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Abstract MicroRNA (miRNA) profiling is a first

important step in elucidating miRNA functions. Real

time quantitative PCR (RT-qPCR) and microarray

hybridization approaches as well as ultra high

throughput sequencing of miRNAs (small RNA-seq)

are popular and widely used profiling methods. All of

these profiling approaches face significant introduc-

tion of bias. Normalization, often an underestimated

aspect of data processing, can minimize systematic

technical or experimental variation and thus has

significant impact on the detection of differentially

expressed miRNAs. At present, there is no consensus

normalization method for any of the three miRNA

profiling approach. Several normalization techniques

are currently in use, of which some are similar to

mRNA profiling normalization methods, while others

are specifically modified or developed for miRNA

data. The characteristic nature of miRNA molecules,

their composition and the resulting data distribution

of profiling experiments challenges the selection of

adequate normalization techniques. Based on miRNA

profiling studies and comparative studies on normal-

ization methods and their performances, this review

provides a critical overview of commonly used and

newly developed normalization methods for miRNA

RT-qPCR, miRNA hybridization microarray, and

small RNA-seq datasets. Emphasis is laid on the

complexity, the importance and the potential for

further optimization of normalization techniques for

miRNA profiling datasets.
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Introduction

The importance of microRNAs (miRNAs), a class of

small RNAs mediating post-transcriptional gene reg-

ulation, has been shown in several cellular processes

as well as in different metabolic and pathologic

conditions. Predominantly, miRNAs repress gene

expression by binding of target mRNAs and formation

of the RNA-induced silencing complex (RISC)

(reviewed in Carthew and Sontheimer 2009). Multiple

mechanisms by which miRNAs cause translational

repression at the translation initiation step or at post-

initiation steps as well as mRNA decay through

deadenylation have been reported (reviewed in Fabian

et al. 2010). Moreover, miRNAs activate rather than

repress translation in quiescent cells (Vasudevan et al.

2007). However, miRNA-mediated activation of

translation is probably not a general mechanism in

nonproliferating cells (Fabian et al. 2010).
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The expression, regulation and function of miRNA

are addressed in an increasing number of studies. To

date, more than 10,500 miRNAs from 115 species are

registered in the miRSanger Base (Release 14)

(http://www.mirbase.org) (Griffiths-Jones et al. 2008)

and according to bioinformatic predictions, this

number is expected to increase further (Sheng et al.

2007). The specific function of individual miRNAs is

only partly known and in most cases not fully

understood. High throughput miRNA profiling is a

first important step in characterizing specific miRNA

signatures and thus, in unravelling the regulatory

functions of this species of small RNAs.

Understanding miRNA functions implies great

potential for the application in the field of biotech-

nology as well as diagnostic and therapeutic

approaches. For example, miRNAs have been shown

to be key regulators for the induction or maintenance

of cell fate in plants (Carlsbecker et al. 2010),

mammalian cells (Cardinali et al. 2009), cancer

(Kim et al. 2010), and stem cells (Gunaratne 2009;

Gangaraju and Lin 2009). Furthermore, miRNAs can

serve as biomarkers (Baker 2010). Experimental

evidence demonstrates that correction of specific

miRNA alterations using miRNA mimics or antag-

omirs can reverse the phenotype in cancerous cells

(Wang and Wu 2009). Thus, miRNA-based thera-

peutic interventions as well as diagnostics are being

developed (Pfeifer and Lehmann 2010).

In addition, miRNA expression profiles may be

more accurate than mRNA expression profiles in

disease classification (Lu et al. 2005). Accordingly,

numerous methods have been established to identify

and globally quantify small RNAs (Li and Ruan

2009; Yin et al. 2008; Benes and Castoldi 2010;

Kong et al. 2009). Real-time quantitative PCR

(RT-qPCR) was optimized to not only perform single

reverse transcription and PCR amplification experi-

ments but also for a large number of miRNAs in

parallel by multi- or megaplexing (Chen et al. 2005;

