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Abstract

Single-cell RNA-seq (scRNA-seq) data exhibits significant cell-to-cell variation due to technical factors, including the

number of molecules detected in each cell, which can confound biological heterogeneity with technical effects. To

address this, we present a modeling framework for the normalization and variance stabilization of molecular count

data from scRNA-seq experiments. We propose that the Pearson residuals from “regularized negative binomial

regression,” where cellular sequencing depth is utilized as a covariate in a generalized linear model, successfully

remove the influence of technical characteristics from downstream analyses while preserving biological

heterogeneity. Importantly, we show that an unconstrained negative binomial model may overfit scRNA-seq data,

and overcome this by pooling information across genes with similar abundances to obtain stable parameter

estimates. Our procedure omits the need for heuristic steps including pseudocount addition or log-transformation

and improves common downstream analytical tasks such as variable gene selection, dimensional reduction, and

differential expression. Our approach can be applied to any UMI-based scRNA-seq dataset and is freely available as

part of the R package sctransform, with a direct interface to our single-cell toolkit Seurat.
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Introduction
In the analysis and interpretation of single-cell RNA-

seq (scRNA-seq) data, effective pre-processing and nor-

malization represent key challenges. While unsupervised

analysis of single-cell data has transformative potential

to uncover heterogeneous cell types and states, cell-

to-cell variation in technical factors can also confound

these results [1, 2]. In particular, the observed sequenc-

ing depth (number of genes or molecules detected per

cell) can vary significantly between cells, with variation

in molecular counts potentially spanning an order of

magnitude, even within the same cell type [3]. Impor-

tantly, while the now widespread use of unique molec-

ular identifiers (UMI) in scRNA-seq removes technical

variation associated with PCR, differences in cell lysis,

reverse transcription efficiency, and stochastic molecular
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sampling during sequencing also contribute significantly,

necessitating technical correction [4]. These same chal-

lenges apply to bulk RNA-seq workflows, but are exac-

erbated due to the extreme comparative sparsity of

scRNA-seq data [5].

The primary goal of single-cell normalization is to

remove the influence of technical effects in the underlying

molecular counts, while preserving true biological vari-

ation. Specifically, we propose that a dataset which has

been processed with an effective normalization workflow

should have the following characteristics:

1 In general, the normalized expression level of a gene

should not be correlated with the total sequencing

depth of a cell. Downstream analytical tasks

(dimensional reduction, differential expression)

should also not be influenced by variation in

sequencing depth.

2 The variance of a normalized gene (across cells)

should primarily reflect biological heterogeneity,

independent of gene abundance or sequencing depth.
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For example, genes with high variance after

normalization should be differentially expressed

across cell types, while housekeeping genes should

exhibit low variance. Additionally, the variance of a

gene should be similar when considering either

deeply sequenced cells, or shallowly sequenced cells.

Given its importance, there have been a large num-

ber of diverse methods proposed for the normalization of

scRNA-seq data [6–11]. In general, these fall into two dis-

tinct sets of approaches. The first set aims to identify “size

factors” for individual cells, as is commonly performed for

bulk RNA-seq [12]. For example, BASiCS [7] infers cell-

specific normalizing constants using spike-ins, in order

to distinguish technical noise from biological cell-to-cell

variability. Scran [8] pools cells with similar library sizes

and uses the summed expression values to estimate pool-

based size factors, which are resolved to cell-based size

factors. By performing a uniform scaling per cell, these

methods assume that the underlying RNA content is con-

stant for all cells in the dataset and that a single scaling

factor can be applied for all genes.

Alternative normalization approaches model molecule

counts using probabilistic approaches. For example, ini-

tial strategies focused on read-level (instead of UMI-level)

data and modeled the measurement of each cell as a

mixture of two components: a negative binomial (NB)

“signal” component and a Poisson “dropout” component

[13]. For newer measurements based on UMI, model-

ing strategies have focused primarily on the use of the

NB distribution [14], potentially including an additional

parameter to model zero-inflation (ZINB). For example,

ZINB-WaVE [9] models counts as ZINB in a special vari-

ant of factor analysis. scVI and DCA also use the ZINB

noise model [10, 15], either for normalization and dimen-

sionality reduction in Bayesian hierarchical models or for

a denoising autoencoder. These pioneering approaches

extend beyond pre-processing and normalization, but rely

on the accurate estimation of per-gene error models.

In this manuscript, we present a novel statistical

approach for the modeling, normalization, and vari-

ance stabilization of UMI count data for scRNA-seq.

We first show that different groups of genes cannot be

normalized by the same constant factor, representing an

intrinsic challenge for scaling-factor-based normalization

schemes, regardless of how the factors themselves are

calculated. We instead propose to construct a generalized

linear model (GLM) for each gene with UMI counts as

the response and sequencing depth as the explanatory

variable. We explore potential error models for the GLM

and find that the use of unconstrained NB or ZINB

models leads to overfitting of scRNA-seq data and a

significant dampening of biological variance. To address

this, we find that by pooling information across genes

with similar abundances, we can regularize parameter

estimates and obtain reproducible error models. The

residuals of our “regularized negative binomial regres-

sion” represent effectively normalized data values that

are no longer influenced by technical characteristics,

but preserve heterogeneity driven by distinct biological

states. Lastly, we demonstrate that these normalized

values enable downstream analyses, such as dimension-

ality reduction and differential expression testing, where

the results are not confounded by cellular sequencing

depth. Our procedure is broadly applicable for any UMI-

based scRNA-seq dataset and is freely available to users

through the open-source R package sctransform

(github.com/ChristophH/sctransform), with a direct

interface to our single-cell toolkit Seurat.

