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Abstract—The TanDEM-X mission (TDM) is a spaceborne
radar interferometer which delivers a global digital surface model
(DSM) with an unprecedented spatial resolution. This allows re-
solving objects above ground such as buildings. Extracting and
characterizing those objects in an automated manner represents
a challenging problem but opens simultaneously a broad range
of large-area applications. In this paper, we discuss and evaluate
the suitability of morphological filters (MFs) for the derivation of
normalized DSMs from the TDM in complex urban environments
and introduce a novel region-growing-based progressive MF pro-
cedure. This approach is jointly proposed and can be combined
with a postclassification processing scheme to specifically allow
for a viable reconstruction of urban morphology in a challenging
terrain. The filter approach comprises a multistep procedure using
concepts of morphological image filtering, region growing, and
interpolation techniques. Therefore, it extends the idea of progres-
sive MFs. The latter aim to identify nonground pixels in the DSM
by gradually increasing the size of a structuring element and ap-
plying iteratively an elevation difference threshold. After the iden-
tification of initial nonground pixels, here, potential nonground
pixels are identified within each iteration, and their similarity with
respect to neighboring nonground pixels is assessed. Pixels are
finally labeled as nonground if a constraint is fulfilled. The post-
classification processing scheme adapts techniques of object-based
image analyses to further refine regions of classified nonground
pixels. Digital terrain models are subsequently generated by in-
terpolating between identified ground pixels. Experimental results
are obtained for settlement areas that cover large parts of the cities
of Izmir (Turkey) and Wuppertal (Germany). They confirm the
capability of the proposed approaches for a reduction of omission
errors compared to basic MF-based methods when classifying
ground pixels, which is favorable in a mountainous terrain with
steep slopes.

Index Terms—Digital surface models (DSM), digital terain mod-
els (DTM), morphological filters, TanDEM-X.

I. INTRODUCTION

THE TanDEM-X mission (TDM) acquires data for a global

digital surface model (DSM) with unprecedented resolu-
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tion characteristics [1]. The pixel spacing of 0.4 arcseconds

(∼12 m) allows resolving objects in urban environments above

ground such as buildings. Extraction of those objects opens a

broad range of large-area applications, which are, to date, un-

feasible due to data availability and costs. In this sense, spatial

analyses can be extended by including 3-D characteristics of

urban environments and rely on data which are available for

large areas consistently. Examples of applications include the

analysis of urbanization processes [2]–[4], characterization of

urban morphology [5]–[7], and assessment of vulnerability and

risk of the built environment [8]–[10], among others.

When aiming at the extraction of those objects in an auto-

mated manner, it is common to derive a digital terrain model

(DTM) from the DSM first. A DTM contains elevation mea-

surements of the bare Earth (BE) without including objects

above ground. A DTM allows computing a normalized DSM

(nDSM). The latter then naturally comprises elevation informa-

tion of objects above ground. Numerous approaches have been

postulated to retrieve DTM information from a DSM. There-

fore, a large share of approaches is related to the derivation of

DTMs from very high resolution DSMs, with ground sampling

distances usually smaller than 1 m. These kinds of DSMs

are frequently derived from stereoscopic optical acquisitions,

interferometric SAR measurements, or laser scanning (LiDAR)

[11]–[13]. In particular, the latter has triggered the development

of ground filtering algorithms [14]–[18]. However, the lower

spatial resolution of the TDM DSM data hampers the use of

many approaches.

With the benefit of a very high spatial resolution, for instance,

the existence of a distinct difference between the slope of

terrain and that of nonground objects such as buildings and

trees can be exploited [19], [20]. This prerequisite generally

cannot be met by TDM DSM data because of their acquisition

characteristics and spatial resolution. Moreover, for this study,

we only consider approaches that operate on grayscale images

and neglect waveform-related approaches. This is due to user-

oriented considerations, which include the fact that elevation

measurements of the TDM are converted into regular grayscale

grid images, including several tailored correction procedures

such as masking of water areas, before dissemination. Regard-

ing techniques that are suitable for application on grayscale grid

images, approaches based on mathematical morphology [16],

[21]–[25] are common due to their simplicity in accordance

with good performance. By means of compositions of algebraic

set operations [26], objects in the image such as buildings can

be identified since their elevation values are usually distinc-

tively higher than the elevation values of surrounding ground

measurements.
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However, mathematical morphology-based filters are prone

to errors in steep terrains [19], [27], [28]. Generally, the

biggest challenge when applying morphological methods is to

keep terrain features unchanged while using large sizes of the

structuring element (SE) [24]. Ground points are mistakenly

treated as nonground points in such settings, which results in

an overestimation of objects and their height in the final nDSM

[17], [18], [27]. Besides these general challenges, the spatial

resolution of the TDM data poses particular challenges to a

suitable approach. When aiming at the extraction of urban land

cover objects such as buildings, the spatial resolution limits

the use of algorithms that are designed for data with ground

sampling distances considerably smaller than the objects of

interest. In particular, a large share of approaches uses the

concept of progressive morphological filters (PMFs) that aim

to separate ground/BE from nonground/objects first (e.g., [16],

[24], and [25]). Therefore, free parameters can be altered in

a progressive manner in dependence of the size of the SE

of the MF. This allows coping with different kinds of land

cover objects in the data [16], [29]. For instance, low elevation

difference thresholds are used for small sizes of the SE to

eliminate objects such as bushes, small trees, or cars. However,

given the spatial resolution of the TDM data, even the smallest

size of the SE (3 × 3 pixels) comprises a size that can already

exceed a building. Consequently, the conceptual advancement

of a progressive procedure cannot be exploited the same way as

it was done in previous studies. Such a setting determines the

application of parameters that are nonadaptive with respect to

the size of the SE.

In this paper, we discuss and evaluate the suitability of

MFs for the derivation of nDSMs from the TDM mission in

complex urban environments. More significantly, a novel mul-

tistep procedure using progressive morphological image filter-

ing, region growing, and interpolation techniques is described.