Benes and Castoldi 2010). Currently, RT-qPCR is the

method of choice for validation of miRNA profiling

results from other holistic platforms. Hybridization

based quantitative miRNA profiling by microarrays

(Yin et al. 2008; Li and Ruan 2009) has become a

widely used and popular method as e.g., a valuable

tool for biomarker and therapeutic target identifica-

tion and functional prediction of miRNAs by corre-

lating miRNA expression patterns to corresponding

mRNA (Jayaswal et al. 2009; Manakov et al. 2009)

and protein profiles (Iliopoulos et al. 2008). MiRNA

profiling strategies based on deep sequencing

(reviewed in Wang et al. 2009; Linsen et al. 2009)

allow the de novo identification as well as the relative

quantification of miRNAs and are essential for

getting a holistic picture of small RNA signatures.

Each miRNA profiling strategy faces unique chal-

lenges. Specific strengths and entailed consequences

are of distinct importance to consider depending on

the nature of the research context (Table 1).

The analysis of microRNA expression faces sev-

eral challenges. Both the short length and the

heterogeneous GC content of miRNAs result in large

impede intervals of melting temperatures complicat-

ing optimized probe or primer design (Benes and

Castoldi 2010; Yin et al. 2008). Extended loop probes

(Wang et al. 2007), stem-loop primer (Chen et al.

2005), or the incorporation of modified nucleotides,

e.g., locked nucleic acids (Castoldi et al. 2008) or

20-O-(2-methoxyethyl)-derivatives (Beuvink et al.

2007) have been used for normalization of melting

temperatures. Furthermore, as the mature form of the

miRNA is derived by processing of genome encoded

hairpin-shaped precursors, the sequence of interest is

not only present in the mature miRNA but also in the

primary transcript (pri-miRNA) and the precursor

miRNA (pre-miRNA). Finally, miRNAs within the

same family may differ by a single nucleotide only

(reviewed in Benes and Castoldi 2010). Potential

cross-hybridization or cross-sequencing specificity

issues may complicate the discrimination of the

expression of closely related miRNAs (Willenbrock

et al. 2009). In general, similarly to mRNA expres-

sion analysis, miRNA quantification depends on high

quality RNA (Becker et al. 2010).

Thus, in addition to adequate experimental design,

data analysis of miRNA profiling experiments needs

to account for the specific physicochemical nature of

miRNAs, their expression pattern, and the properties

of the analytical tools used such as technical varia-

tion. One particularly important aspect of prepro-

cessing of miRNA profiling data is to apply an

optimal normalization method. The purpose of data

normalization is to minimize the effects of systematic

experimental bias and technical variations. Therefore,

normalization is a prerequisite for getting true

biological changes and allowing biologically mean-

ingful comparisons to be made. Several studies
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pointed out that selection of the data preprocessing

method can have great impact on the resulting data

outcome (Lopez-Romero et al. 2010; Hua et al. 2008;

Pradervand et al. 2009; Risso et al. 2009; Sarkar

et al. 2009) such as identification of differentially

expressed miRNAs and data interpretation. Thus,

inappropriate normalization of the data can lead to

incorrect conclusions. Rigorous normalization of

miRNA data may even be more critical than that of

other RNA functional classes since relatively small

changes in miRNA expression may be biologically

and clinically significant (Peltier and Latham 2008;

Chang et al. 2010).

Various normalization techniques have been devel-

oped in the context of mRNA profiling methods. These

normalization approaches can in part be directly

Table 1 Basic summary of miRNA profiling by RT-qPCR, microarray and small RNA-seq, including corresponding normalization

methods

MicroRNA RT-qPCR MicroRNA microarray Small RNA-seq

Principle PCR amplification Hybridization Sequencing

Throughput Medium to high High Ultra high

Costs Economic Economic Comparatively high

Required amount of RNA 10 ng–700 ng 100 ng–10,000 ng 250 ng–10,000 ng

Data generation 1 day Up to more than 2 days Up to more than 1 week

Limit of detection 10-22 mol 10-15 – 10-18 mol 10-15 mol

Dynamic range 106 103–104 104–107

Data information Assumption based;