Results
A single scaling factor does not effectively normalize both

lowly and highly expressed genes

Sequencing depth variation across single cells represents

a substantial technical confounder in the analysis and

interpretation of scRNA-seq data. To explore the extent

of this effect and possible solutions, we examined five

UMI datasets from diverse tissues, generated with both

plate- and droplet-based protocols. We show results on

all datasets in Additional file 1, but focus here on a

dataset of 33,148 human peripheral blood mononuclear

cells (PBMC) freely available from 10x Genomics. This

dataset is characteristic of current scRNA-seq experi-

ments; we observed amedian total count of 1891 UMI/cell

and observed 16,809 genes that were detected in at least

5 cells (Fig. 1a, b). As expected, we observed a strong lin-

ear relationship between unnormalized expression (gene

UMI count) and cellular sequencing depth. We observed

nearly identical trends (and regression slopes) for genes

across a wide range of abundance levels, after grouping

genes into six equal-width bins based on their mean abun-

dance (Fig. 1c), demonstrating that counts from both low-

and high-abundance genes are confounded by sequencing

depth and require normalization.

We next tested how the standard normalization

approach in popular scRNA-seq packages such as

Seurat [16–18] and SCANPY [19] compensates for this

effect. In this two-step process (referred to as “log-

normalization” for brevity), UMI counts are first scaled

by the total sequencing depth (“size factors”) followed by

pseudocount addition and log-transformation. While this

approach mitigated the relationship between sequenc-

ing depth and gene expression, we found that genes

with different overall abundances exhibited distinct pat-

terns after log-normalization, and only low/medium-

abundance genes in the bottom three tiers were effectively

normalized (Fig. 1d). In principle, this confounding rela-

tionship could be driven by the presence of multiple cell

https://github.com/ChristophH/sctransform
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Fig. 1 33,148 PBMC dataset from 10X Genomics. a Distribution of total UMI counts / cell (“sequencing depth”). bWe placed genes into six groups,

based on their average expression in the dataset. c For each gene group, we examined the average relationship between observed counts and cell

sequencing depth. We fit a smooth line for each gene individually and combined results based on the groupings in b. Black line shows mean,

colored region indicates interquartile range. d Same as in c, but showing scaled log-normalized values instead of UMI counts. Values were scaled

(z-scored) so that a single Y-axis range could be used. e Relationship between gene variance and cell sequencing depth; cells were placed into five

equal-sized groups based on total UMI counts (group 1 has the greatest depth), and we calculated the total variance of each gene group within

each bin. For effectively normalized data, each cell bin should contribute 20% to the variance of each gene group

types in human PBMC. However, when we analyzed a 10X

Chromium dataset that used human brain RNA as a con-

trol (“Chromium control dataset” [5]), we observed iden-

tical patterns, and in particular, ineffectual normalization

of high-abundance genes (Additional file 1: Figure S1

and S2).

Moreover, we also found that gene variance was also

confounded with sequencing depth. We quantified this

phenomenon by binning cells by their overall sequenc-

ing depth and quantifying the total variance of each gene

group within each bin. For effectively normalized data,

we expect uniform variance across cell groups, but we

observed substantial imbalances in the analysis of log-

normalized data. In particular, cells with low total UMI

counts exhibited disproportionately higher variance for

high-abundance genes, dampening the variance contri-

bution from other gene groups (Fig. 1e). We also tested

an alternative to log-normalization (“relative counts” nor-

malization), where we simply divided counts by total

sequencing depth. Removing the log-transformation mit-

igated the relationships between gene expression, gene

variance, and sequencing depth, but residual effects

remained in both cases (Additional file 2: Figure S1).

These results demonstrate inherent challenges for “size

factor”-based normalization strategies. Notably, while

recent normalization strategies leverage more advanced

strategies to learn cell “size factors” [7, 20], the use of

a single factor will introduce distinct effects on differ-

ent gene sets, given their average abundance. This sug-

gests that genes may require normalization strategies that

depend on their abundance level. Indeed, the authors of

SCnorm [6] reached similar conclusions in the normaliza-

tion of non-UMI-based single-cell RNA-seq data. Their

method utilizes quantile regression to treat distinct gene
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groups separately, but ignores zero values which predom-

inantly characterize droplet-based scRNA-seq. We there-

fore explored alternative solutions based on statistical

modeling of the underlying count data.

Modeling single-cell data with a negative binomial

distribution leads to overfitting

We considered the use of generalized linear models as a

statistical framework to normalize single-cell data. Moti-

vated by previous work that has demonstrated the utility

of GLMs for differential expression [21, 22], we reasoned

that including sequencing depth as a GLM covariate could

effectively model this technical source of variance, with

the GLM residuals corresponding to normalized expres-

sion values. The choice of a GLM error model is an impor-

tant consideration, and we first tested the use of a negative

binomial distribution, as has been proposed for overdis-

persed single-cell count data [9, 14], performing “negative

binomial regression” (“Methods” section) independently

for each gene. This procedure learns three parameters

for each gene, an intercept term β0 and the regression

slope β1 (influence of sequencing depth), which together

define the expected value, and the dispersion parame-

ter θ characterizing the variance of the negative binomial

errors.