The approach is designed to yield better results compared to

basic MF-based methods in settings where free parameters are

nonadaptive with respect to the size of the SE. Moreover, it

is intended to lower errors particularly associated with a steep

terrain. In this manner, the strategy adopted in this paper aims

at a clear reduction of omission errors while taking the risk of

a solely moderate increase of commission errors when classify-

ing ground pixels. However, accuracies of classified ground and

nonground pixels have a varying influence on the quality of the

final nDSM, which is dependent on the terrain characteristics

(i.e., flat or steep) of the image domain. To provide a suitable

tradeoff between reduction of omission errors and increase

of commission errors, regions of pixels that were dominantly

classified as nonground by the introduced procedure are spa-

tially refined. Therefore, a postclassification processing scheme

is proposed, which adapts techniques of object-based image

analysis (OBIA) [30]. To evaluate the suitability of the intro-

duced methods, experiments are carried out with intermediate

digital elevation model (IDEM; the characteristics of the data

are detailed in Section III-C) data for settlement areas that

cover large parts of the cities Izmir (Turkey) and Wuppertal

(Germany). We focus on the extraction of elevated objects in

urban environments (i.e., buildings), which are characterized by

steep terrains and a high relief energy.

The remainder of this paper is organized as follows.

Section II details MFs in a consecutive manner: the most

basic MF, PMFs, and the proposed region-growing-based PMF

(RPMF) procedure are explained in Sections II-A–C, respec-

tively. In Section II-D, the postclassification processing scheme

is introduced. Section III is used for the description of data sets

and experiments, whereas Section IV reports the actual results

of the conducted experiments. Concluding remarks are given in

Section V.

II. MFS FOF DERIVATION OF NDSMS

To retrieve heights of objects that are elevated from the

Earth’s surface such as buildings and vegetation from a DSM,

the elevation of the terrain has to be removed. To this purpose,

a DTM which represents the BE surface has to be derived

first. With this information, an nDSM can be calculated, which

contains all objects above the terrain, by subtracting the DTM

from the DSM

nDSM = DSM − DTM. (1)

In this way, the DSM is decomposed into terrain (DTM) and

object heights (nDSM).

A. Morphological Filter

A common approach to derive a DTM is to conduct a mor-

phological opening operation on each measurement of the DSM

[21], [22]. The approach sequentially executes a minimum and

maximum filter with a SE Ba, e.g., a square window of size

a× a, on the grid of the continuous surface elevation mea-

surements Z. In the terminology of mathematical morphology,

minimum filtering represents an erosion operation extended

to grayscale images. It is defined as the minimum of the

translations of Z by vectors −b of B [31, p. 66ff.]

εB(Z) =
∧

b∈B

Z−b. (2)

Analogously, maximum filtering, which represents a dilation

operation, is defined as

δB(Z) =
∨

b∈B

Z−b. (3)

An opening is obtained by the sequential application of a

dilation to the result of an erosion

γB(Z) = δB ◦ εB(Z). (4)

To fully eliminate the objects of interest (i.e., buildings) with

an opening operation, the size of the SE has to be chosen so

that it always exceeds an object’s outline. Thus, B must have

a side length of 2× dmax + 1, with dmax being the half size of

the largest object of interest in the number of pixels in the study

area, and thus, it can be determined empirically.

Although this classical morphological approach has proven

its viability especially in flat terrains [32], it features some

conceptual drawbacks. Every single measurement that does
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not represent a minimum in B is altered, and the minimum

in B is assigned to it. Therefore, the surface obtained with

γB(Z) is usually lower than the original measurements, and

object heights are overestimated in the final nDSM [16], [32].

In addition to that, the shape of B (e.g., square or disk) has

a considerable influence on the estimation outcome, since it

emerges in the resulting image.

B. Progressive Morphological Filter

To overcome drawbacks related to MF, the PMF method

introduces a major methodological difference. It aims to sep-

arate BE pixels from object (OBJ) pixels first and interpolate

a DTM from the identified BE pixels. This is done within a

progressive procedure, which accounts for different nonground

objects with various sizes. To this purpose, an opening opera-

tion is conducted on the DSM with an initial size of B. Then, a

preliminary nDSM (pnDSM; ∆Z) is computed with an opening

by top-hat operation (OTH)

OTH = Z − γB(Z). (5)

This allows identifying OBJ pixels by applying an elevation

difference threshold θ. In this manner, pixels are classified as

OBJ when they are above a certain value for θ. Subsequently, an

opening operation can be applied to the DTM with an increased

size of B to identify additional OBJ pixels. Therefore, θ can

be varied in dependence of B to address the identification of

nonground objects of differing magnitudes (e.g., also in an

adaptive way in dependence of the slope of the terrain). The

procedure is repeated until a maximum size of B is exceeded.

As explained in the previous section, the maximum value for

B depends on the size of the largest object of interest. Finally,

all unclassified pixels are considered as BE and can be used for

interpolating a DTM [16], [24], [25].

In urban environments, nonground objects primarily consist

of bushes, trees, cars, and buildings. Small nonground objects

such as cars and trees are removed within the first iterations,

while buildings will be removed when they are exceeded by

larger sizes of B. Analogously, low elevation difference thresh-

olds are used for small sizes of B to eliminate objects such

as bushes, small trees, or cars. Larger thresholds are applied

for sizes of B which correspond to objects such as buildings.

To ensure complete identification of buildings, θ must be set

and maintained to the lowest building height in the study area.

As stated in the introductory section, the spatial resolution

of the TDM data hampers the exploitation of the conceptual

advancement of a progressive procedure. Even the smallest size

of B (i.e., 3 × 3 pixels) comprises a size that already can easily

exceed a building (> 1200 m2 in our study areas). In such a

setting, i.e., using parameters that are nonadaptive with respect

to the size of B, a progressive procedure cannot be exploited

the same way as it can be done for data with ground sampling

distances considerably smaller than the objects of interest.

Moreover, a PMFs perform generally well in flat terrains,

but at the same time, they are prone to errors in steep terrains,

similar to MFs. There are two basic errors that arise in identify-

ing BE pixels in the DSM. One is error of commission (false

positives (FPs), type I error) that describes pixels which are

mistakenly classified as BE. The second is error of omission

that describes pixels that are mistakenly not classified as BE

(false negatives (FNs), type II error). In a steep terrain, an

increased number of BE pixels are mistakenly identified as

OBJ pixels (omission error) because they feature a distinctive

difference of the elevation with respect to surrounding pixels

similar to, for example, buildings. This leads simultaneously to

overestimations of objects and their height in the final nDSM.

