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Normalization of boutique arrays<p>A new normalization method is described for use in specialized boutique arrays which contain a subset of genes selected to test partic-ular biological functions.</p>

Abstract

Normalization is critical for removing systematic variation from microarray data. For two-color

microarray platforms, intensity-dependent lowess normalization is commonly used to correct

relative gene expression values for biases. Here we outline a normalization method for use when

the assumptions of lowess normalization fail. Specifically, this can occur when specialized boutique

arrays are constructed that contain a subset of genes selected to test particular biological functions.

Background
Normalization of microarray data is the process of removing

systematic bias and variation caused by technical artifacts

while maintaining the important biological variation of inter-

est. After appropriate normalization, variation in microarray

data should be unbiased with respect to the samples being

compared. As normalization is performed to adjust relative

intensities between samples, microarray studies are most

effective when looking at expression differences between

samples rather than expression differences between genes.

The extent of normalization required for an experiment

depends on the quality and consistency of the arrays and sam-

ples being compared. Different microarray platforms require

different strategies but the most widely used methods are

intensity dependent. It has been shown that alternative nor-

malization procedures can have substantial effects on results

for a variety of platforms [1-3]. For two-color microarrays,

intensity-dependent lowess normalization has emerged as a

general purpose method and is the most commonly used pro-

cedure for normalization.

Lowess normalization attempts to correct the expression log-

ratios for inequalities between the labeling dyes. The relative

preponderance of one dye over the other often changes with

the intensity of the measurements. Therefore the fit to the

expression log-ratios of the two cannels (M) is performed

against the average log-intensity of the two cannels (A) i.e. on

an MA-plot [4]. Effective lowess normalization relies on the

assumption that either: the majority of genes are not differen-

tially expressed; or there is symmetry in the expression levels

of the up and down regulated genes [5]. Furthermore, as the

procedure is intensity dependent it requires a sufficient

number of genes with these properties at the full range of

intensities. These assumptions are typically very reasonable

for large-scale genome arrays because differences between

RNA samples will typically relate to molecular pathways

involving only a small proportion of the entire genome. The

assumptions can fail, however, in a range of special scenarios

related to the biology of the samples being compared or the

probes being tested. In such a situation, it is not clear how

best to normalize arrays.

This article considers the case of focused custom arrays that

are printed with a relatively small number of selected probes

of particular interest. These boutique arrays, featuring from a

few score to several hundred genes, can have advantages over
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genome-wide arrays for expression profiling. Although there

are far fewer genes overall, the coverage is often increased for

the specific gene family or pathway of interest. Moreover,

because there are fewer irrelevant probes, the specificity of

the arrays is increased, resulting in a lower false discovery

rate. Boutique arrays can, therefore, be used as a moderately

high throughput assay to systematically interrogate genes of

maximal interest at low cost [6,7]. Boutique arrays are almost

always two-color cDNA arrays because cDNA arrays are the

easiest to customize and the least expensive to print in-house.

Boutique arrays do pose special problems for normalization.

The lowess curve may be unreliably estimated because there

are relatively few distinct probes from which to estimate the

curve. Furthermore, as the genes on the arrays are prese-

lected to be of interest, there is no reason to expect the genes

to be evenly distributed over the intensity range or to be unbi-

ased with respect to the expression levels in the samples. It is

quite possible that more than half the probes might be differ-

entially expressed between any two samples and that the dif-

ferential expression might be predominately in one direction.

Therefore, the assumptions required for standard lowess nor-

malization commonly fail.

There is as yet no widely accepted standard method for nor-

malization of boutique arrays. Studies using custom arrays

have utilized a variety of methods, including standard lowess

normalization [7], normalization by house keeping genes [8-

10], total intensity or global normalization [2,5,11] and nor-

malization using spike-in controls [12]. This article shows

that all of these methods can produce biased results. Dye-

swap normalization has also been suggested as a method for

normalizing arrays with a high proportion of differentially

expressed genes [13], but such methods require multiple

arrays to perform any normalization and are not adapted to

small boutique arrays. The use of normalization genes with

balanced differential expression has recently been proposed

for normalizing small diagnostic arrays [14]. Although this

method addresses the issue of normalizing microarrays with

a small number of biased probes, it is limited to comparing a

pair of RNA sources that are known in advance. It is not avail-

able for differential expression arrays designed to compare a

variety of RNA sources

A titration series of a whole microarray transcript pool (MSP)

has been proposed as a way to construct unbiased control

probes for normalization purposes [5]. In this article, we

observe that the transcript pool need not be constructed from

the probes on the array to be normalized but may instead be

constructed from a much larger transcript library for the

same species. This article demonstrates the effectiveness of

transcript pool control probes for normalizing boutique

arrays. A new method for utilizing such control probes that

introduces probe-specific quantitative weights into the low-

ess normalization procedure is proposed. As far as the

authors are aware, this is the first use of quantitative weights

in intensity-dependent normalization. The weighted lowess

method is shown to provide a flexible, reliable and accurate

normalization method for boutique microarrays.

