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Abstract—The gradient direction histogram feature has shown superior

performance in character recognition. To alleviate the effect of stroke direction

distortion caused by shape normalization and provide higher recognition

accuracies, we propose a new feature extraction approach, called normalization-

cooperated gradient feature (NCGF) extraction, which maps the gradient direction

elements of original image to direction planes without generating the normalized

image and can be combined with various normalization methods. Experiments on

handwritten Japanese and Chinese character databases show that, compared to

normalization-based gradient feature, the NCGF reduces the recognition error rate

by factors ranging from 8.63 percent to 14.97 percent with high confidence of

significance when combined with pseudo-two-dimensional normalization.

Index Terms—Character recognition, feature extraction, normalization-

cooperated gradient feature (NCGF).
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1 INTRODUCTION

OPTICAL character recognition (OCR) techniques have found
numerous applications, including business card recognition, bank-
check recognition, tax form processing, mail address reading, etc.
Higher recognition accuracy is always desired in applications,
especially for unconstrained handwriting and degraded document
images. This paper proposes a new feature extraction approach to
improve the accuracy of handwritten character recognition.

Previous studies have shown the superiority of gradient
direction histogram feature (gradient direction feature or gradient
feature in brief) in character recognition [1]. As the contour direction
feature (chaincode feature) does, the gradient feature grasps the
local distribution of stroke direction. Both the chaincode feature and
the gradient feature can be computed inmoderate CPU resource and
result in moderate dimensionality. The gradient feature is more
robust against contour noise and applies to gray-scale images as
well as binary images. A recent comparison also shows that the
gradient feature performs comparably well or better than the
popularGabor filter feature [2]. The gradient direction feature is also
demonstrated effective in face detection [3] and has the potential of
applying to face recognition and other image recognition problems.

The recognition performance also depends on the approach of
character normalization. Line-density-based nonlinear normaliza-
tion [4], [5] has been commonly used in handwritten Chinese and
Japanese character recognition. Curve-fitting-based normalization
[6] and pseudo-two-dimensional (P2D) normalization techniques
[7] have been proposed to improve either the computation efficiency
or the recognition accuracy. With nonlinear and P2D normalization,
however, the recognition performance of chaincode and gradient
features may be traded off by stroke shape distortion. To alleviate
the effect of distortion, a normalization-cooperated feature extrac-
tion (NCFE) approach [8], and its improved version called
continuous NCFE [9], compute the chaincode direction feature of
original image incorporating coordinate normalization. However, it
is not straightforward to extend NCFE to gradient feature.

To provide higher recognition accuracies in handwritten
character recognition, we propose a new feature extraction
approach, called normalization-cooperated gradient feature
(NCGF) extraction. We view both the original image and the
normalized image as functional in continuous 2D space and
associate them by coordinate normalization (coordinate mapping).
The normalized gradient can then be computed from the original
image without generating the normalized image explicitly. Repla-
cing the direction of normalized gradient with that in the original
image while maintaining the magnitude of the normalized
gradient, the resulting gradient feature thus records the un-
distorted stroke directions and keeps stroke-width invariance.

We combined gradient feature extraction with various coordi-
nate normalization methods in experiments of handwritten char-
acter recognition on two large databases. The recognition results
show that the proposedNCGF outperforms both the normalization-
based gradient feature (NBGF) and the normalization-cooperated
chaincode feature (NCCF) in most cases. When combined with
P2D normalization methods, the NCGF performs significantly
better than the NBGF and provides the overall best performance.

Since the feature extraction process is combined with character
normalization, we first review the normalization methods in
Section 2. The proposed NCGF extraction approach is then
described in Section 3. Experimental results are presented in
Section 4 and concluding remarks are offered in Section 5.