Generally, the influence of omission and commission errors on

the quality of the final nDSM cannot be considered equally

and is strongly dependent on the terrain characteristics. For

a perfectly flat terrain, a high omission error would yield an

acceptable nDSM, since only a few correctly classified BE

pixels would allow an adequate interpolation and representation

of the terrain. Contrarily, in a steep terrain, the nDSM is prone

to contain large fractions of terrain information when BE pixels

are not exhaustively identified.

C. Region-Growing-Based Progressive Morphological Filter

To address problems particularly associated with nonflat

terrain, the strategy adopted here aims at a clear reduction

of omission errors while taking the risk of a solely moderate

increase of commission errors compared to the PMF approach.

An overview of the approach, referred to as RPMF, is given

in Fig. 1.

The approach can be subdivided according to three con-

secutive main steps. First, the DSM is subject to an opening

operation with the maximum size of B, and BE pixels are

identified by applying an elevation difference threshold. This is

done to retain BE pixels that can be considered reliable (low

commission error) but not exhaustive (high omission error).

Second, a procedure based on region growing is employed to

identify building (i.e., OBJ) pixels from the remaining pixels.

Finally, all BE pixels including the identified BE pixels in

the first step and non-OBJ pixels in the second step are used

for interpolating a DTM, which enables computing the final

nDSM.

Regarding the region-growing procedure, initial OBJ pixels

are identified first, which are used as seed pixels. Fig. 2 illus-

trates the image processing steps and criteria applied. The figure

is divided according to the strategy adopted for objects smaller

(a) and larger (b) than the minimum size of B [the identification

of initial OBJ pixels with IDEM TDM data is exemplified in

Appendix A, Fig. 8(a)]. To identify objects smaller than Bmin,

a pnDSM is calculated with an opening by top-hat operation.

OBJ pixels are identified by the application of a threshold θ on

the pnDSM. An alternative strategy was adopted to account for

objects larger than the minimum size of B. These objects are

fully preserved in the surface obtained with γBmin
(Z) and are

thus not contained in the pnDSM. Pixels at the border of an el-

evated object are identified by subtracting the surfaces obtained

with εBmin
(Z) and γBmin

(Z). Subsequently, these pixels can

be classified as OBJ pixels by sequentially combining an edge

extraction filter and contrast segmentation.

In particular, we rely on edge extraction by Lee-sigma

edge detection filtering [33]. The Lee-sigma filter represents
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Fig. 1. Flowchart of the RPMF for the derivation of an nDSM from a DSM.
Arabic numbers in brackets match the individual steps in the pseudocode of
Algorithm 1.

an adaptive filter based upon the spatial domain. It utilizes

the sigma probability of the Gaussian distribution to smooth

variations in the image by averaging only those neighborhood

pixels which have intensities within a fixed range of standard

deviations of the center pixel. Consequently, edges and linear

features are preserved. The filter is applied on the image data

generated by subtracting the surfaces obtained with εBmin
(Z)

and γBmin
(Z) to extract bright edges, i.e., distinctive transitions

of brightness, which ideally represent boarder pixels of building

objects exceeded by Bmin. To classify these pixels as OBJ

in an automated manner, a contrast segmentation approach is

deployed, which partitions the filtered image into dark and

bright pixels. To maximize the contrast between resulting dark

and bright pixels, a threshold is iteratively evaluated and ac-

cordingly adjusted. In particular, the threshold is determined by

Fig. 2. Procedure for the identification of initial OBJ pixels that represent the
basis for the region-growing procedure. (a) Objects that are smaller than the
minimum size of B can be identified by the application of a threshold θ on
the pnDSM. (b) Border pixels of objects that are larger than the minimum size
of B are identified by subtracting the surfaces obtained with εBmin

(Z) and
γBmin

(Z). They are classified as OBJ by combining edge extraction filter and
segmentation. Section (a) of this figure visualizes steps (5–6) of Algorithm 1,
and section (b) visualizes steps (7–8). The identification of initial OBJ pixels
with IDEM TDM data can be seen in Appendix A [Fig. 8(a)].

considering different pixel values as potential thresholds. These

potential thresholds range from specified upper and lower

bounds, with intermediate values depending on a consecutive

step size. Therefore, the contrast is calculated between dark (q)
and bright (r) pixels with the term (r − q)/(r + q) [12], [34].

After the identification of initial OBJ pixels that serve as

seed pixels, the size of B during the morphological opening

is increased linearly

Bk = 2× k + 1 (6)

where k = 2, 3, . . . , dmax, with dmax being the largest number

of pixels between an object pixel and the next ground pixel (see

also Section II-A). In this manner, the filtered surface obtained

from the previous iteration is subject to an opening operation

with an increased size of B. At each iteration, additional

OBJ pixels are identified if they exceeded θ in the respective

newly calculated pnDSM and fulfill a similarity constraint with

respect to already classified OBJ pixels. The similarity (sim)

of a potential OBJ pixel (potOBJ) and adjacent OBJ pixel(s)

(OBJ pixels that share a common boundary with a potOBJ

pixel analogous to a Queen contiguity [35] or 8-connectivity,

respectively) is evaluated as

sim(potOBJ,OBJ) =

{

1, |µ(∆ZOBJ)−∆ZpotOBJ| ≤ η

0, else

(7)

where ∆Z represents the pnDSM value, µ represents the mean

value of neighboring pixels, and η represents a threshold. This

process is repeated during each iteration until a stable situation

is reached, where no more potOBJ pixels are classified as OBJ

pixels. Some magnifications of both the identification of initial

OBJ pixels that serve as seed pixels as well as of the actual
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region-growing procedure with IDEM TDM data are visualized

in Fig. 8(a) and (b), respectively (Appendix A).

The whole procedure to identify BE pixels is also described

in the pseudocode under Algorithm 1. Finally, all unclassified

pixels are considered as BE and are used in conjunction with

previously identified BE pixels to interpolate a final DTM.

Therefore, an exact interpolation method, which predicts a

value that is equal to the actual value at a sampled location

and interpolates solely between values of sampled locations, is

favorable to keep elevation values of BE pixels unaltered.