We expected that we would obtain consistent param-

eter estimates across genes, as sequencing depth should

have similar (but not identical as shown above) effects

on UMI counts across different loci. To our surprise, we

observed significant heterogeneity in the estimates of all

three parameters, even for genes with similar average

abundance (Fig. 2). These differences could reflect true

biological variation in the distribution of single-cell gene

expression, but could also represent irreproducible varia-

tion driven by overfitting in the regression procedure. To

test this, we bootstrapped the analysis by repeatedly fitting

Fig. 2We fit NB regression models for each gene individually and bootstrapped the process to measure uncertainty in the resulting parameter

estimates. aModel parameters for 16,809 genes for the NB regression model, plotted as a function of average gene abundance across the 33,148

cells. The color of each point indicates a parameter uncertainty score as determined by bootstrapping (“Methods” section). Pink line shows the

regularized parameters obtained via kernel regression. b Standard deviation (σ ) of NB regression model parameters across multiple bootstraps. Red

points: σ for unconstrained NB model. Blue points: σ for regularized NB model, which is substantially reduced in comparison. Black trendline shows

an increase in σ for low-abundance genes, highlighting the potential for overfitting in the absence of regularization
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a GLM to randomized subsets of cells and assessed the

variance of parameter estimates. We found that param-

eter estimates were not reproducible across bootstraps

(Fig. 2), particularly for genes with low to moderate

expression levels, and observed highly concordant results

when estimating uncertainty using the GLM fisher infor-

mation matrix as an alternative to bootstrapping (see the

“Methods” section and Additional file 2: Figure S2). We

repeated the same analysis on the “Chromium control

dataset,” where the data from each droplet represents a

technical replicate of a bulk RNA sample. There is no

biological variation in this sample, but parameters from

negative binomial regression still exhibited substantial

variation across genes, particularly for lowly abundant

genes (Additional file 2: Figure S3). Taken together, these

results demonstrate that the gene-specific differences we

observed were exaggerated due to overfitting.

Our observation that single-cell count data can be over-

fit by a standard (two-parameter) NB distribution demon-

strates that additional constraintsmay be needed to obtain

robust parameter estimates. We therefore considered the

possibility of constraining the model parameters through

regularization, by combining information across similar

genes to increase robustness and reduce sampling varia-

tion. This approach is commonly applied in learning error

models for bulk RNA-seq in the context of differential

expression analysis [22–25], but to our knowledge has no

t been previously applied in this context for single-cell nor-

malization. We note that in contrast to our approach, the

use of a zero-inflated negative binomial model requires

an additional (third) parameter, exacerbating the potential

for overfitting. We therefore suggest caution and careful

consideration when applying unconstrained NB or ZINB

models to scRNA-seq UMI count data.

To address this challenge, we applied kernel regres-

sion (“Methods” section) to model the global dependence

between each parameter value and average gene expres-

sion. The smoothed line (pink line in Fig. 2) represents

a regularized parameter estimate that can be applied to

constrain NB error models. We repeated the bootstrap

procedure and found that in contrast to independent

gene-level estimates, regularized parameters were con-

sistent across repeated subsamples of the data (Fig. 2b),

suggesting that we are robustly learning the global trends

that relate intercept, slope, and dispersion to average gene

expression.

Our regularization procedure requires the selection

of a kernel bandwidth, which controls the degree of

smoothing. We used a data-based bandwidth selection

method [26] scaled by a user-defined bandwidth adjust-

ment factor. In Additional file 2: Figure S4, we show

that our method returns robust results when varying

this parameter within a reasonable range that extends

over an order of magnitude, but that extreme values

result in over/under-smoothing which will have adverse

affects.

Applying regularized negative binomial regression for

single-cell normalization

Our observations above suggest a statistically motivated,

robust, and efficient process to normalize single-cell data.

First, we utilize generalized linear models to fit model

parameters for each gene in the transcriptome (or a rep-

resentative subset; Additional file 2: Figure S7; “Methods”

section) using sequencing depth as a covariate. Second,

we apply kernel regression to the resulting parameter

estimates in order to learn regularized parameters that

depend on a gene’s average expression and are robust to

sampling noise. Finally, we perform a second round of NB

regression, constraining the parameters of the model to be

those learned in the previous step (since the parameters

are fixed, this step reduces to a simple affine transforma-

tion; “Methods” section). We treat the residuals from this

model as normalized expression levels. Positive residuals

for a given gene in a given cell indicate that we observed

more UMIs than expected given the gene’s average expres-

sion in the population and cellular sequencing depth,

while negative residuals indicate the converse. We uti-

lize the Pearson residuals (response residuals divided by

the expected standard deviation), effectively representing

a variance-stabilizing transformation (VST), where both

lowly and highly expressed genes are transformed onto a

common scale.

This workflow also has attractive properties for process-

ing single-cell UMI data, including:

1 We do not assume a fixed “size,” or expected total

molecular count, for any cell.

2 Our regularization procedure explicitly learns and

accounts for the well-established relationship [27]

between a gene’s mean abundance and variance in

single-cell data

3 Our VST is data driven and does not involve

heuristic steps, such as a log-transformation,

pseudocount addition, or z-scoring.
4 As demonstrated below, Pearson residuals are

independent of sequencing depth and can be used for

variable gene selection, dimensional reduction,

clustering, visualization, and differential expression.