dependent on the number

and nature of targeted

transcripts

Assumption based; dependent

on the number and nature of

targeted transcripts

Assumption free,

de novo identification

of transcripts within the

small RNA transcriptome

Data analysis Low expenditure of time Moderate expenditure

of time

Considerable expenditure

of time

Memory capacity

requirements

Low Low High

Preferential field

of application

Relative and absolute

quantification; validation

of other miRNA profiling

approaches

Relative and absolute

quantification of miRNA

regulation, miRNA

biomarker identification,

routine application and

higher throughput with

respect to sample number

compared to small

RNA-seq

De novo identification of

small RNAs,

simultaneous relative

quantification of different

small RNA species,

holistic picture of the

small RNA transcriptome

Common normalization

strategies

Invariant-based (e.g., stable

reference small non-

coding RNAs)

Quantile Scaling to library or sub-

library (e.g., miRNA) sizeLOESS

Variance stabilization Quantile

Plate normalizing factor Invariant-based Trimmed mean of M values

Global mean expression Scaling (e.g., Z-score, mean,

median, 75th percentile)

Personalized logistic

regression model

Each profiling approach has specific advantages and disadvantages which should be weighted depending on the research context.

Aspects of consideration range from economic and time capacity issues to sample availability, required sensitivity and dynamic

range, absolute or relative quantification, as well as the biological hypothesis to be tested. RT-qPCR has superior sensitivity (Chen

et al. 2005) and requires low time expenditure. Microarray-based techniques have the advantage of being relatively cost-effective,

relatively quick from RNA labeling to data generation and simple to use (Pradervand et al. 2010). Ultra high throughput DNA

sequencing allows for the de novo detection and relative quantification of miRNAs, but requires a considerable amount of time for

data generation and data analysis. The dynamic range of sequencing depends on the sequencing depth
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applied to miRNA data as well. However, some

normalization methods have been challenged and

adapted to the specific nature of miRNA profiling

experiments. At present, there is no consensus nor-

malization for either an RT-qPCR, hybridization

microarray, or deep sequencing based miRNA profil-

ing approach.

Data processing of miRNA profiling experiments

Prior to normalization, data preprocessing of miRNA

profiling experiments includes platform and vendor

specific steps, such as e.g., baseline adjustment and

threshold setting for RT-qPCR analyses, background

correction for microarray technology, or filtering for

small RNA-sequence data. Following these very first

steps of raw data preprocessing the experimenter

needs to choose the optimal normalization strategy to

correct for systematic and technical variation enabling

a better estimation of the biological variation.

Normalization approaches for miRNA RT-qPCR

The guidelines for quality control and standardization

of RT-qPCR experiments imply the use of the

optimal normalization method (Bustin 2010, Bustin

et al. 2009). This is not only important for mRNA,

but as well for miRNA quantification. Normalization

of RT-qPCR miRNA profiling data is needed as in

addition to reflecting miRNA levels, signal intensities

may also depend on reverse transcription and PCR

reaction efficiencies. Normalized miRNA RT-qPCR

profiling data is widely used for independent evalu-

ation of the goodness of miRNA microarray normal-

ization strategies (Sarkar et al. 2009; Pradervand

et al. 2009; Sato et al. 2009; Hua et al. 2008) and

validation of microarray or small RNA-seq results

(Git et al. 2010). RT-qPCR is generally accepted as

gold standard for microRNA measurement (Sato

et al. 2009; Hua et al. 2008) though this view has

been recently challenged (Git et al. 2010).

Normalization based on predefined invariant

endogenous controls, reference miRNAs (Peltier

and Latham 2008) or other small non-coding RNAs

such as small nuclear, small nucleolar RNA (sum-

marized in Table 2) or 5 s rRNA, is a commonly used

approach in miRNA RT-qPCR profiling data analysis

(Benes and Castoldi 2010; Pradervand et al. 2009;

Mestdagh et al. 2009). However, the use of small

non-coding RNAs other than miRNAs does not

mirror the physicochemical properties of miRNA

molecules and it has been argued that it is best to

normalize genes with reference genes belonging to

the same RNA class (Vandesompele et al. 2002).