Algorithm 1 Identification of Bare Earth (BE) Pixels With

RPMF

Inputs:

Z: A regular grid of continuous surface elevation

measurements

Bmin: Minimum size of structuring element

Bmax: Maximum size of structuring element

θ: Elevation difference threshold

η: Threshold for similarity constraint

Output:

S: Set of pixels that represent ground measurements

1: Conduct γBmax
(Z) = δBmax

◦ εBmax
(Z)

2: Compute Z − γBmax
(Z)

3: Identify BE pixels that are below θ and add them to S
4: Conduct γBmin

(Z) = δBmin
◦ εBmin

(Z)
5: Compute Z − γBmin

(Z)
6: Apply θ to surface obtained with Z − γBmin

(Z) and

identify initial OBJ pixels that are above θ and yet

unclassified

7: Compute γBmin
(Z)− εBmin

(Z)
8: Identify unclassified, initial OBJ pixels by applying edge

extraction and contrast segmentation

9: repeat

10: Initialize Bk

11: Conduct γBk
(Z) = δBk

◦ εBk
(Z)

12: Compute Z − γBk
(Z)

13: repeat

14: Apply θ to surface obtained with Z − γBk
(Z) and

identify potential OBJ pixels that are above θ, have

adjacent OBJ pixel(s), and are yet unclassified

15: Assess similarity of potential OBJ pixels with re-

spect to already identified OBJ pixels with similarity

constraint (7) and label them as OBJ pixels when

below η
16: until the number of classified OBJ pixels equals the

number of classified OBJ pixels from previous iteration

17: Increment k as described in equation (6)

18: until Bk ≤ Bmax

19: Add all unclassified pixels to S

D. Selective Postclassification Processing With OBIA

As explained in the previous section, the strategy of RPMF is

to identify OBJ pixels and subsequently consider all remaining

unclassified pixels as BE. This procedure is prone to deliver

Fig. 3. Scheme for selective postclassification processing of regions with
OBJ pixels and unclassified pixels after the region-growing procedure of
RPMF. First, a preliminary nDSM is calculated with Bmax to ensure that all
building objects are contained. A segmentation algorithm is used to discrimi-
nate homogenous image regions. Segments are selected, which contain solely
OBJ pixels and unclassified pixels. Pixels of selected segments are classified
according to the maximum class probability of the respective segment. The
selective postclassification processing of IDEM TDM data is exemplified in
Appendix B (Fig. 9).

dissatisfactory results when dealing with building objects with

irregular roof surfaces or when considerable local variations of

elevation values occur, since then the region-growing procedure

may not capture all OBJ pixels. Especially when applying small

η values to the similarity constraint (7) during the region-

growing procedure, pixels may remain unclassified, although

they belong to a continuous building object. Since pixels that

remain unclassified after the region-growing procedure will be

considered as BE, such errors will result in partially eliminated

building objects in the final nDSM. To lower those errors, we

introduce a postclassification processing scheme that adapts

concepts of OBIA [30], referred to as RPMF with selective

object-based voting (RPMF-SOBV). The selective object-based

voting scheme is constituted by three consecutive steps il-

lustrated in Fig. 3 and further detailed in the pseudocode of

Algorithm 2. 1) The pnDSM computed with Bmax is segmented

into homogeneous image regions; 2) segments are selected,

which contain solely OBJ and unclassified pixels after the

region-growing procedure of RPMF; and 3) all pixels of se-

lected segments are classified according to the maximum class

probability of the respective segment.

Regarding step 1), the pnDSM is computed with Bmax to

ensure that all building objects are contained. Hence, segmen-

tation aims at the delineation of building footprints, which are

homogeneous in terms of their response in the pnDSM.

We deploy multiresolution segmentation based on the fractal

net evolution (FNEA) approach ([36]; implemented in the

software environment eCognition). This is a bottom-up region-

growing segmentation algorithm starting from individual pixels

to create image segments of maximum allowable heterogeneity

with respect to spectral and geometrical constraints, which need
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to be defined by the user. Therefore, heterogeneity properties

are expressed by a scale parameter, which is constituted here

by gray-value (hcolor ∈ [0, . . . , 1]) and shape heterogeneity

(hshape ∈ [0, . . . , 1]; hshape = 1− hcolor), with shape consist-

ing of smoothness hsmooth and compactness hcompact of the

segment boundaries (hsmooth = 1− hcompact). A larger value

for the scale parameters induces a less restrictive fusion of

adjacent pixels/segments. Hence, modeled segments become

larger [37], [38]. Generally, we suggest putting more emphasis

on shape heterogeneity rather than on gray-value heterogeneity.

This is due to the fact that man-made features such as buildings

have distinct shape and size properties, unlike, for example,

natural features. Analogously, the weights for heterogeneity

of hsmooth and hcompact can be maintained equal. However,

the main difficulty lays in the objective determination of an

optimal segmentation scale, which can vary in dependence of

the size and composition of the objects of an area. We deploy

the objective function introduced by the authors of [39] to

find domain-specific optimal segmentation scales objectively.

Based on the assumption that optimal segmentation maximizes

intrasegment homogeneity and intersegment heterogeneity, a

measure is calculated by incorporating intrasegment variance

(σ2) and Moran’s I (I). The intrasegment variance (σ2) with

respect to the pnDSM is calculated as

σ2 =

∑n
i=1 Aiσ

2

∑n
i=1 Ai

(8)

where Ai and σ2
i represent the area and intrasegment variance

of segment i. The intrasegment variance σ2 is the weighted

average, with the areas of segments being the weights. As

mentioned, Moran’s I is used as a measure of intersegment

heterogeneity

I =
N

∑

i

∑

j eij

·

∑

i

∑

j eij (µs(∆Z)i − µ(∆Z)) (µs(∆Z)j − µ(∆Z))
∑

i (µs(∆Z)i − µ(∆Z))2

(9)

where N is the number of segments indexed by i and j, µs(∆Z)
is the mean pnDSM value of a segment, µ(∆Z) is the mean

pnDSM value of all segments, and eij represents the spatial

weight between segments i and j as follows:

eij =

{

1, if i, j are adjacent neighbor segments

0, else.
(10)

With the determined variance and autocorrelation measure, the

objective function is calculated by summing up normalized

values of σ2 and I

F (σ2, I) =
σ2
max − σ2

σ2
max − σ2

min

+
Imax − I

Imax − Imin

. (11)

The maximum value of function F (σ2, I) is a statistical indica-

tor of optimal segmentation.