Results and discussion
Robustness of lowess normalization

We begin by investigating the robustness of lowess normali-

zation, a topic which was mentioned in the original lowess

publication but which has not been explored in the literature.

Robustness refers to the ability of a statistical technique to

follow the major trend of a dataset and to ignore outlier val-

ues. Robustness of lowess normalization means that it can

tolerate some asymmetry in differential expression between

the samples being hybridized provided that the majority of

genes are not differentially expressed [5]. What is not clear is

how large the proportion of differentially expressed genes can

be before lowess becomes unsuitable for normalization. A

small simulation study is sufficient to verify the robustness

property and to demarcate its limitations.

Data were taken from a self-self hybridization of a two-color

microarray containing 11,088 probes. These data were not

expected to show differential expression as the same sample

was hybridized to both channels. The data were background

corrected and lowess normalized and then used for our

simulations.

We simulated an extreme case where the lowess assumptions

are most likely to fail. Genes were randomly assigned to have

large differential expression values in only one direction. The

designated genes were set to have log2 ratios of two, that is, to

be four-fold up-regulated (Figure 1a). The data were then

renormalized using print-tip lowess normalization [5] (Fig-

ure 1b) and these artificially up-regulated genes were

assessed for their stability of up-regulation. The proportion of

artificially unregulated genes was varied and the normaliza-

tion assessed for robustness.

The results are shown in Figure 2, where the box plots repre-

sent the log2 differential expression of the up-regulated genes

as the percentage of up-regulated genes is varied. If lowess

normalization is performing well, then these box plots should

be consistently at a log differential expression of two. In this

example it can be seen that the stability of lowess normaliza-

tion holds even when approximately 20% of genes are 4-fold

up-regulated (Figure 2a). There is a robust iteration step in

lowess normalization (see Materials and methods). If the

number of robustifying iterations in the lowess fit is increased

from the default of three iterations to ten, the algorithm

becomes more robust to outliers. Figure 2b shows that this

increases the tolerance of lowess normalization from approx-

imately 20% to approximately 25% of up-regulated genes. We

repeated this procedure using global lowess normalization

rather than print-tip dependent normalization and found that
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the mean results were similar, although the variance was

decreased (data not shown).

Given these results, lowess normalization will be appropriate

for many applications even if up to 20% of genes show asym-

metric differential expression. This shows that the domain of

applicability of lowess normalization is wider than is some-

times characterized [13]. When the percentage exceeds this

figure, other normalization techniques will, in general, be

required, such as the one presented in the next section. The

figure of 20% could be extended if the differential expression

is not all in one direction, but the degree of symmetry of dif-

ferential expression is uncertain in boutique arrays, which are

our focus here.

Breakdown of lowess normalizationFigure 1

Breakdown of lowess normalization. An MA-plot for a self-self 
hybridization is shown with a set of randomly selected genes designated to 
be differentially expressed at M = 2 or four-fold up-regulated. Results for 
25% of genes on the array randomly being up-regulated are shown (a) 

before and (b) after print-tip lowess normalization. After normalization 
the fold change for most up-regulated genes has been reduced and bias has 
been introduced into the non-differentially expressed genes.
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Boxplots of up-regulated genes after normalizationFigure 2

Boxplots of up-regulated genes after normalization. Each box plot 
represents the M values of the up-regulated genes after print-tip 
normalization as the percent of genes differentially expressed is varied. If 
the normalization procedure is robust to the outliers then M = 2. (a) In 
this scenario print-tip lowess is robust to approximately 20% of 
differentially expressed genes when the default number of iterations is 
equal to 3. (b) For 10 robustifying iterations the normalization is reliable 
for approximately 25% of genes differentially expressed.
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Normalization of boutique arrays

Boutique arrays are custom-made arrays that may contain

only a few score genes. With such small arrays it is easy to step

beyond the tolerance of lowess normalization, particularly as

genes are often selected on the basis of having a changing role

in the samples being compared. A natural way to normalize

these arrays is to train the lowess curve on a set of control

probes that should not change between samples. Several

types of controls have been suggested for this purpose,

including housekeeping genes, spike-in controls and microar-

ray sample pool (MSP) controls.