2 REVIEW OF CHARACTER NORMALIZATION

A character image fði; jÞ has digital (binary or gray-scale) pixel
values sampled from a continuous image plane fðx; yÞ. We view a
digital image as a functional in continuous 2D space with each
pixel defined by a unit square (Fig. 1a). Specifically, a pixel fði; jÞ
is defined in domain x 2 ½i; iþ 1Þ, y 2 ½j; jþ 1Þ, and fðx; yÞ is
constant in this domain. By this definition, we can treat fðx; yÞ and
fði; jÞ equivalently.

An original image fðx; yÞ is transformed to a normalized image
f 0ðx0; y0Þ of standard size. Normalization is realized by mapping
the pixel coordinates from the original image to a normalized
image plane:

x0 ¼ uðx; yÞ; y0 ¼ vðx; yÞ; and f 0ðu; vÞ ¼ fðx; yÞ: ð1Þ

In implementation, each unit square in the original image,
Uij ¼ ðði; jÞ; ðiþ 1; jÞ; ði; jþ 1Þ; ðiþ 1; jþ 1ÞÞ, is mapped to a quad-
rilateralQij with four vertices ðuði; jÞ; vði; jÞÞ, ðuðiþ 1; jÞ; vðiþ 1; jÞÞ,
ðuði; jþ 1Þ; vði; jþ 1ÞÞ, and ðuðiþ 1; jþ 1Þ; vðiþ 1; jþ 1ÞÞ. Accord-
ingly, the square grid of original image is transformed to a net
overlapping on a square grid of normalized plane (Fig. 1b). The
normalized image is obtained by assigning fði; jÞ to the pixels of
normalized image overlapping with the quadrilateral, each pixel
multiplied with the overlapping area [7].

The shape of normalized image thus depends on the coordinate
mapping functions uðx; yÞ and vðx; yÞ. For facilitating implementa-
tion and restricting the distortion of normalized shape, the
coordinate functions are often simplified to one-dimensional
(1D): x0 ¼ uðxÞ, y0 ¼ vðyÞ. Pseudo-two-dimensional (P2D) normal-
ization methods form 2D coordinate functions by combining row-
wise or column-wise 1D coordinate functions. An early and
computationally expensive method, computes row-wise/column-
wise coordinate functions after line density smoothing [10]. Our
recent study shows that combining only three 1D coordinate
functions performs sufficiently [7]. Specifically, for computing
uðx; yÞ, three 1D coordinate functions and their weight functions,
uiðxÞ and wiðyÞ, i ¼ 1; 2; 3, are computed from three soft strips of
the original image. The 1D functions are combined by

uðx; yÞ ¼
w1ðyÞu1ðxÞ þ w2ðyÞu2ðxÞ; y < yc;

w3ðyÞu3ðxÞ þ w2ðyÞu2ðxÞ; y � yc:

(

ð2Þ
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ðxc; ycÞ is the centroid of the original image. vðx; yÞ is computed
similarly.

We consider five 1D normalization methods: linear normal-
ization (LN), line-density-based nonlinear normalization (NLN) [4],
moment normalization (MN) which aligns image centroid and re-
scales according to second-order moments, bimoment normal-
ization (BMN), and modified centroid-boundary alignment
(MCBA). The coordinate mapping of moment normalization is
linear, and those of NLN, BMN, and MCBA are nonlinear. The
P2D extension of NLN is called line density projection interpolation
(LDPI). Similarly, the MN, BMN, MCBA methods are extended to
P2Dversions, called P2DMN, P2DBMN, andP2DCBA, respectively.
The details of all these normalization methods can be found in [7].
The methods except NLN and LDPI are applicable to both binary
and gray-scale images. Some examples of character normalization
are shown in Fig. 2.

The normalization-cooperated gradient feature (NCGF), pro-
posed as follows, can be combined with various normalization
methods, which are uniformly formulated by coordinate functions
as in (1).