Pearson residuals effectively normalize technical

differences, while retaining biological variation

To evaluate our regularized NB regression model, we

explored the relationship between the Pearson resid-

uals and cellular sequencing depth. Encouragingly, we

observed minimal correlation (Fig. 3a, c), for genes across

the full range of expression levels. In addition, gene vari-

ance was strikingly consistent across cells with different
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Fig. 3 Pearson residuals from regularized NB regression represent effectively normalized scRNA-seq data. Panels a and b are analogous to Fig. 1 d

and e, but calculated using Pearson residuals. c Boxplot of Pearson correlations between Pearson residuals and total cell UMI counts for each of the

six gene bins. All three panels demonstrate that in contrast to log-normalized data, the level and variance of Pearson residuals is independent of

sequencing depth

sequencing depths (Fig. 3b, contrast to Fig. 1e), with no

evidence of expression “dampening” as we observed when

using a cell-level size factor approaches. Taken together,

these results suggest that our Pearson residuals repre-

sent effectively standardized expression values that are not

influenced by technical metrics.

Our model predicts that for genes with minimal biolog-

ical heterogeneity in the data (i.e., genes whose variance

is driven primarily by differences in sequencing depth),

residuals should be distributed with a mean of zero and

unit variance. We observe these values for the majority

of genes in the dataset (Fig. 4a, b), demonstrating effec-

tive and consistent variance stabilization across a range of

expression values (Fig. 4c). However, we observed a set of

outlier genes with substantially higher residual variance

than predicted by our backgroundmodel, suggesting addi-

tional biological sources of variation in addition to sam-

pling noise. Further exploration of these genes revealed

that they exclusively represent markers of known immune

cell subsets (e.g., PPBP in Megakaryocytes, GNLY in

NK cells, IGJ in plasma cells). We repeated the analy-

sis after subsampling the number of cells in the dataset

(Additional file 2: Figure S5) and also on the “Chromium

control dataset.” Reassuringly, for the control dataset,

we did not observe genes with high residual variance

(Additional file 2: Figure S3), demonstrating that our

model correctly ascribed all variation in this control

dataset to technical sources. Finally, we performed a sim-

ulation study to evaluate the sensitivity of our method to

detect variable genes (Additional file 2: Figure S6). In sum-

mary, our regularized NB regression model successfully

captures and removes variance driven by technical dif-

ferences, while retaining biologically relevant signal. The

variance of Pearson residuals correlates with biological

heterogeneity and can be used to identify “highly variable”

genes in single-cell data.

Our previous analyses suggest that the use of a regu-

larized NB error model is crucial to the performance of

our workflow. To test this, we substituted both a Poisson

and an unconstrained NB error model into our GLM and

repeated the procedure (Fig. 4d). When applying standard

negative binomial regression, we found that the procedure

strikingly removed both technical and biological sources

of variation from the data, driven by overfitting of the

unconstrained distribution. A single-parameter Poisson

model performed similarly to our regularized NB, but

we observed that residual variances exceeded one for all

moderately and highly expressed genes. This is consistent

with previous observations in both bulk and single-cell

RNA-seq that count data is overdispersed [9, 12, 14, 28].

In addition to global analyses, it is also instructive to

explore how each model performs on characteristic genes

in the dataset. In Fig. 5, we show observed molecular

counts for four representative loci, as a function of total
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Fig. 4 Regularized NB regression removes variation due to sequencing depth, but retains biological heterogeneity. a Distribution of residual mean,

across all genes, is centered at 0. b Density of residual gene variance peaks at 1, as would be expected when the majority of genes do not vary

across cell types. c Variance of Pearson residuals is independent of gene abundance, demonstrating that the GLM has successfully captured the

mean-variance relationship inherent in the data. Genes with high residual variance are exclusively cell-type markers. d In contrast to a regularized

NB, a Poisson error model does not fully capture the variance in highly expressed genes. An unconstrained (non-regularized) NB model overfits

scRNA-seq data, attributing almost all variation to technical effects. As a result, even cell-type markers exhibit low residual variance. Mean-variance

trendline shown in blue for each panel

cell UMI count. Background colors indicate GLM Pear-

son residual values using three different error models

(Poisson, NB, regularized NB), enabling us to explore how

well each model fits the data. For MALAT1, a highly

expressed gene that should not vary across immune cell

subsets, we observe that both the unconstrained and

regularized NB distributions appropriately modeled tech-

nically driven heterogeneity in this gene, resulting in

minimal residual biological variance. However, the Pois-

son model does not model the overdispersed counts,

incorrectly suggesting significant biological heterogene-

ity. For S100A9 (a marker of myeloid cell types) and

CD74 (expressed in antigen-presenting cells), the regu-

larized NB and Poisson models both return bimodally

distributed Pearson residuals, consistent with a mixture

of myeloid and lymphoid cell types present in blood,

while the unconstrained NB collapses this biological

heterogeneity via overfitting. We observe similar results

for the Megakaryocyte (Mk) marker PPBP, but note that

both non-regularized models actually fit a negative slope

relating total sequencing depth to gene molecule counts.

This is because Mk cells have very little RNA content and

therefore exhibit lower UMI counts compared to other

cell types, even independent of stochastic sampling. How-

ever, it is nonsensical to suggest that deeply sequenced

Mk cells should contain less PPBP molecules than shal-

lowly sequenced Mk cells, and indeed, regularization of

the slope parameter overcomes this problem.

