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Abstract1 
In this paper we describe a new framework of feature 
compensation for robust speech recognition. We introduce 
Delta-Cepstrum Normalization (DCN) that normalizes not 
only cepstral coefficients, but also their time-derivatives. In 
previous work, the mean and the variance of cepstral 
coefficients are normalized to reduce the irrelevant 
information, but such a normalization was not applied to 
time-derivative parameters because the reduction of the 
irrelevant information was not enough. However, Histogram 
Equalization provides better compensation and can be 
applied even to delta and delta-delta cepstra. We investigate 
various implementation of DCN, and show that we can 
achieve the best performance when the normalization of the 
cepstra and delta cepstra can be mutually interdependent. 
We evaluate the performance of DCN using speech data 
recorded by a PDA. DCN provides significant improvements 
compared to HEQ. We also examine the possibility of 
combining Vector Taylor Series (VTS) and DCN. Even 
though some combinations do not improve the performance 
of VTS, it is shown that the best combination gives better 
performance than VTS alone. Finally, the advantages of 
DCN in terms of the computation speed are also discussed.

 

1. Introduction
Speech signals are a mixture of various information. A part 
of the speech signal is produced according to the speaker's 
intention, while another part is introduced by the 
environment and not helpful to the understanding of the 
content of speech. If the former part is dominant, speech 
recognition is easy. If not, robust speech recognition 
techniques must be introduced to  reduce the effects of 
irrelevant information. Since the separation of relevant and 
irrelevant information is not apparent, those techniques 
need to use prior knowledge or assumptions about the 
speech and the acoustical environment.
     Cepstral Mean Normalization (CMN) [1] is a well-known 
method to reduce the environmental distortion.  It assumes 
that the mean of the cepstral coefficients is invariant for 
various utterances. Therefore, there is no relevant 
information in the mean, and subtracting it reduces only 
irrelevant information. In CMN, the irrelevant information 
is assumed to be convolutional channel noise or spectral 
tilt. In some cases, such a strong assumption may cause a 
loss of relevant information, but the greater reduction of 
irrelevant information in adverse conditions generally 
results in better performance. A natural extension of CMN is 
Mean and Variance Normalization (MVN) [2,3], where the 
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assumption is still stronger. In MVN the mean and the 
variance of the cepstral coefficients of clean speech are 
assumed to be invariant. Therefore, removing mean and 
variance is assumed to reduce only irrelevant information, 
no matter what that information may be. A third technique, 
Histogram Equalization (HEQ) [4,5] uses the stronger 
assumption that the shape of the entire distribution of 
cepstral coefficients is invariant. In HEQ, any detail of the 
cepstral distribution is regarded irrelevant and to be 
removed.
     From this perspective, we can say that any normalization 
can be applied to any parameter if the invariance 
assumption is valid. That is,  the motivation of our work, in 
which we try to apply normalization techniques not only to 
cepstral parameters, but also to their time-derivatives. 
Although it is true that the cepstral mean can be interpreted 
as spectral tilt, we do not pay much attention to the origin 
of the irrelevant information in applying the other methods. 
Instead, we focus only on finding transformations that 
preserve the relevant information in speech. This paper 
compares and discusses such simple models and 
transformations, and shows that speech recognition 
performance can be improved by their use. More 
importantly, these transformations are extended to the delta 
cepstra.
     The remainder of this paper is organized as follows. In 
the next section, we describe the concept of HEQ and our 
implementation of it. In section 3, various versions of 
Delta-Cepstrum Normalization (DCN) are introduced. 
Section 4 presents experimental results, and conclusions 
are given in the last section.

