ζ))− zn

ρn
, j = 1, 2, · · · ,

so that

(99) f j
n(Mn(ζ)) = zn + ρnH

j
n(ζ), j = 1, 2, · · · ,

and

(100) Hj
n(ζ)− ζ =

f j
n(Mn(ζ))−Mn(ζ)

ρn
, j = 1, 2, · · · .

Let

(101) H(ζ) = G(ζ) + ζ
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and

(102) A =
k+1⋃
j=1

H−j(∞) =
k+1⋃
j=1

{ζ ∈ C : Hj(ζ) = ∞}.

Then by (93), (96) and (101)–(102), for any j ∈ {1, 2, · · · , k}, as n → ∞,

(103) Hj
n(ζ) → Hj(ζ)

locally uniformly on C \ A. Note that by (94) and (101), H(ζ) 
≡ ζ + c for some
constant c ∈ C.

Claim 1. H has no repelling fixed point in C.

Let ζ0 ∈ C be a fixed point of H. Then H and Hn for all sufficiently large n
are holomorphic in some neighborhood of ζ0. Thus, by Hurwitz’s Theorem, there
exist points ζn → ζ0 such that Hn(ζn) = ζn. By (95) and (97), we see that
fn(zn + ρnζn) = zn + ρnζn, i.e., zn + ρnζn is a fixed point of fn in D. Since fn has
no repelling fixed point in D, we have |f ′

n(zn+ ρnζn)| ≤ 1. This with (95) and (97)
shows that |H ′

n(ζn)| ≤ 1. Hence

|H ′(ζ0)| =
∣∣∣ lim
n→∞

H ′
n(ζn)

∣∣∣ ≤ 1.

Claim 1 is proved.

Claim 2. H has no repelling periodic cycle of period k in C.
If Hk(ζ) ≡ ζ, then there is nothing to prove, so we may assume that Hk(ζ) 
≡ ζ.
Let {ζ0, H(ζ0), · · · , Hk−1(ζ0)} ⊂ C be a periodic cycle of period k of H.

Then for j ∈ {1, 2, · · · , k − 1}, Hj(ζ0) ∈ C \ {ζ0} and Hk(ζ0) = ζ0. Thus there
exist positive numbers δ and ε such that Hj(1 ≤ j ≤ k) are holomorphic on
U = {ζ : |ζ − ζ0| ≤ δ} ⊂ C \A, and for j ∈ {1, 2, · · · , k− 1}, |Hj(ζ)− ζ| ≥ ε on U .

Thus by (103) and Hurwitz’s Theorem, there exist points ζn → ζ0 such that
Hk

n(ζn) = ζn, and for sufficiently large n, |Hj
n(ζn) − ζn| ≥ ε/2 for 1 ≤ j ≤ k − 1.

Hence by (100), fk
n(Mn(ζn)) = Mn(ζn), and |f j

n(Mn(ζn)) −Mn(ζn)| ≥ ερn/2 > 0
for 1 ≤ j ≤ k − 1. By (99), for 1 ≤ j ≤ k − 1, f j

n(Mn(ζn)) → z0 ∈ D, as
n → ∞. It follows that for sufficiently large n, Mn(ζn) is a periodic point of period
k of fn in D. Since fn has no repelling periodic point of period k in D, we have
|(fk

n)
′(Mn(ζn))| ≤ 1, so that by (98), |(Hk

n)
′(ζn)| ≤ 1. Thus

|(Hk)′(ζ0)| =
∣∣∣ lim
n→∞

(Hk
n)

′(ζn)
∣∣∣ ≤ 1.

Claim 2 is proved.

By Claim 2 and Lemma 1, we see that H must be a rational function. Write

(104) H(ζ) = ζ + c
Q(ζ)

P (ζ)
,

where c 
= 0 is a constant and where P , Q are two monic co-prime polynomials.
Set p = deg(P ) and q = deg(Q). We claim

(i) p ≥ 1;
(ii) q ≤ p+ 1;
(iii) if q = p+ 1, then |c+ 1| < 1;
(iv) if q = p+ 1 and c = −1, then p = 1 and q = 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5742 JIANMING CHANG AND LAWRENCE ZALCMAN

To prove (i), suppose p = 0. Then H is a polynomial. By Claims 1–2 and Lemma
15 with Remark 5, we have deg(H) ≤ 1. Thus H(z) = az + b for some constants

a, b. By Claim 1, we see that |a| ≤ 1. This contradicts |H′(0)−1|
1+|H(0)|2 = 3.