3 NORMALIZATION-COOPERATED GRADIENT FEATURE
EXTRACTION

Gradient direction feature is flexible for application to machine-
print/handwriting, binary/gray scale, and low-resolution images
[11]. A gradient direction decomposition technique, originally
proposed in online character recognition [12], was shown to give
high recognition performance [1]. Specifying a number of standard
directions (very often, eight chaincode directions), a gradient vector
of arbitrary direction is decomposed into two components coin-
cident with the two neighboring standard directions (Fig. 3). The
components are assigned to the corresponding direction planes. On
decomposing all the gradient vectors, a number of feature values is
extracted from each direction plane by Gaussian filtering (blurring)
and down-sampling [1].

Conventionally, the gradient is computed on each pixel of the
normalized image. Since generating the normalized image con-
sumes computing resource, and pixel discretization/interpolation
may lose precision, it is desirable to compute the normalized

gradient directly from the original image. This falls in the
normalization-cooperated feature extraction (NCFE) strategy.

3.1 Gradient Computation and Assignment

Recall the relation (1) between original image and normalized

image. It is essential for normalization that the local order of

pixels remains, i.e., the coordinate mapping functions satisfy @u
@x >

0 and @v
@y > 0. For P2D normalization methods, it is reasonable to

assume @u
@x �

@u
@y and @v

@y �
@v
@x . This can be verified from (2): u1ðxÞ,

u2ðxÞ, and u3ðxÞ do not differ significantly in practice, w1ðyÞ þ

w2ðyÞ and w3ðyÞ þ w2ðyÞ are constant (see [7]). Consider the

inverse functions, we similarly assume @x
@u �

@x
@v and @y

@v �
@y
@u . In

1D normalization, it is true that @u
@y ¼ 0, @v

@x ¼ 0, @x
@v ¼ 0, and @y

@u ¼ 0.

The gradient of normalized image f 0ðu; vÞ, mapped from the

original image fðx; yÞ, is defined by g
0 ¼ ð@f

0

@u ;
@f 0

@v Þ. Using the chain

rule and incorporating the above assumptions,

@f 0

@u
¼

@f 0

@x
�
@x

@u
þ
@f 0

@y
�
@y

@u

’
@f 0

@x
�
@x

@u
¼

@f

@x

� @u

@x
;

ð3Þ

where @f 0

@x ¼ @f
@x is from f 0ðu; vÞ ¼ fðx; yÞ. Similarly,

@f 0

@v
’

@f

@y

. @v

@y
: ð4Þ

It is seen from (3) and (4) that the normalized gradient g0 ¼ ð@f
0

@u ;
@f 0

@v Þ

is computed from the orginal gradient g ¼ ð@f@x ;
@f
@yÞ incorporating

coordinate mapping. In implementation, g is computed for each
pixel in the original image, converted to g

0 and assigned to
direction planes.

Before introducing the numerical computation of @f 0

@u and @f 0

@v , we
explain how to map the gradient g0 to direction planes. As in Fig. 3,
g
0 is decomposed into two components in two directions with

lengths l1 and l2. Since g
0 is computed for each pixel ði; jÞ of the

original image, which is mapped to a quadrilateral Qij in the
normalized image, it represents the gradient of all points in Qij.
Accordingly, the two gradient components are assigned to the pixels
of the two corresponding direction planes that overlap with Qij:
Each pixel assigned a value equal to the overlapping area times the
gradient component length. In doing this, we obtain normalized
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Fig. 1. Grids for (a) original image 13� 14 and (b) normalized image 16� 16 pixels
and the coordinate-normalized grid in thick lines.

Fig. 2. Character images: original (leftmost) and normalized by nine methods.

Fig. 3. Direction decomposition of gradient vector.



gradient direction feature,without generating the normalized image
explicitly. We call this normalized normalization-cooperated gradi-
ent feature (nNCGF), in which the gradient direction is normalized.