Housekeeping genes

Housekeeping genes are thought to have expression levels

that are biologically so tightly regulated that they will not

change between samples. The appeal of these for normaliza-

tion purposes is, therefore, obvious and has been widely used.

However, true housekeeping genes are hard to come by and

many that have previously been used for normalization have

been shown to be differentially expressed between samples or

treatments [15,16].

Spike-in controls

Spike-in controls involve printing a set of foreign controls

onto the arrays and then adding their corresponding tran-

scripts into the RNA before labeling and hybridization. If

genes are spiked in at the same concentration then they

should not be differentially expressed and, therefore, should

be useful for normalization [12]. The fact that the spike-in

RNA is not extracted with the main RNA sample and has to be

added separately means that the spike-in probes will not

always follow the same intensity-dependent normalization

curve as the regular probes. This is illustrated in Figure 3,

which shows an array where the spike-in controls are clearly

offset from the locus of gene probes and, therefore, would

need to be normalized independently.

Microarray sample pool control

cDNA microarrays are typically printed from a library of

cloned cDNA samples. An MSP is constructed from a clone

library by combining all the members of the library together

in equal quantities to make a heterogeneous pool. The pool is

then diluted to give a range of five to ten different concentra-

tions. These titrated MSP samples are then spotted onto the

slides several times, giving probes with a range of intensities

similar to the intensity range in genes of interest. The library

from which the pool is constructed must be sufficiently large

for the assumption of no average differential expression

between samples to be reasonable. The MSP has the effect of

simulating the average expression that would be observed on

a microarray constructed from the entire library, and so will

have the essential properties required for lowess normaliza-

tion. This construction has previously been shown to be not

differentially expressed between closely related samples [5].

We suspect that a pool containing as few as 500 randomly

selected genes will have the desired characteristics for many

applications. This figure is derived from extensive experience

with print-tip lowess normalization on arrays for which the

print-tip groups contain around 400 spots. Unlike spike-in

control spots, MSP probes do not require foreign RNA to be

added to the samples. MSP controls interact instead with the

RNA from the samples themselves, which are the quantities

to be normalized.

Composite normalization using MSP probes

Yang et al. [5] outlined a composite normalization strategy in

which adjustment was a weighted average of the lowess fit to

the MSP probes and a lowess fit to the gene probes. The gene

probe fits were estimated for each print-tip group. The pro-

portion of the contribution from the lowess fits for each probe

type changed with intensity such that more weight was given

to the fit of the gene probes at low intensities while the fit to

the MSP probes had more weight at high intensities. This

method was used successfully on comparisons of medial ver-

sus lateral portions of the olfactory bulb [17]. This method is

not generally appropriate for boutique arrays as it requires a

sufficient number of unbiased probes at low intensities where

the lowess curve generated from the gene probes has the

largest influence on the normalization adjustment. Problems

at extremities of intensities can also occur if gene probes

reach higher or lower intensities than the MSP probes. Figure

4 shows an example of a boutique array where the normaliza-

tion curve is generated using the composite normalization

strategy. As this array contains a very small number of gene

Normalization curve using spike-in controlsFigure 3

Normalization curve using spike-in controls. MA-plot with spike-in 
controls indicated. The blue points represent calibration controls where 
equal amounts of foreign RNA have been spiked into each sample. Red 
points represent ratio controls at three-fold and ten-fold differential 
expression. It can be seen that the spike-in probes are significantly offset 
from the gene probes and, therefore, could not be used for normalization 
purposes.
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probes, we did not use spatial (print-tip) normalization to

construct the gene probe lowess but instead used all gene

probes in a global lowess. Figure 4a demonstrates how com-

posite normalization behaves if the full range of intensities for

the MSP probes is not available. It can be seen that, at high

intensity, composite normalization follows the trend given by

the MSP probes, which is continued regardless of the curva-

ture of the data. Figure 4b shows that the composite method

is biased towards the gene probes at low intensities. In this

example the gene probes are, on average, down-regulated

compared to the MSP probes.