Using non-miRNA reference genes for qPCR nor-

malization is not advisable when the overall abun-

dance of miRNA varies, e.g., in experiments affecting

the miRNA processing machinery, or in comparisons

involving multiple tissues or combinations of tissues

and cell lines (Git et al. 2010). Selection of invariant

miRNAs identified by algorithms specifically devel-

oped for reference gene evaluation and selection e.g.,

based on reference gene ranking and stepwise

elimination of the least stable gene (Vandesompele

et al. 2002), or repeated pairwise correlation and

regression analysis (Pfaffl et al. 2004), or statistical

linear mixed-effects modelling (Andersen et al. 2004)

of the respective experimental data was superior

over small non-coding RNA based normalization

(Mestdagh et al. 2009; Peltier and Latham 2008).

Data driven invariant selection of miRNAs whose

expression pattern is similar to the global mean

expression (Mestdagh et al. 2009; Chang et al. 2010)

has been suggested. Moreover, invariant selection

based on a distinguishable low standard deviation and

high-mean population as suggested by Pradervand

et al. (2009) for miRNA microarray preprocessing is

generally applicable for RT-qPCR profiling experi-

ments as well. Basically, the use of more than one

reference gene increases the accuracy of quantifica-

tion compared to the use of a single reference gene

(Vandesompele et al. 2002; Andersen et al. 2004).

Calculation of a plate normalizing factor for

RT-qPCR based expression profiling platforms, a

scaling method suggested by Wang (2009), uses the

average of eight selected miRNA expression values

from a descending sorted list (Wang 2009). Plate-

normalizing factor normalization corresponds to an

enlargement of percentile normalization and needs

further validation by independent datasets prior to

judge the robustness of this method.

For large scale microRNA expression profiling

studies the mean expression value normalization

outperformed the current normalization strategy that

makes use of stable small RNA controls, such as e.g.,

snoRNAs proposed by manufacturers, in terms of

better reduction of technical variation (Mestdagh

et al. 2009). However, the selection of a limited
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Table 2 MicroRNAs, small nuclear and small nucleolar RNAs suggested as stable reference genes for normalization of microRNA

expression analyses

MicroRNA suggested as stable reference gene

in human and mouse samples, respectively

Studies comparing different tissues or cell lines

which suggest the respective microRNA

hsa-miR-103 Liang et al. (2007); Peltier and Latham (2008);

Bargaje et al. (2010)

hsa-miR-105 Bargaje et al. (2010)

hsa-miR-106a Peltier and Latham (2008)

hsa-miR-106b Liang et al. (2007)

hsa-miR-107 Bargaje et al. (2010)

hsa-miR-139 Bargaje et al. (2010)

hsa-miR-140 Liang et al. (2007)

hsa-miR-148a Bargaje et al. (2010)

hsa-miR-152N Liang et al. (2007)

hsa-miR-15b Liang et al. (2007)

hsa-miR-16 Liang et al. (2007); Peltier and Latham (2008);

Applied Biosystemsa

hsa-miR-17-5p Peltier and Latham (2008)

hsa-miR-183 Bargaje et al. (2010)

hsa-miR-18a Bargaje et al. (2010)

hsa-miR-191 Bargaje et al. (2010); Peltier and Latham (2008)

hsa-miR-213 Bargaje et al. (2010)

hsa-miR-214 Bargaje et al. (2010)

hsa-miR-23a Bargaje et al. (2010)

hsa-miR-23b Bargaje et al. (2010)

hsa-miR-24 Peltier and Latham (2008)

hsa-miR-25 Peltier and Latham (2008)

hsa-miR-26a Bargaje et al. (2010)

hsa-miR-26b Bargaje et al. (2010); Applied Biosystems

hsa-miR-29a Liang et al. (2007)

hsa-miR-29aN Liang et al. (2007)

hsa-miR-29bN Liang et al. (2007)

hsa-miR-30b Bargaje et al. (2010)

hsa-miR-30d Bargaje et al. (2010)

hsa-miR-30e Liang et al. (2007)

hsa-miR-324-3p Liang et al. (2007)

hsa-miR-374 Applied Biosystems

0hsa-miR-423 Liang et al. (2007)

hsa-miR-423 Applied Biosystemsa

hsa-miR-92 Liang et al. (2007); Bargaje et al. (2010);