For extracting features from the original gradient direction, the
gradient of original image at pixel ði; jÞ, g ¼ ð@f@x ;

@f
@yÞ, is directly

assigned to direction planes. As assigning g0, g is decomposed into
two components of two standard directions. In one direction plane,
the pixels overlappingwith the quadrilateralQij are assigned values
equal to the overlapping area times the gradient component length
times a variable ratio. The variable ratio is based on the following
reason.While the normalized gradient g0 characterizes the edgeness
of normalized image and the product of its magnitude with the
quadrilateral area is approximately stroke-width invariant, the
product of quadrilateral area with the magnitude of g is not. To
maintain stroke-width invariance, the multiplier is set equal to the
ratio kg0k=kgk. Thus, we take the direction of the original gradient
and the magnitude of the normalized gradient in NCGF.

3.2 Numerical Implementation

For numerically computing the gradient in original and normalized
images, we use the Sobel operator. At pixel ði; jÞ of original image,

@f

@x
¼ ½fðiþ 1; j� 1Þ þ 2fðiþ 1; jÞ þ fðiþ 1; jþ 1Þ

� fði� 1; j� 1Þ � 2fði� 1; jÞ � fði� 1; jþ 1Þ�=8;

@f

@y
¼ ½fði� 1; jþ 1Þ þ 2fði; jþ 1Þ þ fðiþ 1; jþ 1Þ

� fði� 1; j� 1Þ � 2fði; j� 1Þ � fðiþ 1; j� 1Þ�=8:

ð5Þ

The partial derivatives of coordinate mapping functions are
replaced by numerical differences

@u

@x
¼ ½uðiþ 1; jÞ � uði� 1; jÞ�=2;

@v

@y
¼ ½vði; jþ 1Þ � vði; j� 1Þ�=2:

ð6Þ

The normalized gradient g0 ¼ ð@f
0

@u ;
@f 0

@v Þ is then computed according
to (3) and (4).

For either NCGF or nNCGF, the gradient or normalized gradient
is computed for each pixel ði; jÞ of the original image and its
components are assigned to the pixels in direction planes over-
lappingwith the quadrilateralQij. Feature values are then extracted
from direction planes by Gaussian blurring and down-sampling.

Assigning values to the pixels overlapping with a quad-
rilateral can be implemented by decomposing the quadrilateral
into trapezoids falling in unit squares of pixels (quadrilateral

decomposition [7]). This procedure is somewhat complicated.
Actually, the precision of assigning gradient magnitude to
overlapping pixels is not necessarily high because the direction
planes are finally blurred. To simplify, we just assign the
gradient magnitude (component length or length times a ratio)
times the quadrilateral area to one single pixel (unit square) that
the point ðuði; jÞ; vði:jÞÞ falls in. And further, the quadrilateral
area is approximated by ðuðiþ 1; jÞ � uði; jÞÞ � ðvði; jþ 1Þ �
vði; jÞÞ (this is exact in the case of 1D coordinate normalization).
We will show in experiments that this simplified point-assignment
procedure performs comparably well with quadrilateral decom-
position.

Fig. 4 shows the gradient orientation planes merged from eight
direction planes, obtained by three approaches: normalization-
based gradient feature (NBGF), nNCGF, and NCGF. We can see
evident difference in the left-most column (corresponding to edges
of vertical strokes) and the right-most column (edges of left-diagonal
strokes), due to the orientation change of the right-most stroke.

4 EXPERIMENTAL RESULTS

To evaluate the recognition performance of the proposedNCGF, we
experimented on two databases of handwritten character images.
The ETL9Bdatabase1 has beenwidely tested in previousworks (e.g.,
[13], [14]). It contains binary images of 3,036 character classes
(71 hiragana characters and 2,965 Kanji characters), 200 samples per
class. The CASIA database2 contains binary images of 3,755 charac-
ters (in level-1 set of GB2312-80), 300 samples per class. Some sample
images of CASIA database are shown in Fig. 5.