Taken together, our results demonstrate that the regu-

larized negative binomial represents an attractive middle

ground between two extremes. By allowing for overdis-

persion, the model can correctly account for the variance

in count data observed in single-cell assays. However, by

placing data-driven constraints on the slope, intercept,

and dispersion of NB regression, we substantially allevi-

ate the problem of overfitting and ensure that biological
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Fig. 5 The regularized NB model is an attractive middle ground between two extremes. a For four genes, we show the relationship between cell

sequencing depth and molecular counts. White points show the observed data. Background color represents the Pearson residual magnitude under

three error models. For MALAT1 (does not vary across cell types), the Poisson error model does not account for overdispersion and incorrectly infers

significant residual variation (biological heterogeneity). For S100A9 (a CD14+ monocyte marker) and CD74 (expressed in antigen-presenting cells),

the non-regularized NB model overfits the data and collapses biological heterogeneity. For PPBP (a Megakaryocyte marker), both non-regularized

models wrongly fit a negative slope. b Boxplot of Pearson residuals for models shown in a. X-axis range shown is limited to [− 8, 25] for visual clarity

variation is retained after normalization. We observed

identical results when considering any of the five UMI

datasets we tested, including both plate- and droplet-

based protocols (Additional file 1), demonstrating that our

procedure can apply widely to any UMI-based scRNA-seq

experiment.

Downstream analytical tasks are not biased by sequencing

depth

Our procedure is motivated by the desire to standardize

expression counts so that differences in cellular

sequencing depth do not influence downstream analytical

tasks. To test our performance towards this goal, we

performed dimensionality reduction and differential

expression tests on Pearson residuals after regularized

NB regression. For comparison, we used log-normalized

data. We first applied PCA followed by UMAP embed-

ding (“Methods” section) to the full PBMC dataset, using

normalized values (Pearson residuals, or log-normalized

data) for all genes in the transcriptome as input to PCA,

and then visualized the total number of molecules per

cell on the UMAP embedding. Both normalization
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schemes reveal significant biological heterogeneity in

PBMC (Fig. 6a), consistent with the expected major

and minor human immune cell subsets. However, the

low-dimensional representation of log-normalized data

was confounded by cellular sequencing depth, as both

the PCA and UMAP embeddings exhibited strong cor-

relations with this technical metric. These correlations

are strikingly reduced for Pearson residuals (Fig. 6a). We

note that we do not expect complete independence of

biological and technical effects, as distinct cell subsets

will likely vary in size and RNA content. However, even

when limiting our analyses within individual cell types,

we found that cell sequencing depth explained substan-

tially reduced variation in Pearson residuals compared to

log-normalized data (Fig. 6b), consistent with our earlier

observations (Fig. 3).

Imperfect normalization can also confound differential

expression (DE) tests for scRNA-seq, particularly if global

differences in normalization create DE false positives for

many genes. To demonstrate the scope of this problem

and test its potential resolution with Pearson residuals,

we took CD14+ monocytes (5551 cell subset of the 33K

Fig. 6 Downstream analyses of Pearson residuals are unaffected by differences in sequencing depth. a UMAP embedding of the 33,148 cell PBMC

dataset using either log-normalization or Pearson residuals. Both normalization schemes lead to similar results with respect to the major and minor

cell populations in the dataset. However, in analyses of log-normalized data, cells within a cluster are ordered along a gradient that is correlated with

sequencing depth. bWithin the four major cell types, the percent of variance explained by sequencing depth under both normalization schemes.

c UMAP embedding of two groups of biologically identical CD14+ monocytes, where one group was randomly downsampled to 50% depth.

d Results of differential expression (DE) test between the two groups shown in c. Gray areas indicate expected group mean difference by chance

and a false discovery rate cutoff of 1%. e Results of DE test between CD14+ and CD16+ monocytes, before and after randomly downsampling the

CD16+ cells to 20% depth
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PBMC data) and randomly divided them into two groups.

In one of the groups (50% of the cells), we randomly sub-

sampled UMIs so that each cell expressed only 50% of its

total UMI counts. Therefore, the two groups of mono-

cytes are biologically equivalent and differ only in their

technical sequencing depth, and we should ideally detect

no differentially expressed genes between them. However,

when performing DE on log-normalized data (t test with

significance thresholds determined by random sampling,

see the “Methods” section), we detected more than 2000

DE genes (FDR threshold 0.01), due to global shifts arising

from improper normalization (Fig. 6c, d). When perform-

ing DE on Pearson residuals, we identified only 11 genes.

While these 11 represent false positives, they are each

highly expressed genes for which it is difficult to obtain a

good fit during the regularization process as there are few

genes with similar mean values (Fig. 3a top left).

We also tested a second scenario where true DE genes

could be masked by sequencing depth differences. We

compared two distinct populations, CD14+ and CD16+

monocytes (5551 and 1475 cells), before and after ran-

domly downsampling the CD16+ group to 20% sequenc-

ing depth. We would expect the set of DE genes to be

nearly identical in the two analyses, though we expect

a decrease in sensitivity after downsampling. However,

when using log-normalized data, we observed dramatic

changes in the set of DE genes—with some CD14+-

enriched markers even incorrectly appearing as CD16+-

enriched markers after downsampling. When performing

DE on Pearson residuals, the results of the two analy-

ses were highly concordant, albeit with reduced statistical

power after downsampling (Fig. 6e). Therefore, Pearson

residuals resulting from regularized NB regression effec-

tively mitigate depth-dependent differences in dimension-

ality reduction and differential expression, which are key

downstream steps in single-cell analytical workflows.

Discussion
Here, we present a statistical approach for the normaliza-

tion and variance stabilization of single-cell UMI datasets.

In contrast to commonly applied normalization strategies,

our workflow omits the use of linear size/scaling factors

and focuses instead on the construction of a GLM relating

cellular sequencing depth to gene molecule counts. We

calculate the Pearson residuals of this model, represent-

ing a variance-stabilization transformation that removes

the inherent dependence between a gene’s average expres-

sion and cell-to-cell variation. In this manuscript, we

demonstrate that our normalization procedure effectively

removes the influence of technical variation, without

dampening biological heterogeneity.