To prove (ii)–(iv), suppose that q ≥ p + 1. Let r > max{|ζ| : P (ζ)Q(ζ) = 0}.
Then, as Hn(ζ) → H(ζ), there are two monic co-prime polynomials Qn(ζ) of degree
deg(Qn) = q and Pn(ζ) of degree deg(Pn) = p satisfying Qn(ζ) → Q(ζ) and
Pn(ζ) → P (ζ) such that

(105) Hn(ζ) = ζ +
Qn(ζ)

Pn(ζ)
hn(ζ),

where hn(ζ) → c uniformly on C.
By assumption and (97), Hn has no fixed point with multiplier 1, so that all

roots of Qn are simple. Thus

(106) Qn(ζ) = (ζ − ζn,1)(ζ − ζn,2) · · · (ζ − ζn,q),

where ζn,j are pairwise distinct and |ζn,j | < r. We have

q∑
j=1

1

1−H ′
n(ζn,j)

=

q∑
j=1

Res

(
1

ζ −Hn(ζ)
, ζn,j

)
=

1

2πi

∫
|ζ|=r

dζ

ζ −Hn(ζ)

→ 1

2πi

∫
|ζ|=r

dζ

ζ −H(ζ)

= −Res

(
1

ζ −H(ζ)
,∞

)
=

{
− 1

c if q = p+ 1,

0 if q ≥ p+ 2.
(107)

However, a simple computation shows that |H ′
n(ζn,j)| ≤ 1 and H ′

n(ζn,j) 
= 1 is
equivalent to

(108) Re

(
1

1−H ′
n(ζn,j)

)
≥ 1

2
.

By (107) and (108), we see that q = p+ 1 and

(109) Re

(
−1

c

)
≥ q

2
=

p+ 1

2
≥ 1.

It follows that |c+ 1| < 1 and that if c = −1, then p = 1 and q = 2.
By (i)–(iv), ∞ is a weakly repelling fixed point of H unless deg(H) = 1. The

lemma is proved.

3. Proofs of theorems and corollaries

Now we prove the results stated in the Introduction.

Proof of Theorem 1. Suppose that F is not normal at some point z0 ∈ D. Then by
Lemma 17, there exist points zn ∈ D with zn → z0, functions fn ∈ F and positive
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numbers ρn → 0 such that

(110) Hn(ζ) =
fn(zn + ρnζ)− zn

ρn
→ H(ζ)

locally uniformly with respect to the spherical metric, where H is a non-constant
rational function, not of the form ζ + c with constant c ∈ C, such that H has no
repelling periodic cycle of period k in C, and

(111)
|H ′(0)− 1|
1 + |H(0)|2 = 3.

We claim that all poles of H have multiplicity ≥ 2. Indeed, suppose that H has
a pole ζ0. Then there exists δ > 0 such that all 1/Hn for sufficiently large n and
1/H are holomorphic on the disk Dδ(ζ0) = {|ζ − ζ0| ≤ δ} and that 1/Hn → 1/H
uniformly on Dδ(ζ0).

Set1

(112) hn(ζ) =
1

Hn(ζ)
− ρn

an − zn
and h(ζ) =

1

H(ζ)
,

where an = a(fn). Then hn → h uniformly on Dδ(ζ0). Since h(ζ0) = 0, by
Hurwitz’s Theorem, there exist points ζn → ζ0 such that hn(ζn) = 0. Together
with (110) and (112), this shows that fn(zn + ρnζn) = an. Since the an-points of
fn have multiplicity ≥ 2, we get f ′

n(zn + ρnζn) = 0, and since

h′
n(ζ) =

ρ2nf
′
n(zn + ρnζ)

[fn(zn + ρnζ)− zn]2
,

we have h′
n(ζn) = 0 for sufficiently large n. Therefore,

h′(ζ0) = lim
n→∞

h′
n(ζn) = 0.

It follows that ζ0 is a multiple zero of h and thus a multiple pole of H.
Hence the poles of H have multiplicity ≥ 2.
Since affine conjugation preserves the multiplicity of the poles for rational func-

tions, we see by Lemmas 4 and 5 that deg(H) ≤ 1.
Since the poles of H have multiplicity ≥ 2 and deg(H) ≤ 1, H is analytic; hence

H(ζ) = αζ + β for some constants α and β. Since H has no repelling fixed point

in C, |α| ≤ 1, and thus |H′(0)−1|
1+|H(0)|2 ≤ 2. This contradicts (111).

The proofs of Theorems 3 and 5 are similar to that of Theorem 1, so we omit
the details.
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