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Normality of residuals is a continuous variable, and does seem to 

influence the trustworthiness of confidence intervals :  A response to, 
and appreciation of, Williams, Grajales, and Kurkiewicz (2013) 

 
Jason W. Osborne 

University of Louisville 
 

Osborne and Waters (2002) focused on checking some of the assumptions of multiple linear 
regression. In a critique of that paper, Williams, Grajales, and Kurkiewicz correctly clarify that 
regression models estimated using ordinary least squares require the assumption of normally 
distributed errors, but not the assumption of normally distributed response or predictor variables. 
They go on to discuss estimate bias and provide a helpful summary of the assumptions of multiple 
regression when using ordinary least squares. While we were not as precise as we could have been 
when discussing assumptions of normality, the critical issue of the 2002 paper remains – researchers 
often do not check on or report on the assumptions of their statistical methods. This response 
expands on the points made by Williams, advocates a thorough examination of data prior to 
reporting results, and provides an example of how incremental improvements in meeting the 
assumption of normality of residuals incrementally improves the accuracy of confidence intervals. 

Let’s start with this assertion:  that our goal as 
researchers and scholars is to understand or reveal 
truth.  In our narratives, we attempt to pull strands of 
data, observation, intuition, scholarship, theory, 
experience, and reality together for a greater purpose.  
It is my belief that the ultimate goal of our scientific 
narrative is to understand better a small portion of the 
world we care deeply about.  If we start with that 
premise, and pursue it in good faith, I think we are all 
better for it.  Why is this important?  Because it is easy 
in works such as the original article being discussed 
(Osborne & Waters, 2002), or in articles that respond 
to those articles (Williams, Grajales, & Kurkiewicz, 
2013) to lose sight of important goals, focusing rather 
on minutiae that rarely influence the majority of 
statistical research practice. 

What is important to me, and I assume to my 
colleagues who so aptly critiqued our earlier work, is 
that we help improve statistical practice, and thereby, 
improve the quality of the knowledge being produced 
by the legions of researchers around the world who use 
these techniques on a daily basis.  Let’s add a second 

assertion at this point:  that a significant portion 
researchers in our fields fail to report basics like having 
tested assumptions and cleaned data.  For example, a 
recent examination of top journals in several fields 
(Osborne, Kocher, & Tillman, 2012) summarized in 
Figure 1, show that authors in top journals do not have 
a good track record of reporting having attended to 
these issues.  I think it is difficult to argue that we 
should not attend to, and report having attended to, 
basic data cleaning and testing of assumptions if in fact 
you are convinced that assumptions and data quality 
matters.  I worry there is a not uncommon sentiment 
amongst researchers that data cleaning is not desirable 
and that assumptions are largely “robust” to violation, 
and as such, neither issue is much worth worrying 
about (Osborne, 2012). 

I will first congratulate Williams et al. (2013) for a 
keen critique of our original work.  It is a good 
clarification of our original work.  They were correct in 
noting that we were not as precise as we could have 
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been when discussing assumptions of normality.1  As I 
reflected on their points, what I find myself concerned 
with today is making sure researchers are motivated to 
expend effort to examine their data for illegitimately 
influential cases (e.g., outliers) that might bias results.  
As Cohen et al. note (Cohen, Cohen, West, & Aiken, 
2002, p. 141), one of the primary reasons for examining  

Figure 1.  Percent of articles in prominent journals reporting 
basic aspects of data cleaning and assumptions.  From 
Osborne, Kocher, & Tillman (2012). 

normality of residuals is to identify model 
misspecification or inappropriately influential cases 
rather than the actual normality or non-normality of 
the residuals.2  In fact, much of our narrative in the 
section of our original paper that Williams et al. (2013) 
objected to is devoted to identification of outliers 

                                                 
1 Note that this discussion is strictly related to OLS 
regression.  In other types of regression (i.e., logistic 
regression) where assumptions are different, data cleaning is 
still important but there might not be any assumptions 
regarding distributions of the variables or the residuals.  In 
other analyses, such as multivariate analyses or structural 
equation modeling (Byrne, 2010) multivariate normal 
distributions of the variables are critical, and dealing with 
individual variable non-normality and influential cases can 
help address violations of multivariate non-normality 
(although not always, as one can have universal univariate 
normality without multivariate normality, much as one can 
have normally distributed variables and non-normally 
distributed residuals in OLS regression).   
2 As we and many others have noted, most scholars have 
asserted that multiple regression analyses are “robust” to 
violations of the assumption of normal distribution of the 
residuals (except in very small samples, which are 
problematic for other reasons). 