When exploring error models for the GLM, our

analyses revealed that an unconstrained negative bino-

mial model tends to overfit single-cell RNA-seq data,

particularly for genes with low/medium abundance. We

demonstrate that a regularization step, a commmon step

in bulk RNA-seq analysis [22, 28] where parameter esti-

mates are pooled across genes with similar mean abun-

dance, can effectively overcome this challenge and yield

reproducible models. Importantly, statistical and deep-

learning methods designed for single-cell RNA-seq data

often utilize a negative binomial (or zero-inflated nega-

tive binomial) error model [10, 15]. Our results suggest

that these and future methods could benefit by substitut-

ing a regularized model and that including an additional

parameter for zero-inflation could exacerbate the risk of

overfitting. More generally, our work indicates that a reg-

ularized negative binomial is an appropriate distribution

to model UMI count data from a “homogeneous” cell

population.

To facilitate users applying these methods to

their own datasets, our approach is freely avail-

able as an open-source R package sctransform

(github.com/ChristophH/sctransform), with an accompa-

nying interface to our single-cell R toolkit Seurat [16–18].

In a single command, and without any requirement to

set user-defined parameters, sctransform performs

normalization, variance stabilization, and feature selec-

tion based on a UMI-based gene expression matrix. We

demonstrate the ease-of-use for sctransform in a

short vignette analyzing a 2700 PBMC dataset produced

by 10x Genomics in Additional file 3. In this example,

sctransform reveals significant additional biological

substructure in NK, T, B, and monocyte populations that

cannot be observed in the standard Seurat workflow,

which is based on log-normalization (Additional file 3).

As our workflow leverages all genes (or a random sub-

set) for the initial regularization, we make an implicit

assumption that the majority of genes in the dataset do

not exhibit significant biological variation. This is anal-

ogous to similar assumptions made for bulk RNA-seq

normalization and DE (i.e., that the majority of genes are

not differentially expressed across conditions) [28]. While

this assumption may be overly simplistic when perform-

ing scRNA-seq on a highly heterogeneous sample, we

did not observe adverse affects when applying our model

to human PBMC data, or any of the other datasets we

examined. In principle, an extension of sctransform that

included an initial pre-clustering step (as proposed in [8])

could alleviate this concern, as the biological heterogene-

ity would be significantly reduced in each group.

Our work makes extensive use of Pearson residuals,

the output of our regularized NB regression procedure.

These can be utilized as input for standard downstream

methods, i.e., Wilcoxon rank test for differential expres-

sion, or PCA for dimensional reduction. An alternative

approach, however, would modify the underlying meth-

ods themselves to assume a statistical error model that

https://github.com/ChristophH/sctransform
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is tailored to single-cell data. For example, Townes et al.

[29] introduced GLM-PCA, a generalization of PCA for

data exhibiting non-normal error distributions such as the

negative binomial, that takes count data directly as input

instead of relying on intermediate residuals. Similarly,

an extension of sctransform could perform differential

expression directly on the resulting parameter estimates

instead of the residual values, potentially coupling this

with an empirical Bayes framework [12, 30].

Finally, while we focus here on modeling technical vari-

ation due to differences in cellular sequencing depth,

we note that our approach can be easily extended to

model alternative “nuisance” parameters, including cell

cycle [31], mitochondrial percentage, or experimental

batch, simply by adding additional covariates to themodel.

Indeed, we observed that a modified GLM including

a batch indicator variable was sufficient to correct for

technical differences arising from two profiled batches

of murine bipolar cells [32], though successful applica-

tion requires all cell types to share a similar batch effect

(Additional file 2: Figure S8). In the future, we anticipate

that similar efforts can be used tomodel diverse single-cell

data types, including single-cell protein [33], chromatin

[34], and spatial [35] data.

Methods
Regularized negative binomial regression

We explicitly model the UMI counts for a given gene using

a generalized linear model. Specifically, we use the sum

of all molecules assigned to a cell as a proxy for sequenc-

ing depth and use this cell attribute in a regression model

with negative binomial (NB) error distribution and log

link function. Thus, for a given gene i, we have

log(E(xi)) = β0 + β1 log10m,

where xi is the vector of UMI counts assigned to gene i

and m is the vector of molecules assigned to the cells, i.e.,

mj =
∑

i xij. The solution to this regression is a set of

parameters: the intercept β0 and the slope β1. The dis-

persion parameter θ of the underlying NB distribution is

also unknown and needs to be estimated from the data.

Here we use the NB parameterization with mean μ and

variance given as μ + μ2

θ
.

We use a regression model for the UMI counts to

correct for sequencing depth differences between cells

and to standardize the data. However, modeling each

gene separately results in overfitting, particularly for low-

abundance genes that are detected in only a minor subset

of cells and are modeled with a high variance.We consider

this an overestimation of the true variance, as this is driven

by cell-type heterogeneity in the sample, and not due

to cell-to-cell variability with respect to the independent

variable, log10m. To avoid this overfitting, we regular-

ize all model parameters, including the NB dispersion

parameter θ , by sharing information across genes.

The procedure we developed has three steps. In the

first step, we fit independent regression models per gene.