Weighted lowess normalization

We propose the use of MSP probes to normalize custom

arrays in an alternative way to the composite normalization

strategy that will be robust against probe selection bias at all

intensities. In this strategy information from all the probes is

used to perform lowess normalization but MSP probes are

given more weight across the entire intensity range compared

to gene probes. We call this weighted lowess normalization

procedure 'wlowess'. The up-weighted lowess curve is also

shown in Figure 4b, where the wlowess curve is compara-

tively unbiased at low intensities. The up-weighting of the

MSP probes in relation to the gene probes can be quite signif-

icant such that they dominate the fitted curve. However, the

use of information from all probes provides a solution for

when the MSP probes do not cover the full range of intensi-

ties. In these situations the wlowess curve follows the curve

generated by the gene probes (Figure 4b), which at least rep-

resents the curvature of the data.

This new approach extends the lowess smoothing procedure

by defining a set of quantitative weights that are applied to

each of the probes. The estimation of this curve on an MA-

plot is then used for normalization. The use of quantitative

weights allows control probes to be up-weighted relative to

gene probes. Moreover, it ensures that the normalization will

smoothly make optimal use of whatever mixture of control

probes and gene probes are available on an intensity-depend-

ent basis. For very small boutique arrays it is unlikely that

there will be enough probes in each print-tip group to per-

form print-tip lowess normalization. Nevertheless, the proce-

dure can be easily extended to print-tip normalization

providing that a range of MSP probes are printed with each

print-tip. The Materials and methods section gives a descrip-

tion of the lowess procedure and the extension to wlowess.

B-lymphocyte boutique arrays

We illustrate the wlowess method using a boutique array

designed specifically to profile differentially expressed genes

during the late stages of B-lymphocyte differentiation. On

these arrays 109 genes of interest have each been spotted four

times. Comparisons at different stages of differentiation with

different growth factors have been made as part of a larger

experiment. In Figure 5 we show four examples of these

arrays that illustrate the normalization technique. The MSP

probes are shown in blue and the red line is our weighted low-

ess fit to the data. If we ignore the MSP probes and perform a

lowess fit to the gene probes, the black curve is generated. For

Figures 5a, c, d there are substantial differences between the

two lowess curves, which can be separated up to two-fold in

differential expression at some intensities. This is caused by

an asymmetric distribution of differential expression for the

majority of genes on the arrays, causing ordinary lowess nor-

malization to fail.

Normalization using composite normalizationFigure 4

Normalization using composite normalization. MA-plots with a lowess 
normalization curve for the gene probes only (black), for the composite 
normalization (yellow) and for the MSP weighted lowess (red) with the 
MSP probes shown in blue. (a) The MSP probes do not extend to the full 
intensity range and the composite normalization curve follows the 
extension of the MSP only curve. (b) It can be seen that at low intensities 
the majority of gene probes are down-regulated compared to MSP probes, 
meaning that the lowess curve and, therefore, the composite 
normalization curve are biased downwards compared to the MSP.
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Figure 5 also indicates the differential expression of two puta-

tive housekeeping genes, those encoding glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) and hypoxanthine phos-

phoribosyltransferase 1 (HPRT). The four replicate probes

are shown with a straight line through the mean of the probes

as estimates were only made at one intensity level for each

gene. These two genes can diverge in expression up to two-

fold (Figure 5b-d). Even when MSP weighted lowess and reg-

ular lowess agree, house keeping genes can still diverge (Fig-

ure 5c).

Often it is easy to assess the general accuracy of a normaliza-

tion procedure by looking at MA-plots before and after nor-

malization [4,5]. By nature, boutique arrays contain a small

number of probes that are possibly biased, making it difficult

to assess whether a normalization method has been success-

Normalization comparison for a boutique arrayFigure 5

Normalization comparison for a boutique array. MA-plots for four examples of a boutique array designed to profile 109 genes during the late stages of B-
lymphocyte differentiation. Each cDNA clone is spotted on the array four times (black points). The MSP titration series are shown as blue points. The 
black line is the lowess fit through the gene probes only. The red line is the weighted lowess fit with MSP probes up-weighted as described in the methods. 
The yellow and orange points and lines correspond to the differential expression levels of two house keeping genes, HPRT and GAPDH, respectively. (a, b, 

d) show examples where the gene probe lowess and the wlowess curves are considerably different from each other. (b, c, d) show examples where 
house keeping genes give very different intensities from each other and from the wlowess curve.
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ful. The introduction of a set of unbiased probes such as a

MSP can be used for unbiased normalization. We suggest that

information for all probes be used in the lowess fit by making

use of probe-specific numerical weighting.

Conclusion
We have demonstrated through a series of examples that pre-

vious methods of normalization of boutique microarrays can

commonly bias results. We introduce a weighted lowess nor-

malization method using spot specific quantitative weights to

up-weight MSP probes compared to gene probes. This pro-

duces unbiased differential expression for the whole range of

intensities. The 'wlowess' method can be used on any two-

color arrays where the probe selection is thought to be biased.