From the generated segments, only those that contain solely

OBJ and unclassified pixels after the region-growing procedure

of RPMF are selected. For the selected segments, a decision rule

is deployed [40], where a probability function is maximized

C(m) = argmax
v∈C

(P̃m,v) (12)

where C is the labeling space constituted by class labels “OBJ”

and “unclassified,” C(m) represents the final label of pixel

m, and P̃m,v denotes the probability of pixel m belonging to

class v. In accordance with a crisp voting scheme, implemented

analogous to a majority vote, we compute

Ps,v =
1

Ns

∑

u∈s

τ (C(u) = v) (13)

where τ is an indicator function capturing the number of times

that the pixels u within a selected segment s feature class label

v, and NS is the number of pixels in selected segment s. The

new class label of the pixels in selected segments is determined

according to the maximum probability, as indicated in (12).

Algorithm 2 Selective Postclassification Processing With

RPMF-SOBV

Inputs:

Z: A regular grid of continuous surface elevation

measurements

Bmax: Maximum window size

U : Set of pixels with class labels “BE”, “OBJ”, and “unclas-

sified” as determined with the individual steps [1]–[18] in

the pseudocode of Algorithm 1

Output:

S: Set of pixels that represent ground measurements

1: Conduct γBmax
(Z) = δBmax

◦ εBmax
(Z)

2: Compute Z − γBmax
(Z)

3: Apply segmentation algorithm to preliminary nDSM with

different scale factors

4: Compute intrasegment variance and Moran’s I with equa-

tions (8) and (9), respectively, based on the preliminary

nDSM values of the segments for different segmentation

layers

5: Compute objective function with equation (11) to identify

optimal segmentation layer

6: Select segments from optimal segmentation layer which

contain solely pixels with class labels “OBJ” and “unclas-

sified” in U
7: Compute maximum class probability with equations (12)

and (13) for selected segments

8: Assign all pixels of selected segments according to respec-

tive maximum class probability

9: Add all pixels with class label “unclassified” and “BE” to S

The most common processing paradigm of OBIA comprises

first a segmentation, followed by an “objectification” (i.e.,

classification [41]). In contrast to that, RPMF-SOBV relies

on per-pixel classification of RPMF, which is followed by

segmentation, and then classifies selected image regions based
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on certain class fractions of the superobjects of individual

pixels. This procedure is designed to cope naturally with the

resolution characteristics of the data, which hampers the use of

a pure object-based approach. The latter is frequently intended

to model “meaningful image objects” [41]. However, even the

smallest spatial entity (i.e., pixel) may correspond to an object

of interest (i.e., building). Moreover, in such a setting, a pure

object-based approach, comprising the complete aggregation of

the image pixels according to certain scale(s), may hardly be

applied to TDM data without violating the Shannon sampling

theorem. The theorem states that modeled objects should be

on the order of one tenth of the dimension of the sampling

scheme—the pixel—to ensure that they will be completely

independent of their random position and their orientation in

relation to the sampling scheme [30]. In this manner, RPMF-

SOBV is intended to benefit from both the per-pixel and OBIA

paradigms. The selective postclassification processing of IDEM

TDM data is exemplified in Appendix B (Fig. 9).

III. DESCRIPTION OF DATA SETS AND EXPERIMENTS

A. TanDEM-X IDEM Data

The TanDEM-X satellite was launched in June 2010, and it

is operating jointly in a unique helix tandem formation with

its twin radar satellite TerraSAR-X, which is in space since

June 2007. Since December 2010, however, the two satellites

are operationally acquiring data to generate a seamless global

multicoverage digital elevation model using single-pass inter-

ferometry in bistatic mode [1]. Since August 2011, the data

are being processed operationally. Single- and multibaseline

interferometric phase-unwrapping [42], manual quality inspec-

tion, water detection [43], height comparison with ICESat data

[44], and calibration including tilt and offset correction are

carried out in order to provide a homogenous data set for a

regional mosaic [45]. In our study, different tiles of the so-

called TDM IDEM [46] are used for two test sites. The IDEM

consists only of the best quality single-baseline processed data

of the first global coverage. Insufficient acquisitions affected

by phase-unwrapping errors are excluded. The data sets cover

large parts of the settlement areas of the cities Izmir (Turkey;

tiles N38E026 and N38E027) and Wuppertal (Germany; tile

N51E007). The terrain features high relief energy with partially

steep areas in both test sites. The spatial resolution of the IDEM

data corresponds to ∼12 m in Izmir and ∼11 m in Wuppertal.

B. UF Data

To focus our experimental analysis on urban environments,

an approach which was introduced by [47] was deployed to

discriminate “built-up” and “nonbuilt-up” land cover. The ap-

proach was implemented as a fully automated image analysis

procedure, which is currently applied to delineate urban foot-

prints (UF) from single polarized strip map imagery of the

TDM [48] globally. The high classification accuracy, which

exceeds consistently an overall accuracy of 94% and a κ
statistic of 0.75 for representative case studies [48], allows us

to spatially focus on man-made structures within urban environ-

ments (i.e., buildings) and at the same time neglect conceptual

and methodological considerations related to other objects that

are elevated from the Earth’s surface (i.e., vegetation). The

deployed UFs of Izmir and Wuppertal cover approximately

214 km2 and 45 km2, respectively, and comprise a large range

of different man-made structures, e.g., in Izmir, these reach

from small and very low rise informal settlements (Gecekon-

dular) to large industrial buildings.

C. Description of Experiments

Experimental analyses and validation are based on two dif-

ferent data sets. 1) The first reference data set contains verified

BE and OBJ pixels. Here, 1000 points were randomly generated

within the 214 km2 of the UF of Izmir. By careful manual

inspection of the TDM data and additional utilization of VHR

optical imagery, 605 BE pixels and 186 OBJ pixels in the TDM

data could be identified. The 209 remaining pixels could not

be unambiguously allocated and thus were excluded from the

reference data set. 2) The second data set is a DTM derived

from LiDAR measurements over the city of Wuppertal. A DTM

was derived from the last pulse acquisitions and provided by the

city municipality for this study. The experimental analyses are

organized in three main parts.