In the second step, we exploit the relationship of model

parameter values and gene mean to learn global trends in

the data. We capture these trends using a kernel regres-

sion estimate (ksmooth function in R). We use a normal

kernel and first select a kernel bandwidth using the R func-

tion bw.SJ. We multiply this by a bandwidth adjustment

factor (BAF, default value of 3, sensitivity analysis shown

in Additional file 2: Fig. S4).We perform independent reg-

ularizations for all parameters (Fig. 2). In the third step,

we use the regularized regression parameters to define an

affine function that transforms UMI counts into Pearson

residuals:

zij =
xij − μij

σij
,

μij = exp (β0i + β1i log10mj),

σij =

√

μij +
μ2
ij

θi
,

where zij is the Pearson residual of gene i in cell j, xij is the

observed UMI count of gene i in cell j, μij is the expected

UMI count of gene i in cell j in the regularized NB regres-

sion model, and σij is the expected standard deviation of

gene i in cell j in the regularized NB regression model.

Here β0i , β1i , and θi are the linear model parameters after

regularization. To reduce the impact of extreme outliers,

we clip the residuals to a maximum value of
√
N , whereN

is the total number of cells.

We highlight that our approach was inspired by meth-

ods developed for differential expression analysis in bulk

RNA-seq data. For example, DESeq [23] uses the negative

binomial distribution for read count data and links vari-

ance and mean by local regression. DESeq2 [12] extends

this approach with Empirical Bayes shrinkage for disper-

sion estimation. Additionally, edgeR [22] introduced GLM

algorithms and statistical methods for estimating biolog-

ical variation on a genewise basis and separating it from

technical variation.

Geometric mean for genes

Our regularization approach aims to pool information

across genes with similar average expression. To avoid

the influence of outlier cells and respect the exponential

nature of the count distributions, we consistently use the

geometric mean. References to average abundance or gene

mean in this work are based on the following definition of

mean:

exp
(

amean(log(x + ǫ))
)

− ǫ,
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with x being the vector of UMI counts of the gene, amean

being the arithmetic mean, and ǫ being a small fixed

value to avoid log(0). After trying several values for ǫ

in the range 0.0001 to 1, and not observing significant

differences in our results, we set ǫ = 1.

Speed considerations

sctransform has been optimized to run efficiently

on large scRNA-seq datasets on standard computa-

tional infrastructure. For example, processing of a 3000

cell dataset takes 30 s on a standard laptop (the

33,148 cell dataset utilized in this manuscript takes

6 min).

The most time-consuming step of our procedure is the

initial GLM-fitting, prior to regularization. Here, we fit

K linear regression models with NB error models, where

K is the total number of genes in the dataset. However,

since the results of the first step are only used to learn

regularized parameter estimates (i.e., the overall relation-

ship of model parameter values and gene mean), we tested

the possibility of performing this step on a random subset

of genes in lieu of the full transcriptome. When select-

ing a subset of genes to speed up the first step, we do not

select genes at random, i.e., with a uniform sampling prob-

ability, as that would not evenly cover the range of gene

means. Instead, we set the probability of selecting a gene

i to 1/d(log10 x̄i), where d is the density estimate of all

log10-transformed gene means and x̄i is the mean of UMI

counts of gene i.

For different numbers of genes (ranging from 4000 to

50), we drew 13 random samples to be used in the ini-

tial step of parameter estimation. We then proceeded

to generate regularized models (for all genes based on

parameters learned from a gene subset) and compared the

results to the case where all genes were used in the ini-

tial estimation step as well. We employed a few metrics to

compare the partial analysis to the full analysis: the cor-

relation of gene-residuals, the ranking of genes based on

residual variation (most highly variable genes), and the

CV of sum of squared residuals across random samples

(model stability). For all metrics, we observed that using

as few as 200 genes in the initial estimation closely recapit-

ulated the full results, while using 2000 genes gave rise to

virtually identical estimates (Additional file 2: Figure S7).

We therefore use 2000 genes in the initial GLM-fitting

step.

Additionally, we explored three methods to estimate the

model parameters in the initial step. We list them here in

increasing order of computational complexity.

1 Assume a Poisson error distribution to estimate β

coefficients. Then, given the estimated mean vector,

estimate the NB θ parameter using maximum

likelihood.

2 Same as above, followed by a re-estimation of β

coefficients using a NB error model with the

previously estimated θ .

3 Fit a NB GLM estimating both the β and θ

coefficients using an alternating iteration process.

While the estimated model parameters can vary slightly

between these methods, the resulting Pearson residuals

are extremely similar. For example, when applying the

three procedures to the 10x PBMC dataset, all pairwise

gene correlations between the three methods are greater

than 0.99, though the alternating iteration process is

fourfold more computationally demanding. We therefore

proceeded with the first method.

Model parameter stability

To assess model parameter stability, we bootstrapped the

parameter estimation and sampled from all cells with

replacement 13 times. For a given gene and parameter

combination, we derived an uncertainty score as follows.

We used the standard deviation of parameter estimates

across 13 bootstraps divided by the standard deviation of

the bootstrap-mean value across all genes. Values greater

or equal to one indicate high uncertainty, while values less

or equal to 0.01 indicate low uncertainty.

As an alternative to bootstrapping, we also examined

the 95% confidence intervals (CI) of the parameter esti-

mates. The standard errors (SE) of the parameter esti-

mates (based on the Fisher information matrix obtained

during the estimation procedure) are taken from the out-

put of the R function glm (intercept and slope) and

theta.ml (θ ). CI are then calculated as the estimated values

±1.96 × SE.

Trends in the data before and after normalization

We grouped genes into six bins based on log10-

transformed mean UMI count, using bins of equal width.

To show the overall trends in the data, for every gene,

we fit the expression (UMI counts, scaled log-normalized

expression, scaled Pearson residuals) as a function of

log10-transformed mean UMI count using kernel regres-

sion (ksmooth function) with normal kernel and large

bandwidth (20 times the size suggested by R function

bw.SJ). For visualization, we only used the central 90% of

cells based on total UMI. For every gene group, we show

the expression range after smoothing from first to third

quartile at 200 equidistant cell UMI values.