Applied Biosystemsa

hsa-miR-92N Liang et al. (2007); Applied Biosystemsa

hsa-miR-93 Liang et al. (2007); Bargaje et al. (2010);

Peltier and Latham (2008)

hsa-miR-99a Peltier and Latham (2008)

hsa-let-7a Peltier and Latham (2008)
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number of miRNAs or small RNA controls that

resemble the mean expression value can be success-

fully used for normalization in follow-up studies

where only a limited number of miRNA molecules

are profiled to allow a more accurate assessment

of relevant biological variation from a miRNA

RT-qPCR profiling experiment (Mestdagh et al.

2009; Chang et al. 2010).

Normalization methods for miRNA microarray

experiments

The first miRNA microarray experiments were

accompanied by either normalization using scaling

to the median or even no normalization of miRNA

data by applying background signal subtraction only

(summarized in Hua et al. 2008 and Pradervand et al.

2009). Only recently, comparative studies on the

relative performance of different normalization

methods within a miRNA microarray platform have

emphasized the need for evaluating and identifying

appropriate normalization methods (Rao et al. 2008;

Pradervand et al. 2009; Hua et al. 2008). Signal

intensities of miRNA microarray experiments may be

biased by differences in sample RNA preparation, dye

labelling, hybridization and washing efficiency, pecu-

liarities of print tip, spatial or hybridization specific

effects or pre-amplification of extracted RNA. Thus,

several different normalization approaches have been

applied to decrease the introduced technical variance

and to minimize over all variance. However, up to

now there is no clear consensus about their relative

performances (Pradervand et al. 2009).

MiRNA microarrays can be single-color or dual-

color systems calling for different normalization

approaches. Single-colour miRNA microarrays have

been predominately used, while dual-colour hybrid-

ization systems are less frequently prevalent (Rao

et al. 2008). Both can be observed with respect to

intra-array normalization for the correction of dye

effects and inter-array approaches for the balance of

the distribution differences among experiments

(Chiogna et al. 2009).

Certain transformation or scaling based methodol-

ogies currently used for large-scale genome arrays

have been adapted to and modified for miRNA arrays.

Of these methods e.g., quantile (Bolstad et al. 2003)

and LOESS (Locally Weighted Regression and

Smooting Scatterplots) (reviewed in Steinhoff and

Vingron 2006) normalization as well as scaling (e.g.,

Hua et al. 2008; Lopez-Romero et al. 2010) are based

on two assumptions, (i) only a small portion of spots

is differentially expressed, and (ii) differentially

expressed spots are homogeneously distributed with

respect to both, over- and under-expressed miRNAs

(Risso et al. 2009). However, these assumptions could

fail for miRNA platforms as they are printed with a

relatively small number of selected sequences (Risso

et al. 2009; Hua et al. 2008). Moreover, the number of

expressed miRs in a given sample tends to be small

(Sarkar et al. 2009). Hence, the proportion of those

miRNAs that are differentially expressed (among

those expressed at all) is much larger than that

observed when profiling global mRNA expression

(Sarkar et al. 2009). Thus, one needs to verify

whether these assumptions hold true for the respective

Table 2 continued

Small nuclear and small nucleolar RNAs suggested

as stable reference gene in human and mouse, respectively

Comparison across tissues and cell lines suggesting

the respective small nuclear or small nucleolar RNA

RNU44 Applied Biosystemsa

RNU48 Applied Biosystemsa

U47 Applied Biosystemsa

RNU6B Applied Biosystemsa

snoRNA202 Applied Biosystemsa

snoRNA234 Applied Biosystemsa

Reference RNAs identified by studies comparing different human or mouse tissues or cell lines, respectively, are listed. However,

careful selection and analysis of the suitability of the respective microRNAs, small nuclear or small nucleolar RNAs as stable

reference genes can strongly be recommended for each individual experimental setup
a Applied biosystems: endogenous controls for real-time quantification of miRNA using TaqMan microRNA assays. (ed. application

note)
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datasets. If necessary, one should choose e.g., a

normalization method for which most algorithms

make only the minimal assumption that there exists a

set of miRNAs whose expression is constant like

invariant-based normalization (Pradervand et al.