2. Histogram Equalization
Histogram Equalization is a procedure that is commonly 
used in image processing. Balchandran and Mammone [6] 
first applied it to the amplitudes of speech signals, and 
Dharanipragada and Padmanabhan [7] applied it to cepstral 
features as an adaptation method. Some more recent papers 
(e.g. [4,5]) applied feature normalization methods for robust 
speech recognition.
     The basic idea of HEQ is that the distribution of cepstral 
coefficients in the test data should be identical to that of 
the training data. In the case where we can treat each 
dimension of the cepstral vector as independent, finding 
the transformation is easy by using the cumulative density 
function (CDF), the integral of the probability density 
function (PDF). Since the CDF is a monotonic increasing 
function between 0 and 1, the inverse function can be 
defined. Thus, the transformation of HEQ is defined as 
follows:
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xi  =  HEQ (yi ) =  CX
−1( CY(yi) )           (1)

 
where CX is the CDF estimated from training data and CY is 

the CDF of the test data, yi is a cepstral coefficient of the ith  

frame, and xi is the corresponding transformed cepstral 

coefficient. Since HEQ is applied to each cepstral dimension 
independently, we omit the other subscript for the cepstral 
dimension in this paper.
     Usually there is a huge number of samples in the training 
data, and we can get an almost continuous curve of the CDF 
from the precise histogram. The number of samples in a test 
utterance is small, but we can define the CDF at sample 
points simply by sorting the cepstral parameters and 
obtaining their relative ranks, because the CDF is a function 
of the number of frames that have smaller values than the 

current point. After sorting, we calculate  CX-1(t/N)   for t = 

0, 1, 2, ... N (where N is the number of frames) by 

interpolation using the pre-stored numeric table of  CX-1 .

     There are some issues in the implementation of HEQ. In 
[4], the CDF obtained from the Gaussian PDF was used as 
the reference. Even though the distribution of cepstral 
coefficients tends to be Gaussian in some cases, we made 
the reference CDF according to (1) to make it more precise. 
Another issue is whether MVN should be applied to the 
training data before obtaining the reference CDF. We 
thought that HEQ should be a natural extension of MVN, so 
we applied MVN to the training data before developing the 
CDF. There is also a concern about the domain of HEQ. In 
[5], it is said that applying HEQ in the Mel-filterbank 
domain is better than applying it in the cepstral domain. 
However, our preliminary experiments showed the opposite 
results, so we decided to apply it in the cepstral domain.

3. Delta-Cepstrum Normalization
It is well known that the use of time-derivative parameters 
such as delta and delta-delta cepstra improves recognition 
accuracy. However, there have been few previous studies 
that attempt to normalize these features. The RASTA method 
[8] and other filtering approaches make use of inter-frame 
information, but they do not use the entire distribution of 
delta parameters. Mean subtraction of delta parameters does 
not help because the mean of delta parameters is always zero 
by definition. The variance of delta parameters can be non-
zero, but it was reported in [3] that MVN does not need to be 
applied to delta and delta-delta cepstra. It is possible that 
the improvement obtained using MVN is smaller than the 
loss of relevant information. However, if compensation 
using HEQ provides more gain than loss, we could have 
different results.
     Since the delta and delta-delta cepstra are not 
independent from the cepstrum, there are several ways with 
which these features could be compensated. Figure 1 shows 
three types of Delta-Cepstrum Normalization. The simplest 
option is called Independent DCN, where the delta and 
delta-delta cepstra are calculated from the original 
cepstrum, and then HEQ is applied to the cepstrum, the delta 
cepstrum and the delta-delta cepstrum independently.  The 
second option is called Sequential DCN, where HEQ is 
applied to the original cepstrum, then time-derivative 
operation is carried out using the normalized cepstrum, and 
finally HEQ is applied to the delta and delta-delta cepstra. 