Simulation study to assess sensitivity of variable gene

detection

To evaluate the sensitivity of ourmethod to detect variable

genes, we used simulated data. The goal of our simula-

tion was to generate two populations of cells (A and B,

5k cells each), while introducing expression shifts between



Hafemeister and Satija Genome Biology          (2019) 20:296 Page 13 of 15

groups to some of the genes. To get a realistic set of model

parameters, we first chose a group of cells (FCGR3A+,

MS4A7+ Monocytes; 2924 cells) from the main 33k-cell

PBMC dataset to learn a regularized NB model for each

gene (ca. 12k genes). We then randomly chose 5% of the

genes to have a higher mean in A vs B (ratio 10/1) and

another 5% to have a lower mean in A vs B (ratio 1/10).

Specifically, we adjusted the gene mean by a factor of
√
10

in A (B) and 1√
10

in B (A) for genes that are high in A (B).

We then adapted the model parameters (intercept, slope,

theta) based on the new gene mean and the regulariza-

tion curve learned from real data. Genes not selected to

be variable had identical mean andmodel parameters in A

and B.

We generated count data by first sampling a total cell

UMI count from the input data (2924 Monocytes, see

above). Given the total UMI, we could obtain the NB

mean parameters for each gene per cell group (A and

B), and together with the gene-specific theta generate

UMI counts. This procedure was repeated 5k times, each

time generating a cell for groups A and B. The combined

count matrix of 10k cells was then used as input to our

normalization method.

Finally, we repeated the above procedure 13 times and

summarized the results in Additional file 2: Figure S6,

specifically looking at the Jensen-Shannon divergence of

the generating models and the variance of the Pearson

residuals.

Variance contribution analysis

To evaluate whether gene variance is dependent on

sequencing depth, we determined the contribution of

different cell groups to the overall variance of our six pre-

viously determined gene sets. For this, we placed all cells

into five equal-sized groups based on total UMI counts

(group 1 has the greatest depth, group 5 the lowest). We

center each gene and square the values to obtain the

squared deviation from the mean. The variance contribu-

tion of a cell group is then the sum of the values in those

cells divided by the sum across all cells.

Density maps for Pearson residuals

To illustrate different models (regularized NB, Poisson,

non-regularized NB) for four example genes, we show

Pearson residuals on 256× 256 grids in form of heatmaps.

X- and Y -axis ranges were chosen to represent the central

98% of cells and central 99.8% of UMI counts. Heatmap

colors show the magnitude (absolute value) of Pearson

residuals, clipped to a maximum value of 4.

Dimensionality reduction

For both log-normalized data and Pearson residuals,

we performed dimensionality reduction as follows. We

centered and scaled all 16K genes, clipped all values to the

interval [− 10, 10] and performed a truncated principal

components analysis as provided by the irlba R package.

In both cases, we kept the first 25 PCs based on eigenvalue

drop-off. For 2D visualization, the PC embeddings were

passed into UMAP [36, 37] with default parameters.

Differential expression testing

Differential expression testing was done using indepen-

dent t tests per gene for all genes detected in at least 5

cells in at least one of the two groups being compared. P

values were adjusted for multiple comparisons using the

Benjamini and Hochberg method (FDR). Input to the test

was either log-normalized (log(10, 000UMIgene/UMIcell+
1)) expression or Pearson residuals after regularized

NB regression. A random background distribution of

mean differences was generated by randomly choosing

1000 genes and permuting the group labels. Significance

thresholds for the difference of means were derived from

the background distribution by taking the 0.5th and 99.5th

percentile. Finally, we called genes differentially expressed

if the FDR was below 0.01 and the difference of means

exceeded the threshold for significance.

Model extensions—additional nuisance parameters

For the results shown in this manuscript, we have used the

log-transformed total number of UMI assigned to each

cell as the dependent variable to model gene-level UMI

counts. However, other variables may also be suitable as

long as they capture the sampling depth associated with

each cell.

Additionally, the model can be flexibly extended

to include additional covariates representing nuisance

sources of variation, including cell-cycle state, mitochon-

drial percentage, or experimental batch. In these cases

(unlike with sequencing depth), no regularization can be

performed for parameters involving these variables, as

genes with similar abundances cannot be assumed to (for

example) be expressed in a similar pattern across the cell

cycle. In these cases, we first learn regularized models

using only the sequencing depth covariate, as described

above. We next perform a second round of NB regres-

sion, including both the depth covariate and additional

nuisance parameters as model predictors. In this round,

the depth-dependent parameters are fixed to their previ-

ously regularized values, while the additional parameters

are unconstrained and fit during the regression. The Pear-

son residuals of this second round of regression represent

normalized data.

As a proof-of-concept, we illustrate a potential model

extension by including a batch indicator variable when

analyzing a dataset of 26,439 murine bipolar cells

produced by two experimental batches [32], consid-

ering all bipolar cells and Müller glia. After running

sctransform, either with the inclusion or exclusion of
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the batch covariate, we performed PCA on all genes and

used the first 20 dimensions to compute a UMAP embed-

ding (Additional file 2: Figure S8).We include this example

as a demonstration for how additional nuisance param-

eters can be included in the GLM framework, but note

that when cell-type-specific batch effects are present, or

there is a shift in the percentage of cell types across exper-

iments, non-linear batch effect correction strategies are

needed [18].
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