2009). Alternatively, a normalization method free of

assumption (ii) e.g., the majority of algorithms for

variance stabilization normalization (Huber et al.

2002) or even an assumption free approach (Xiong

et al. 2008) can be utilized instead.

Quantile normalization is a transformation method

originally proposed by Bolstad et al. (2003) for

oligonucleotide arrays. It is now widely used for one-

color miRNA microarrays as well and was confirmed

as one of the most robust methods (Hua et al. 2008;

Pradervand et al. 2009; Rao et al. 2008; Bargaje et al.

2010). Quantile normalization is an inter-array

approach and equalizes the distributions of expres-

sion intensities across arrays. Thus, quantile normal-

ization assumes that the overall distribution of signal

intensity does not change. While this assumption

likely holds true for the comparison of p53 over-

expressing versus control cells (Pradervand et al.

2009) or even for brain–heart comparisons according

to Rao et al. (2008) where only 5% of miRNAs were

differentially expressed, it may not hold true in case

large numbers of miRNAs are differentially

expressed in only one direction. Such cases may be

e.g., knockouts of essential miRNA biogenesis pro-

teins which lead to a dramatic reduction in steady

state miRNA levels by blocking production of mature

miRNAs (Rao et al. 2008).

Quantile normalization might be applicable to

dual-labeled array data if red and green channel are

treated as independent two single-labeled array data.

On the contrary, if two single-labeled array data are

considered as a dual-labeled data (Do and Choi 2006)

a LOESS normalization may be used.

LOESS normalizations and its variants (Rao et al.

2008; Hua et al. 2008; Risso et al. 2009) are widely

preferred transformation based methods which use

local regression via locally weighted scatter plot

smooth. As outlier values can strongly influence the

local regression curve it is advisable to introduce

weights that penalize outliers. Local regression via

LOESS uses a quadratic polynomial weighted regres-

sion function with Tukey’s biweight function

(reviewed in Steinhoff and Vingron 2006) of the

log ratios Cy3/Cy5 on overall spot intensity Cy3*Cy5

(the LOESS smoother for the so called MA-plots)

(Risso et al. 2009).

Hua et al. (2008) demonstrated that for two-

channel technology print-tip LOESS performed most

consistent of all the 15 normalization methods which

they compared illustrating that miRNA microarrays

manufactured by print technology have, in addition,

systematic spatial bias with respect to each block.

Print-tip LOESS normalizes each M value by sub-

tracting the corresponding value on the tip-group

LOESS curve from the raw data (Hua et al. 2008).

However, in a similar study, Sarkar et al. (2009) did

not find significant differences between print-tip

LOESS and other normalizations. Risso et al.

(2009) proposed the non-parametric LOESSM nor-

malization which scales the expression data on the

global median expression rather than on zero. This

modification relaxes the assumption of symmetry

among up- and down-regulated genes (Risso et al.

2009) and it was shown that LOESSM, in case of

absence of channel-effect, outperformed other nor-

malization methods (Risso et al. 2009). Combined

with Generalized Procrustes Analysis (GPA)—an

assumption free inter-array normalization (Xiong

et al. 2008)—results were even more improved.

In essence, LOESS normalization and its modified

variants demonstrate the adaptability of this approach.

In addition, LOESS normalizations emerged as being

robust in the reduction of non-biological bias, and it

has been shown that the combination of LOESS

and GPA is able to outperform other individual

techniques.