1) The first analysis aims at demonstrating the effectiveness

of the proposed RPMF and RPMF-SOBV approaches to

separate BE from OBJ pixels for the settlement area of

Izmir. Therefore, a comparison with the PMF approach

is provided in terms of computed FN and FP rates. The

approaches’ accuracies are studied as a function of their

free parameters.

2) In the second analysis, the accuracies of the generated

DTMs are assessed. The qualities are assessed by a com-

parison with the LiDAR DTM of Wuppertal. Therefore,

the deviations of the generated DTMs from the LiDAR

DTM were calculated. To this purpose, the LiDAR data

and TDM data were coregistered (by means of a nearest

neighbor interpolation for resampling) so that the data sets

feature a common spatial geometry of 11 m. Moreover, an

existing offset of the LiDAR DTM was corrected to match

the elevation level of the TDM data by constantly adding

50.4 m to all measurements. The comparison is based on

370 592 pixels, which are identified as settlement area of

Wuppertal by the UF data set.

3) In the third analysis, we visually assess the quality of the

final nDSMs according to the different DTM generation

approaches and discuss favorable and less favorable char-

acteristics of the respective strategies.

IV. EXPERIMENTAL RESULTS

A. Results of Analysis I: Accuracy Assessment of BE and OBJ

Pixel Classification

This analysis assesses the ability of PMF, RPMF, and RPMF-

SOBV to distinguish BE and OBJ pixels. MF is not considered,

since it does not feature the inherent concept of the other

approaches to separate BE from OBJ pixels first and interpolate

a DTM from the identified BE pixels. The classification
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TABLE I
BASIC PARAMETERS FOR PMF, RPMF, AND RPMF-SOBV USED IN THE EXPERIMENTS

accuracies of PMF, RPMF, and RPMF-SOBV were examined

by a series of test runs with various values of free parameters

θ and η. These two free parameters were kept constant during

the progressive increase of the size of B for an individual test.

This is important since free parameters are frequently altered in

dependence of the size of B when working with data with a very

high spatial resolution. As explained in Sections I and II-A, low

θ values are used for small sizes of B to eliminate objects such

as bushes, small trees, or cars. With increasing size of B, θ val-

ues are also increased to account for objects such as buildings.

However, regarding the TDM data, even the smallest size of B
(3 × 3 pixels) comprises a size that already can easily exceed a

building. To take account for large industrial buildings in the

southeastern part of the study area, the maximum size of B
was set to 15 pixels for all approaches. Additionally, we chose

a square-shaped SE. The height threshold was assessed in the

interval θ ∈ [2, 2.2, . . . , 3.6], and the similarity constraint was

assessed in the interval η ∈ [0.6, 0.8, . . . , 2], whereas a certain

combination of θ and η was used and kept constant during each

run. The basic parameters of the different approaches are also

listed in Table I.

Regarding the edge extraction filter procedure, which is part

of RPMF (and then naturally also relevant for RPMF-SOBV),

we apply a σ value of 4 (preliminary experiments showed that

results are insensitive with respect to the specification of σ). Re-

garding the segmentation which is an essential processing step

of RPMF-SOBV, we put more emphasis on shape heterogeneity

(shape: 0.7) rather than on gray-value heterogeneity (0.5) as

suggested. To identify an optimal segmentation scale that can

be used for RPMF-SOBV, we calculated the objective function

in terms of equation (11) for scales in the range of [5, . . . , 15]
when applying the segmentation algorithm to the pnDSM com-

puted with Bmax. The affiliated objective function is revealed in

Fig. 4. It can be seen that the maximum value, which represents

a statistical indicator for optimal segmentation, is reached with

a scale factor of 9 for our data set. Hence, the segmentation used

for RPMF-SOBV was carried out with this scale factor.

Based on the reference data, FN and FP rates are calculated

for PMF, RPMF, and RPMF-SOBV with the specified parame-

ters. Results are revealed in Fig. 5. In Fig. 5(a), it can be seen

that FN rates decrease continuously with an increasing θ value,

and FP rates increase continuously with increasing θ value for

PMF, RPMF, and RPMF-SOBV. This is reasonable since many

building objects are lower than a high θ value in this range,

which leads to an increase of FP. Analogously, the terrain is

predominantly classified as elevated objects with a low θ value

that results in a high FN rate. Generally, it can be observed that

Fig. 4. Objective function calculated according to (8)–(11) for scales in the
range of [5, . . . , 15] when applying the segmentation algorithm to the pnDSM
computed with Bmax. The maximum value of the objective function is a
statistical indicator for optimal segmentation. As can be seen, the maximum
value for our data set is reached with a scale factor of 9.

all approaches face the problem of misclassifying the terrain

as elevated objects, which results in a high level of FN rates.

When comparing PMF and RPMF, it is obvious that the FN

rates of RPMF are consistently lower, and simultaneously, the

FP rates are consistently higher. The FN rates of RPMF-SOBV

are slightly higher than the FN rates of RPMF, and the FP

rates are slightly above the FP rates of PMF. This uncovers an

interesting performance characteristic of RPMF-SOBV, which

is also exemplified in Fig. 5(b). The figure shows the FN and

FP rates for a certain θ value (2.6 m) as a function of η. It can

be seen that RPMF-SOBV combines favorable performance

characteristics of both PMF and RPMF: regarding FN rates,

it is aligned to the better performance of RPMF. In contrast,

regarding FP rates, it is aligned to the better performance

of PMF. Generally, when increasing η, we observe that the

FN and FP rates associated with RPMF and RPMF-SOBV

become more aligned with the error rates of PMF for the given

interval. In addition, the sensitivity of the FN and FP rates

decreases. Fig. 5(c) visualizes the gain of accuracy (decrease

of FN rate) and loss of accuracy (increase of FP rate) of both

RPMF and RPMF-SOBV compared to PMF. Generally, it can

be observed that the decrease in FN exceeds the increase of FP

for both RPMF and RPMF-SOBV compared to PMF explicitly.

Compared to RPMF, the decrease of the FN rates of RPMF-

SOBV is more moderate; however, the increase of FP remains

simultaneously on a very low level.