For the ETL9B database, we used the first 20 and the last
20 samples of each class for testing, and the remaining 160 samples
of each class for training classifiers. For the CASIA database, we
used the first 250 samples of each class for training, and the
remaining 50 samples of each class for testing. Recognition error
rates are reported on the test sets, with 121,440 samples and
187,750 samples for ETL9B and CASIA, respectively. We did not
partition the datasets in multiple ways (e.g., cross validation)
because the number of test samples is large enough.

From each character image, we extracted 8-direction gradient
features by three approaches: NCGF, normalized NCGF (nNCGF),
and normalization-based gradient feature (NBGF, based on gray-
scale normalized image). The size of normalized image and
direction planes was set to 64� 64 pixels. From each of eight
direction planes, we extracted 8� 8 feature values. As result, the
dimensionality of feature vector is 512. We also evaluated the
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Fig. 4. Gradient orientation planes of NBGF (second row), nNCGF (third row), and

NCGF (last row). The first row shows the original image and the gray-scale

normalized image.

Fig. 5. Sample images of CASIA database.

1. Collected by the Electro-Technical Laboratory, which was reorganized
into the National Institute of Advanced Industrial Science and Technology
(AIST), Japan.

2. Collected by the Institute of Automation, Chinese Academy of
Sciences (CASIA).



chaincode direction feature extracted by continuous NCFE,
referred to as normalization-cooperated chaincode feature (NCCF).

The normalization methods experimented are those mentioned
in Section 2, namely, linear normalization (LN), nonlinear normal-
ization (NLN), moment normalization (MN), bimoment normal-
ization (BMN), modified centroid-boundary alignment (MCBA),
line density projection interpolation (LDPI), P2D moment normal-
ization (P2DMN), P2D bimoment normalization (P2DBMN), and
P2D MCBA (P2DCBA).

For classification, the dimensionality of feature vector is first
reduced from 512 to 160 by Fisher linear discriminant analysis [15],
with the transformation matrix estimated on the training data set.
The reduced feature vector is classified using the modified
quadratic discriminant function (MQDF2) [16], which has been
proven very effective in handwritten Chinese character recogni-
tion. The MQDF2 assumes that the probability density of each class
is the combination of a multivariate Gaussian in principal linear
subspace and a spherical Gaussian in the minor subspace. We use
40 principal eigenvectors for each class, make the minor eigenvalue
class-independent and optimize it via holdout cross-validation on
the training data set.

Before evaluating the performance of large character set
recognition, we compared two implementation techniques of
NCGF: quadrilateral decomposition and point-assignment, in
respect of recognition accuracy and computation time on the
71 hiragana characters in ETL9B database. Here each sample is
represented by 288 feature values (36 values from each of eight
direction planes of size 48� 48). MQDF2 with 40 principal
eigenvectors per class is applied to the 288-dimensional vector for
classification. Because the total number of hiragana samples (14,200)
is small, we estimated the error rates by 5-fold cross-validation, i.e.
the data of each class is partitioned into five parts, each part is tested
in rotation with the classifier trained on the remaining parts. The
error rates and the CPU times (on Pentium 4-3 GHz) of feature
extraction per sample are shown in Table 1. We do not compare
nNCGF here because its computation time is almost the same as

NCGF.We can see that the two implementation techniques ofNCGF
yield very similar accuracies (for eight of the nine normalization
methods, the difference of error rate is less than 0.1 percent). The
computation of point-assignment is much faster than quadrilateral
decomposition, and is intermediate between NBGF and NCCF.

In 3,036-class recognition of ETL9B database and 3,755-class
recognition of CASIA database, we compare the error rates of four
feature extraction techniques: NCGF, nNCGF, NBGF, and NCCF,
and evaluate the improvement of NCGF versus NBGF and NCGF
versus NCCF in respect of the ratio of error reduction and the level
of significance.