(inappropriately influential cases).3 

Non-normality is not always caused by influential 
cases or outliers, but non-normality of univariate 
distributions or residuals can be an initial indicator that 
there are potential data cleaning issues.  Although 
perhaps inelegantly argued in our original piece, one of 
our intentions in advocating for exploring normality 
was to motivate routine examination of their data prior 
to analysis.    Readers interested in this topic can refer 
to Osborne (2012) or Osborne and Overbay (2004).  

Aside from initial screening for illegitimately 
influential (or just plain illegitimate) data points, it is 
important to meet assumptions and to have the tools 
necessary to deal with situations where assumptions are 
not reasonably met (as in the strictest sense, 
assumptions are almost never completely met).  
Providing researchers with practical solutions to 
common problems, and motivating them to examine 
the data and use these solutions where appropriate is 
critical, it seems.  From this practical perspective, one 
common question from researchers exploring their 
residuals is: “How do I make the residuals more normal 
if I find this assumption seriously violated?”  In my 
mind, if one has done a thorough job of examining and 
removing inappropriately influential data points, and 
the residuals are still non-normal enough to cause 
concern over the validity of the results of the analyses, 
I might suggest experimenting with some 
transformations of the original variables (interested 
readers can refer to Osborne ( 2002, 2010, 2012).   

Williams et al. (2013) present an example where 
non-normally distributed variables produce normally-
distributed residuals, further showing in the context of 
small samples that this subsequently produces 
trustworthy effect estimates and 95% confidence 
intervals.  This is a good point, but made me wonder  

                                                 
3 Another possible critique of our original article might 
include the fact that we neglected the other half of Cohen et 
al.’s point:  that non-normality of residuals could be due to 
model misspecification—leaving out a variable that should 
be modeled, neglecting to model curvilinearity or 
interactions, etc.  These points are more well elaborated in 
my forthcoming book on logistic regression  (Osborne, in 
press) and perhaps best presented regarding OLS regression 
by Aiken and West  (1991). 
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assumption.  Our expectation should be that: a) the 
parameter estimates should be relatively stable in both 
cases, but b) that the 95%CIs should be more 
“trustworthy” when we more closely meet the 
assumption of normality.  In other words, the point I 
hope to illustrate is that most regression residuals will 
not be perfectly normally distributed, but by taking 
actions to improve the normality of the residuals, one can 
produce analyses that are more trustworthy.   

These two data sets were each subjected to 10,000 
bootstrap analyses to test the extent to which 
expectations A and B are met (as well as modeling an 
alternative method of empirically calculating 95%CIs 
when this assumption is not strictly met). With 
bootstrap analyses becoming more common, violations 
of assumptions (that might not be addressable by other 
means) might be addressed empirically by simulating 
thousands of bootstrap analyses and empirically 
generating confidence intervals (some good places to 
start exploring boostrap analyses are: DiCiccio & 
Efron, 1996; Efron & Tibshirani, 1994; Rodgers, 1999; 
Thompson, 1993) rather than relying upon calculated 
confidence intervals that might be untrustworthy.  The 
results of the original analyses and the bootstrap 
analyses are presented in Table 1:  the original 
regression predicting salary from faculty size, and the 
same analysis after the removal of 7 cases as detailed 
above.   

Improving normality has little effect upon 
parameter estimates.    Referring to Table 1, you can 
see that this expectation seems well-supported.  As you 
can see in Analysis #3, the bootstrap analysis produced 
a point estimate that is very close to the original 
unstandardized regression coefficient from Analysis 
#1.  Likewise, with Analysis #4, the bootstrap analysis 
closely replicated the original unstandardized regression 
coefficient from Analysis #2:  0.407 vs. 0.408, with 
slightly wider 95%CIs.  This indicates that the initial 
parameter estimates in Analyses #1 and 2 are 
reasonable approximations of what a researcher might 
find drawing a different sample of similar size from a 
similar population.   

Improving normality improves the 
trustworthiness of the confidence intervals.  As 
reviewed above, one of the primary concerns regarding 

the non-normality of regression residuals (particularly 
in small samples) is trustworthiness of confidence 
intervals (e.g., Cohen et al., 2002).  Although these 
samples are relatively large (N over 1000) and thus 
should be “robust” to violations of this assumption, the 
bootstrap analyses raise some interesting questions.  
For example, the regression residuals from Analysis #1 
were not markedly non-normal (recall a skew of 0.50 
and kurtosis of 0.89) but in the bootstrap analysis 
(Analysis #3, in Table 1) the empirical 95%CI is 0.121  
 

Figure 6: Distribution of unstandardized regression 
coefficients from original data.  Skewed bootstrap 
analyses can be indicative of outliers – which are 
present in this data set. 