It can be used not only with MSP controls but with any subset

of probes that are known a priori not to be differentially

expressed between samples. The weighted lowess method is

extremely flexible, being capable of adapting to a range of

situations in which alternative methods may fail. Even when

the situation is suitable for related methods, such as ordinary

lowess or composite lowess, the weighted lowess method is

never worse. The lowess weights can also be used to down-

weight lower quality spots or to remove known differentially

expressed probes, such as spike-in ratio controls, which

should not be included in the normalization. The functions to

carry out this normalization procedure are implemented in

the bioconductor [18] package limma [19]. The MSP controls

can be constructed from any large scale transcript library for

the species under consideration, so the MSP material can be

prepared in bulk in a cost-effective manner for wide-spread

use in a range of experiments. In principle, appropriate MSP

material could be provided commercially in the same way

that spike-in kits are currently offered.

Materials and methods
Lowess normalization

Robust locally weighted regression referred to as lowess or

loess is a nonparametric procedure widely used for smooth-

ing scatter plots [20]. For normalization of two-color arrays it

is used for robust smoothing of MA-plots. For each spot i on

an array two measurements are made, the intensity of the Cy5

or red channel (Ri) and the intensity of the Cy3 or green chan-

nel (Gi). An MA-plot is a difference-mean plot where the M

values are the log ratio of red to green for each probe:

Mi = log2 Ri - log2 Gi

and the A values are the average log intensity of the two chan-

nels [4]:

Ai = 0.5(log2 Ri + log2 Gi)

The normalized values are Mi - f(Ai) where f(Ai) is the lowess

curve through the points.

The normalization method developed here also uses the low-

ess procedure developed by [20] to estimate f(Ai) but intro-

duces spot specific quantitative weights. In general, the

lowess smoothing function is generated as follows.

A first order polynomial is fitted to the Mj on the Aj with dis-

tance weights:

dij = d(|Ai - Aj|)

using weighted least squares. Here d() is a decreasing func-

tion that is exactly zero for all j outside a neighborhood of Ai.

The neighborhood is defined as a proportion of points with Aj

closest to Ai called the span. The span is typically set to 0.3 to

0.4 [3]. The value of the polynomial at j = i becomes f(Ai).

Subsequent iterations use robust weights:

ri = r(|Mi - f(Ai)|)

where r() is another decreasing function giving large weight

to small residuals and small weight to large residuals for each

point. The polynomial is refit by weighted least squares to

obtain f(Ai) but now with weights dijrj. Three robustifying

iterations are typically used and the final values for f(Ai) are

subtracted from the Mi for normalization.

We introduce prior weights wi associated with each probe or

spot. In each stage of the polynomial fitting procedure the

weighted least squares estimation incorporates these weights.

In the first step the weights become wjdij and in the robustify-

ing steps the fitting is done using the weights wjdijrj to esti-

mate f(Ai) for all i. The values of wi can be defined by the user.

Typically, for MSP normalization purposes we define wi = 1

for MSP probes and wi = 0.01 otherwise. This methodology

can also be used to down-weight suspect or low quality spots

on individual arrays.

Boutique B-cell microarrays

A boutique microarray collection, comprising 109 probes,

was created and spotted on to glass slides. The probes were

PCR fragments corresponding to cDNAs for genes known to

be differentially expressed during late stages of B lymphocyte

differentiation either from the literature or from our own

investigations using semi-quantitative PCR. Three house-

keeping genes were also included. Each probe in the collec-

tion was printed four times on the arrays. MSP probes were

created by pooling the clones of the NIA15K cDNA library

[21]. The MSP was prepared at different dilutions to make

concentrations of 250 ng/μl, 120 ng/μl, 60 ng/μl, 30 ng/μl, 15

ng/μl, 7 ng/μl, 4 ng/μl, 2 ng/μl and 1 ng/μl. Each concentra-

tion was printed 32 times on the arrays to make a total of 288

MSP control spots. Differential hybridizations were

performed using cDNAs synthesized from sorted populations

of activated B lymphocytes, from in vitro derived plasmab-

lasts, or from terminally differentiated plasma cells sorted
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directly ex vivo. The cells were from OBF-1-/- knock-out mice

[22] and C57BL/6 control mice. Pairwise (competitive)

hybridizations included analogous populations from controls

versus mutants, or developmentally related populations

within a strain (for example, undifferentiated versus

differentiated).

Raw data used in this paper can be found at [23].
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