In this method, the delta and delta-delta cepstra part can 
take advantage of the normalization of the cepstrum. The 
third option is called Feedback DCN, where the output of 
Sequential DCN is fed back to the cepstrum part, and "∆-

adjustment" is executed. ∆-adjustment is a procedure 
described in more detail below that reduces the mismatch 
between the normalized cepstrum and the normalized delta 
and delta-delta cepstra. By introducing ∆-adjustment, the 
cepstral normalization can take advantage of the 
normalization of the delta and delta-delta cepstra. However, 
even though both delta and delta-delta cepstra are expected 
to be helpful, we perform ∆-adjustment using the delta-
cepstrum only, because it is difficult to define an 
appropriate ∆-adjustment procedure that makes use of both 
delta and delta-delta. A more detailed description of 
Feedback DCN including ∆-adjustment follows. 
     In Feedback DCN we describe the observed cepstral 
coefficients by yi. After applying HEQ, we obtain 

normalized cepstral coefficients zi.
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Fig. 1. Schematic diagram of DCN. (a) Independent
DCN. (b) Sequential DCN. (c) Feedback DCN



zi  =  HEQ (yi )                         (2)
 
Delta-cepstral coefficients are defined as follows.

∆zi  =  
1

2
( zi +1 − zi −1 )                  (3)

 
The error function is then defined to be the difference 
between the original delta cepstrum and the normalized 
delta cepstrum:

ei  =  HEQ (∆zi) −  ∆zi                 (4)
 
Finally, the cepstrum is modified so that the error function 
decreases.

xi  =  zi  −  α (  ei+1 − ei −1 )             (5)
 
α is a weight parameter, whose value was set to 1 
empirically. Using these values of xi, the delta and delta-

delta cepstra are recalculated, and the resulting parameters 
are fed into the decoder.
 
 

4. Experimental Results
The proposed algorithms were evaluated in a series of 
recognition experiments. Triphone HMMs with 2000 tied 
states (8 Gaussians/state) were trained using the 5000-word 
LDC Wall Street Journal database (WSJ0). The Sphinx-III 
decoder developed by CMU was used for decoding, with a 
trigram language model.  Speech input was sampled by 
11.025kHz, and 13 MFCCs were computed every 10ms.
     We recorded 330 utterances from eight speakers 
simultaneously using  two microphones: the built-in  
microphone of the PDA (Compaq iPAQ PocketPC Model 
3630) and a close-talk microphone (Optimus Nova 80). 
Each speaker uttered 40 to 43 sentences chosen from the 
WSJ0 database. Using these recordings, we prepared two 
test sets. The first set was the real data recorded by the PDA 
microphone. The SNR of the first set was estimated as 18dB 
using NIST's stnr tool. The data are corrupted by both 
additive noise from computer fans in the recording room 
and the spectral tilt of the PDA microphone. A second set of 
artificial data were obtained by digitally adding the 

relatively clean speech data recorded using the close-talk 
microphone to noise recorded by the PDA microphone with 
varying SNR from 0dB to 25dB.  The spectral tilt of the 
close-talk microphone is small, and the additive noise is 
the same as the first set except that the amplitude is 
adjusted to each SNR value.
 
4.1 Experiments Using Real Data
Table 1 shows the word error rates (WER) obtained by 
various methods using the real data set. MVN and HEQ 
improve the accuracy as expected. Independent DCN 
provides an improvement over HEQ, that is 9% relative 
WER reduction. Sequential DCN works slightly better than 
Independent DCN, providing a relative improvement in 
WER of 11%. Finally, Feedback  DCN results in the best 
performance, providing a relative reduction in WER of 
about 15% compared to HEQ. As the reference, the WER 
using the close-talk microphone recording with no 
additional noise is 16.4%, and that is regarded as the lower 
limit in WER to be obtained by any similar compensation 
method.