in width as opposed to 0.081 from the original analysis 
(i.e., 49.38% larger).  Removal of seven cases with 
relatively extreme residuals improved the normality of 
the regression residuals (skew= 0.34 and kurtosis =-
0.06).  Our expectation should be that the CIs should 
now be more trustworthy.  Accordingly, the spread of 
the 95%CIs were smaller (0.079 for Analysis #2 and 
0.106 for the bootstrap of that sample, Analysis #4).  
While the empirical CIs are still 35.18% larger than the 
calculated CIs, it was a closer match.  Put another way, 
improving the extent to which our analyses met the 
assumption improved the extent to which the 
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calculated CIs matched the empirical CIs.  Another 
index of trustworthiness of the calculated CIs was the 
percent of the bootstrapped parameter estimates that 
fell within the calculated CIs.  When the residuals were 

less normal, fewer point estimates fell within the 
calculated CIs (82.7%) than when the residuals were 
more normal (85.7%). 

 

Table 1: Comparison of parameter estimates before and after data cleaning, as well as from bootstrap analysis

Analysis: 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence 
Interval for B 

B Std. Error Beta 
Lower 
Bound 

Upper 
Bound 

NUM_AP .389 .021 .488 18.761 <.001 .348 .429 
2NUM_AP .407 .020 .514 20.004 <.001 .367 .446 

3
Bootstrap  
10,000 samples .391 .030    .333 .454 

4
.
 
Bootstrap 10000 samples 
post data cleaning .408 .027    .358 .464 

Predicting SAL_AP from NUM_AP.  Analysis #1 has all cases.  Analysis #2 has cases with standardized residuals > 
|3| removed, improving normality of residuals and parameter estimates. Analysis #3 is a 10,000 sample bootstrap of 
Analysis #1.  Analysis #4 is a 10,000 sample bootstrap of Analysis #2. 

 

Figure 7:  Distribution of unstandardized regression 
coefficients from Analysis #4 

 

Conclusions 

This simple example provides us with 
confirmation of several of the points from Williams et 

al. (2013) regarding the assumption of normal 
distribution of residuals in OLS regression, yet in the 
context of real data with continuous variables.  First, 
the assertion that non-normality of residuals does not 
substantially bias parameter estimates is largely 
supported:  improving the normality of the residuals via 
removal of several inappropriately influential cases 
altered the parameter estimate slightly but in each 
sample corresponded closely to the bootstrap estimates 
of the parameter.  Secondly, it seems that bootstrap 
analyses indicate that the calculated 95%CIs are less 
trustworthy (even in relatively large samples) when this 
assumption is less well met.  Conversely, when the 
assumption is more well met, the trustworthiness of the 
CIs improved.   

Note that this is contrary to published guidance in 
that in large samples, this is supposed to be less of an 
issue.  If one is to believe the value of bootstrap 
analyses, we might conclude that the calculated 95%CIs 
are under-estimated rather dramatically, even in large 
samples and even when residuals are relatively normally 
distributed-- particularly when outliers are present.   
This example, combined with that from Williams et al. 
(2013), underscores the importance of attending to 
assumptions, particularly in light of many organizations 
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(e.g., the American Psychological Association, journals 
in many fields) requiring or suggesting reporting of 
confidence intervals.   

References 

Aiken, L. S., & West, S. (1991). Multiple Regression: Testing and 
Interpreting Interactions Thousand Oaks, CA: Sage 
Publications. 

Byrne, B. M. (2010). Structural Equation Modeling with AMOS:  
Basic Concepts, Applications, and Programming. New York, 
NY: Routledge. 

Cohen, J., Cohen, P., West, S., & Aiken, L. S. (2002). Applied 
Multiple Regression/Correlation Analysis for the Behavioral 
Sciences. Mahwah, NJ: Lawrence Erlbaum. 

DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence 
intervals. Statistical Science, 189-212.  

Efron, B., & Tibshirani, R. J. (1994). An introduction to the 
bootstrap (Vol. 57): Chapman & Hall/CRC. 

Nunnally, J. C., & Bernstein, I. (1994). Psychometric Theory 
(3rd ed.). New York: McGraw Hill. 

Osborne, J. W. (2002). Notes on the use of data 
transformations. Practical Assessment, Research, and 
Evaluation., 8(2), Available online at 
http://pareonline.net/getvn.asp?v=8&n=2 .  

Osborne, J. W. (2008). Sweating the small stuff in 
educational psychology: how effect size and power 
reporting failed to change from 1969 to 1999, and what 
that means for the future of changing practices. 
Educational psychology, 28(2), 1 - 10.  

Osborne, J. W. (2010). Improving your data 
transformations:  Applying Box-Cox transformations as 
a best practice. Practical Assessment Research & Evaluation, 
15(12), 1-9. Available online at 
http://pareonline.net/getvn.asp?v=15&n=12 . 