As already mentioned, the classification errors have a varying

influence on the quality of the DTM. It is primarily dependent

on the terrain characteristics (i.e., flat or steep). Hence, further
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Fig. 5. (a) FN and FP rates achieved with PMF, RPMF, and RPMF-SOBV (plotted on the y-axis) in dependence of the approaches’ free parameters. The free
parameters are height threshold θ (plotted on the x-axis in meters) for PMF, RPMF, and RPMF-SOBV, and similarity constraint η (plotted on the z-axis in meters;
since this parameter is only relevant for RPMF and RPMF-SOBV, it does not vary for PMF). (b) FN and FP rates for a certain θ value (2.6 m) as a function of η.
(c) Gain of accuracy (decrease of FN rate) and loss of accuracy (increase of FP rate) of both RPMF and RPMF-SOBV compared to PMF.

analysis related to the quality assessment of the resulting DTMs

is carried out in the next section.

Moreover, we provide run times needed to classify the BE

and OBJ pixels in the DSM for the different algorithms. All

algorithms were run under the eCognition Developer environ-

ment (version 8.9) on a PC with an Intel Xenon processor

at 3.4 GHz and 8-GB RAM. We considered a subset of the

IDEM of Izmir consisting of 100 × 100 pixels for the com-

parison. The corresponding run times are as follows: 0.078 s

for PMF, 0.530 s for RPMF, and 1.217 s for RPMF-SOBV.

Consequently, the observed run times increase in a consecutive

manner with the complexity (i.e., processing steps) of the

different algorithms. However, depending on the considered

problem, the gain in accuracy may justify a higher computa-

tional burden.

B. Results of Analysis II: Accuracy Assessment of DTMs

DTMs were generated based on the BE pixels classified by

PMF, RPMF, and RPMF-SOBV. For the Wuppertal data set, we

used a maximum size of B of 11 pixels and a scale of 7 for

the segmentation algorithm (as determined with the objective

function; only relevant for RPMF-SOBV). Additionally, the

surface obtained by conducting an opening operation with

Bmax (MF) is evaluated. A quite restrictive θ value (i.e., 2.6 m)

for PMF, RPMF, and RPMF-SOBV was chosen to account for
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Fig. 6. Boxplots (depicting median, IQR, as well as 1.5 times IQR) for
illustration of deviations and absolute deviations of the DTMs with respect to
the BE pixels of the TDM data in meters.

the very small and low buildings, as the general aim is to extract

every single building. A quite restrictive value for the similarity

constraint η (i.e., 0.8 m; only relevant for RPMF and RPMF-

SOBV) was chosen to achieve a favorable tradeoff regarding the

overall gain of accuracy with respect to PMF. Analogous to the

authors of [16], we used a Kriging approach [49] to interpolate

the BE pixels to a DTM surface. We used ordinary Kriging

on the BE pixel sets with spherical semivariogram models and

adaptive search radii to ensure a number of 12 BE pixels to be

included.

As explained in Section III-C, the quality of the generated

DTMs is assessed based on the elevation values of 370 592

LiDAR DTM pixels. This assessment is intended to serve

as a further comparison of methods. Deviations and absolute

deviations in meters are visualized in Fig. 6 on the basis of

boxplots (depicting median, interquartile range (IQR), as well

as 1.5 times IQR). It can be observed that, in general, all

approaches have the tendency to underestimate terrain heights

compared to the LiDAR measurements. However, RPMF shows

consistently for both error measures the smallest deviations

with, for example, lowest medians and spreads of IQR. It is

followed by RPMF-SOBV, with just slightly higher deviations.

The deviations of PMF are higher, and MF shows least favor-

able performance characteristics with, for example, highest me-

dians and largest spreads of IQR. These results also reflect the

results of analysis I. The ability to identify terrain exhaustively

is expressed in a low FN rate. In analysis I, RPMF showed

the lowest FN rates, followed by RPMF-SOBV and PMF [see

Fig. 5(a)].

Moreover, we calculated the mean error (ME), mean absolute

error (MAE), root-mean-square error (rmse), and linear devi-

ations at the 90th percentile (LDP90; the results are shown in

Table II). In accordance with the results depicted in Fig. 6,

RPMF shows the lowest deviations with respect to MAE

(3.27 m), ME (−1.9 m), and rmse (4.18 m). It is directly

followed by RPMF-SOBV, which shows slightly worse quality

measures. PMF comes up with a MAE of 3.98 m, a ME of

TABLE II
ME, MAE, RMSE, AND LINEAR DEVIATIONS AT THE 90TH PERCENTILE

(LDP90 ) OF THE DIFFERENT APPROACHES IN METERS

−3.29 m, and an rmse of 4.97 m. These values are above RPMF

and RPMF-SOBV but more favorable compared to the values

of MF, which shows the highest deviations. LDP90 reveals that

90% of the deviations are smaller than 6.21 and 6.7 m when

using RPMF and RPMF-SOBV, respectively, compared to con-

siderably higher deviations for PMF (7.59 m) and MF (8.4 m).

Overall, the results of this analysis are consistent with the

results of analysis I and suggest that RPMF features a superior

ability to identify terrain with a comparatively low error of

omission. Nevertheless, it is directly followed by RPMF-SOBV.

A more distinct decrease of performance can be observed when

using PMF. MF generally shows least favorable accuracies.

C. Results of Analysis III: Visual Assessment of nDSMs

The generated DTMs were subtracted from the TDM DSM

to visually assess the quality of the resulting nDSMs. When

values smaller than zero occurred in the resulting nDSM, these

values were set to zero since they represent artifacts related to

the DTM calculation method. “Nonurban” areas are faded out

by integrating UF data.

Computed nDSMs are visualized for the Izmir test site in

Fig. 7(a) for focus areas in steep (1) as well as flat (2) terrain.

Additionally, magnification (3) is intended to exemplify a situ-

ation, which motivates the use of RPMF-SOBV. It focuses on

large buildings with irregular roof surfaces. The first column

shows the VHR optical imagery for comparison. Subsequent to

the optical imagery, nDSMs based on MF, PMF, RPMF, and

RPMF-SOBV are presented. It can be observed that the overall

height levels of the objects differ notably, with MF showing the

highest level and RPMF the lowest.