4.2 Combination with VTS
VTS [9] is known as one of the most powerful compensation 
algorithms developed for quasi-stationary additive noise 
and linear filtering. In [10], it is reported that HEQ reduces 

Table 2. Recognition results for real data
using combinations with VTS

VTS (CMN)
VTS + MVN

VTS + Independent DCN
VTS + Sequential DCN
VTS + Feedback DCN

VTS + HEQ

23.3
25.4
27.3
23.4
23.6
22.7

WER (%)

Table 1. Recognition results for real data

Baseline (CMN) 41.5
MVN
HEQ

Independent DCN
Sequential DCN
Feedback DCN

Close-talk

33.5
30.2
27.5
27.0
25.6
16.4

WER (%)

Fig. 2. Recognition results for artificial data
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the residual noise of VTS, so one can achieve better results 
by applying HEQ after VTS. To verify this result and check 
its extensibility to DCN, we performed some additional 
experiments using VTS.
     Table 2 shows the word error rates obtained using VTS as 
well as various combination of VTS and other methods. 
Although VTS by itself works better than even the best form 
of DCN, the WER becomes greater when we apply HEQ after 
VTS, that is opposite to the result described in [10]. 
Independent DCN and Sequential DCN are better than HEQ, 
but they are still worse than VTS alone. However, if we 
apply Feedback DCN after VTS, we obtain a relative 
improvement in WER of about 3% compared to VTS alone.
 

4.3 Experiments Using Artificial Data
Figure 2 shows the recognition accuracy obtained using the 
artificial data using various SNRs. Since Feedback DCN was 
the best among three types of DCN in the previous 
experiments, we used Feedback DCN only. VTS in 
combination with DCN was also tested. 
     As shown in the figure, the use of DCN does not improve 
recognition accuracy over the results obtained with VTS for 
SNRs above about 10dB. DCN is more helpful when used 
with VTS at lower SNRs, and is even better by itself than 
VTS at 0dB.

4.4 Computational Complexity
One of the advantages of HEQ is fast execution owing the 
possibility of being implemented via table lookup. On the 
other hand, EM-based algorithms such as VTS are usually 
very slow. To confirm the same advantage for DCN, we  
measured the time consumed by the CPU to compensate 330 
utterances of the real data set, and calculated the average 
time to compensate one second of speech. The experiment 
was carried out with an Intel Celeron 2.0GHz processor and 
256MB  memory running on the Linux operating system. 
Execution times for the various algorithms are shown in 
Table 3. In Independent and Sequential DCN, there are three 
equalization operations for the cepstrum, the delta 
cepstrum, and the delta-delta cepstrum. That is why it takes 
approximately three times as much time as HEQ. In 
Feedback DCN, we did not apply HEQ to the delta-delta 
cepstrum, so the execution time is about twice that of HEQ. 
Apart from those small differences, all of three DCN 
algorithms ran in less than 1% of real time. In contrast, VTS 
requires much more than real time due to its time-
consuming EM iterations.

5. Conclusions
In this paper, we have introduced a new feature 
normalization algorithm that is based on the normalization 
of time-derivative parameters. This procedure, referred to as 
Delta-Cepstrum Normalization (DCN) is quite simple to 
implement and provides greater recognition accuracy than 
either Cepstral Mean Normalization (CMN) or Histogram 
Equalization (HEQ). The performance of DCN approached 
that of Vector Taylor Series (VTS) and with only of a small 
fraction of the computational cost of VTS. We investigated 
three implementations of DCN, Independent, Sequential, 
and Feedback Delta-Cepstrum Normalization. The best 
implementation, Feedback DCN, provide a relative  
improvement of 15% compared to standard HEQ using real 
data recorded by the built-in microphone of an iPAQ. We 
also showed that Feedback-DCN can reduce recognition 
error rate when it is applied after VTS. 
     Fast run times for the HEQ and DCN algorithms are 
observed when the algorithms are implemented using table 
lookup. As a result, these algorithms are attractive for small 
devices used in noisy conditions, such as PDAs and in-
vehicle systems. 
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Table 3. Execution time for 1 second speech

MVN 0.0001
HEQ

VTS

Independent DCN
Sequential DCN
Feedback DCN

0.0012
0.0033
0.0033
0.0019
2.8395

time (sec)