Osborne, J. W. (2012). Best Practices in Data Cleaning:  A 
Complete Guide to Everything You Need to Do Before and 
After Collecting Your Data. Thousand Oaks, CA: Sage 
Publications. 

Osborne, J. W. (in press). Best practices in logistic regression. 
Thousand Oaks, CA: Sage. 

Osborne, J. W., Kocher, B., & Tillman, D. (2012). Many 
authors in top journals don't report testing assumptions:  Why 
you should care and what we can do about it. Paper presented 
at the Annual meeting of the Eastern Education 
Research Association, Hilton Head, SC.  

Osborne, J. W., & Overbay, A. (2004). The power of outliers 
(and why researchers should ALWAYS check for 
them). Practical Assessment, Research, and Evaluation, 9(6). 
Available online at 
http://pareonline.net/getvn.asp?v=9&n=6. 

Osborne, J. W., & Waters, E. (2002). Four assumptions of 
multiple regression that researchers should always test. 
Practical Assessment, Research, and Evaluation, 8(2). 
Available online at 
http://pareonline.net/getvn.asp?v=8&n=2. 

Rodgers, J. L. (1999). The bootstrap, the jackknife, and the 
randomization test: A sampling taxonomy. Multivariate 
Behavioral Research, 34(4), 441-456.  

Thompson, B. (1993). The use of statistical significance tests 
in research: Bootstrap and other alternatives. Journal of 
Experimental Education, 61(4), 361-377.  

Williams, Matt N., Grajales, Carlos Alberto Gómez, 
&Kurkiewicz, Dason (2013). Assumptions of Multiple 
Regression: Correcting Two Misconceptions. Practical 
Assessment, Research & Evaluation, 18(11). Available 
online: http://pareonline.net/getvn.asp?v=18&n=11  

 

 

 

 

 

 

 

 

 

7

Osborne: Normality of residuals is a continuous variable, and does seem to

Published by ScholarWorks@UMass Amherst, 2013



Practical Assessment, Research & Evaluation, Vol 18, No 12 Page 8 
Osborne, Response to Williams, Grajales &Kurkiewicz, Assumptions of Regression 
 

 

 

Appendix A 

SPSS syntax to perform Box Cox analysis with expanded range over (Osborne, 2010), referenced at  
http://pareonline.net/getvn.asp?v=15&n=12  

***BOX COX SPSS syntax.  Refer to http://pareonline.net/pdf/v15n12.pdf for  
***information.  Anchor minimum value at 1.0 and change NUM_AP to name of  
***variable you want to transform prior to running. 
***  Examine TRANS frequency table to explore normality of transformations.  ***  
LAM table tells you what lambda was used for each transformation in 
***  TRANS table. 
 

COMPUTE var1=num_AP. 
execute. 
 
VECTOR lam(101) /tran(101). 
LOOP idx=1 TO 101. 
- COMPUTE lam(idx)=-5.1 + idx * .1. 
- DO IF lam(idx)=0. 
-   COMPUTE tran(idx)=LN(var1). 
- ELSE. 
-   COMPUTE tran(idx)=(var1**lam(idx) - 1)/lam(idx). 
- END IF. 
END LOOP. 
EXECUTE. 
 
 
FREQUENCIES VARIABLES=var1 tran1 to tran101 
  /format=notable 
  /STATISTICS= SKEWNESS KURTOSIS 
  /ORDER=ANALYSIS. 
 
FREQUENCIES VARIABLES= lam1 to lam101 
  /format=notable 
  /STATISTICS= MINIMUM 
  /ORDER=ANALYSIS. 

Appendix B 

 
SPSS syntax to run regression analyses using a variety of transformed variables.  Macro syntax partially modeled on 
syntax found at Raynald’s SPSS tools web site:  http://www.spsstools.net/.  In this syntax I performed analyses on 
a variety of transformed versions of NUM_AP that were reasonably normal (TRAN40- TRAN60 in this case).  The 
macro also shows the skew and kurtosis of the residuals resulting from each analysis. 
 

DEFINE !regloop(nby=!TOKENS(1)). 
!DO !cnt=1 !TO !nby. 
REGRESSION 
    /STATISTICS COEFF OUTS CI(95) R ANOVA CHANGE 
    /DEPENDENT SAL_AP 
    /METHOD=ENTER !CONCAT('tran',!cnt) 
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    /save resid. 
!DOEND. 
Frequencies variables=res_1 to !CONCAT('res_',!nby) 
  /format=notable 
  /statistics=skewness kurtosiss. 
!ENDDEFINE. 

 
 
*Call macro (replace 101 with something else if you use a different number of 
transformations). 

!regloop nby=101. 
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