An overestimation of objects’ heights by MF and PMF can be

dominantly observed in steep terrain (1), also partly for RPMF-

SOBV. In the central part of the focus area, coherent regions

with exaggerated object heights appear. These are caused by

BE pixels that were misclassified as OBJ pixels (the height

difference to neighbor pixels is high due to the steepness of the

terrain). In such a situation, the interpolation procedure cannot

rely on sufficient BE pixels and thus underestimates the terrain

heights. This causation is also revealed in the corresponding

height profile (1) in part (b) of the figure (shaded relief with

profile lines in yellow is shown in the last section of the

upper part). The terrain heights of MF, PMF, and RPMF-

SOBV purport too low levels, whereas RPMF follows the actual

terrain height very closely. In flat terrain [height profile 2 in

(b)], a general characteristic of MF becomes obvious as this

approach frequently produces terrain models with a too low

height level. PMF follows the terrain height more closely and
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Fig. 7. (a) Visual comparisons of nDSMs based on MF, PMF, RPMF, and RPMF-SOBV with particular focus on (1) steep terrain, (2) flat terrain, and (3) large
buildings (which motivated the use of RPMF-SOBV). (b) Affiliated height profiles of DTM surfaces generated by the different approaches.
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Fig. 8. Exemplification of the procedure for the identification of initial OBJ pixels (a) that represent the basis for the region-growing procedure, which is shown
in (b) with IDEM TDM data. In this example, free parameters θ and η were set to 2.6 and 0.8 m, respectively.

naturally. However, the profile reveals a fractional underesti-

mation of the actual terrain heights. On the contrary, RPMF

and RPMF-SOBV hardly underestimate terrain heights. The

surface generated by RPMF partially reflects a volatile behavior

of the height values of the DSM. This can be related to FP

errors which cause regions in the interpolated surface that are

elevated toward the DSM surface. Interestingly, the surface

generated based on RPMF-SOBV appears to be less prone to

this behavior. This is specifically illustrated in height profile 3

in (b). It can be observed that the terrain surface produced by

RPMF is considerably elevated toward the DSM surface, which

leads to underestimated height values in the nDSM as can be

seen in section (a), magnification 3. This resulted from the OBJ

pixels that remained unclassified during the region-growing

procedure and were finally considered as BE. Generally, this

error source motivated the introduction of RPMF-SOBV. As
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Fig. 9. Exemplified selective postclassification processing scheme. In this example, Bmax corresponds to 15 pixels, the preliminary nDSM data were segmented
with a scale factor of 9, and free parameters θ and η were set to 2.6 and 0.8 m, respectively.

can be seen from this example, such errors can be largely

avoided with RPMF-SOBV, and more valid surface estimations

are achievable.

Overall, results are unambiguously in line with the results of

analyses I and II and reflect the capability of the approaches to

distinguish BE from elevated objects correctly. In this manner,

the level and proportions of FN and FP rates as evaluated

explicitly in analysis I are directly reflected in the computed

nDSMs. Hence, analyses suggest that RPMF and RPMF-SOBV

yield more favorable performance characteristics compared to

PMF and MF in nonflat terrain. In that sense, RPMF features

a distinct capability to identify BE pixels in an exhaustive

manner, which is advantageous in a steep terrain. Neverthe-

less, the method may perform less advantageous in situations

where the elevation values of the elevated objects feature a

volatile behavior. In such situations, RPMF is prone to omit

classifying the OBJ pixels. This motivated the introduction

of the postclassification processing scheme to spatially refine

the classification outcomes of the region-growing procedure of

RPMF. Therefore, analyses uncover a notable characteristic of

RPMF-SOBV: it yields a favorable tradeoff between a clear

decrease of omission errors while keeping errors of commission

on a very low level. This makes the approach relevant in various

settings.

V. CONCLUSION

In this paper, we have proposed a novel RPMF procedure

with a postclassification processing scheme for the calculation

of nDSMs from TanDEM-X data in urban environments. The

proposed methods allow for an accurate reconstruction of ur-

ban morphology in challenging terrains. The former is based

on a multistep procedure, which sequentially and iteratively

executes progressive morphological image filtering and region

growing to identify ground pixels. These are subsequently

used for the interpolation of a DTM which allows normalizing

the DSM. The postclassification processing scheme adapts

techniques of OBIA to spatially refine regions of classified

nonground pixels.

Experiments were carried out with IDEM data for settlement

areas that cover large parts of the cities Izmir (Turkey) and

Wuppertal (Germany). Results confirm the interest of the pro-

posed approaches and reveal beneficial performance character-

istics compared to basic MF-based approaches. This is evident

in a terrain with high relief energy and steep areas. In particular,

when classifying ground pixels, RPMF features a clear decrease

of omission errors which exceeds an increase of commission

errors compared to a basic PMF procedure. The decrease of the

omission errors of RPMF-SOBV is more moderate compared to

RPMF; however, the increase of the commission errors remains

simultaneously on a very low level. This renders the approach

relevant for an application in various settings.

The TanDEM-X mission will deliver a globally consistent

DSM with an unprecedented spatial resolution. Having suitable

methods available for an automated extraction of objects above

ground in urban environments will open a broad range of

area-wide applications. These are related to the analysis and

monitoring of urbanization processes, characterization of urban

morphology, and natural disaster mitigation, among others.

Hence, valuable contributions to different fields of research

may be achieved when extracting relevant information based

on presented data and methods.

APPENDIX A

Fig. 8 shows the exemplifications of the identification of

the initial OBJ pixels (a), which are deployed for the region-

growing procedure (b). Fig. 8(a) illustrates how objects which

are smaller than the minimum size of B can be identified by

the application of a threshold θ on the pnDSM. In contrast,
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border pixels of objects that are larger than the minimum

size of B are identified by computing γBmin
(Z)− εBmin

(Z).
They are classified as OBJ by combining edge extraction filter

and segmentation. These initial OBJ pixels are used for the

region-growing procedure shown in Fig. 8(b). The size of B
is increased, and additional OBJ pixels are identified if they

exceeded θ in the respective newly calculated pnDSM and

fulfill a similarity constraint with respect to already classified

OBJ pixels.

APPENDIX B

Fig. 9 shows an exemplification of the selective postclas-

sification processing scheme. First, a preliminary nDSM is

calculated with Bmax to ensure that all building objects are

contained. Subsequently, a segmentation algorithm is used to

discriminate homogenous image regions. Segments are se-

lected, which contain solely pixels with class labels “OBJ” and

“unclassified” after the region-growing procedure of RPMF.

Pixels of selected segments are classified according to the

maximum class probability of the respective segment.
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