Denote the error rates of two recognizers by p1 and p2 ðp1 < p2Þ,
the error reduction ratio is r ¼ ðp2 � p1Þ=p2. The level of signifi-
cance is measured by z-test [17]. Take the null hypothesis that two
error rates p1 and p2 do not differ significantly, the distribution of
variable p2 � p1 can be approximated as normal with zero mean
and variance �2 ¼ 2pð1� pÞ=n, where p is the average of p1 and p2
and n is the number of test samples. Accordingly, z ¼ ðp2 � p1Þ=�
has a standard normal distribution. When the value of z satisfies
jzj > 1:96, the null hypothesis can be rejected (i.e., the two error
rates are judged to be different) with confidence higher than 0.95.
Hence, we use the value of z as a measure of significance.

The error rates and measures of improvement on ETL9B
database are shown in Table 2 and those on CASIA database are
shown in Table 3.

We have some common observations from the results of both
ETL9B and CASIA. Comparing the feature extraction techniques
using the same normalization method, the lowest error rate is
mostly (in 13 of 18 cases) given by NCGF. With 1D normalization,
the error rates of nNCGF and NBGF are comparable and mostly (in
six of 10 cases) lower than that of NCCF. With P2D normalization,
the error rates of nNCGF and NCCF are comparable and mostly (in
seven of eight cases) lower than that of NBGF. The error rate of
NCGF is evidently lower than that of NBGF when combined with
one-dimensional NLN or P2D normalization methods.

The superiority of NBGF to NCCF with 1D normalization is due
to the inherent advantage of gradient feature over chaincode
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TABLE 1
Error Rates and Feature Extraction Time on Hiragana Characters

“Quadri.” and “point” refer to quadrilateral decomposition and point-assignment for NCGF.

TABLE 2
Error Rates and Ratio of Error Reduction on ETL9B Database



feature. With P2D normalization, the distortion of stroke shapes is
more influential to NBGF than to NCCF, thus obscures the
advantage of NBGF. The nNCGF is also less sensitive to shape
distortion because the normalized gradient is computed from the
original image. The NCGF performs even better because it takes the
direction of the original gradient. The improvement level of NCGF
versus NBGF depends on the normalization methods, which have
variable smoothness of coordinate functions and extent of shape
distortion. The line-density-based NLN and P2D normalization
methods yield large shape distortion.

With NLN and P2D normalization methods, the error
reduction ratio of NCGF versus NBGF ranges from 8.63 percent
to 14.97 percent with high level of significance ðz > 1:96Þ. With
the other normalization methods, the NCGF and the NBGF
perform comparably ðjzj < 1:96Þ.

With 1D normalization, the NCGF outperforms the NCCF
significantly ðz > 1:96Þ in seven of 10 cases; while with P2D
normalization, the NCGF outperforms the NCCF significantly only
in four of eight cases. This is because both the NCGF and the NCCF
take advantage of the shape restoration capability of P2D normal-
ization and overcome the effect of shape distortion.

Though theNCGFdoes not outperform theNBGF and theNCCF
in all cases, it is overall the best choice because it outperforms the
NBGF significantly in 10 of 18 cases, outperforms the NCCF
significantly in 11 of 18 cases and is never beat significantly. Most
important, when combined with good normalization methods (e.g.,
P2D methods), the NCGF yields highest recognition accuracies. In
addition, gradient features (including the NCGF) apply to both
binary and gray-scale images, while chaincode features (including
the NCCF) apply to binary images only.

5 CONCLUSION

As the storage capacity andcomputingpowerofpersonal computers
constantly increase, it is a trend to process gray-scale images instead
of binary images in document analysis, particularly at the shape
identification level, for achieving higher accuracy. The gradient
direction feature, performing superiorly on both binary and gray-
scale images, is among the top choices for feature extraction of
character recognition. While nonlinear and pseudo-2D (P2D) shape
normalization methods are efficient to improve handwritten
character recognition, the accuracy is traded off by distorted stroke
direction in normalization. The proposed normalization-cooperated
gradient feature (NCGF) extraction approach, can alleviate the effect
of this distortion and significantly improve the recognition accuracy,
especially with P2D normalization methods.
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