Variance stabilization normalization (VSN), an

inter-array transformation method, has frequently been

applied to microRNA data (Sarkar et al. 2009;

Pradervand et al. 2009). VSN was developed for

mRNA arrays and is based on a parameterized arsinh

transformation instead of a logarithmic transformation

that calibrates sample-to-sample variations and ren-

ders variance approximately independent of the mean

intensity (Huber et al. 2002). Spike-in VSN normal-

ization as described restricts the model fit to spike-in

spots (Sarkar et al. 2009). Normalization intensities for

all miRNAs are then obtained by applying the resulting

transformation to all spots of interest on the array.

Thus, reliable results can only be obtained for inten-

sities within the range covered by the spike-in used.

Moreover, the use of internal spike-ins can provide a

reasonable metric for assessing the performance of
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different normalization schemes (Sarkar et al. 2009) or

allow for absolute quantification of miRNA expression

by microarrays (Bissels et al. 2009). Pradervand et al.

(2009) developed a linear regression method to select

non-changing miRNAs (invariants) and used these

invariants to calculate VSN parameter (VSN-INV).

The approach for selecting invariant miRNAs is

particularly appropriate, if a significant fraction is

expected to be differentially expressed since VSN used

with default parameter settings assumes that most

genes are not differentially expressed, whereas the

invariant-based regression only assumes that a sub-

population of expressed genes does not change

(Pradervand et al. 2009). Pradervand et al. (2009)

drew the conclusion that VSN-INV and quantile

normalization were the most robust normalization

methods compared to VSN with default parameter or

scaling. In general, one should note that VSN strongly

affects the distribution of the large fraction of miRNAs

whose expression is near or at background, resulting in

the large increase of variability for those microRNAs

(Pradervand et al. 2009).

Invariant-based methods, or positive control nor-

malization using the signal of predefined and stably

expressed housekeeping (reference) genes, such as

small non-coding RNA, has been used for one- or two-

channel miRNA microarray profiling as one of the

first approaches to normalize mRNA gene microarray

data (summarized in Hua et al. 2008 and Pradervand

et al. 2009). In these applications, non differentially

expressed genes are selected which occur in the same

rank order on each chip (rank invariants). These latter,

however, could imply truly differentially expressed

candidates as invariant if they did not change rank

position. Such a case is conceivable for miRNA

microarrays as they have features ranging only in the

hundreds. Thus, a miRNA may have a large difference

in intensity without appreciably altering its rank order

(Pradervand et al. 2009). Most commercially avail-

able miRNA microarrays do not have controls for

endogenous RNAs that have been shown to be

robustly invariant between various different tissue

samples or conditions (Rao et al. 2008). To date, there

is no consensus on the existence and reliability of

reference gene miRNAs. The selection of reference

genes to normalize miRNA levels depends on bioin-

formatic analysis of the respective data (as shown for

mRNA Vandesompele et al. 2002; Andersen et al.

2004) and is otherwise still rather empirical due to the

lack of robust reference miRNAs (Benes and Castoldi

2010), although a universal reference miRNA reagent

set has been proposed (Sarkar et al. 2009).

Moreover, inter-platform and inter-laboratory

meta-analyses identified constitutively expressed

miRNAs across tissues (Bargaje et al. 2010). A mean

of expression levels of a set of 16 microRNAs

showing minimum variability was reasonably suc-

cessful as a normalization factor for comparing

datasets generated by the same platforms. However,

normalization using constitutive microRNAs was

ineffective when comparing bead-based and micro-

array-based datasets. In these cases quantile and

Z-score normalization were both successful in trans-

forming the data sets generating comparable means

and scale (Bargaje et al. 2010).

By applying scaling methods like Z-score (Bargaje

et al. 2010), mean, median (reviewed in Hua et al.

2008), or 75th percentile (Lopez-Romero et al. 2010),

one assumes that different sets of intensities differ by

a constant global factor. These are only correct for

‘global multiplicative effects’ (reviewed in Steinhoff

and Vingron 2006), since all raw intensity values are

multiplied with one common (i.e., global) scaling

factor. The Z-score provides a mean-centered rank

for the expression level in units of standard deviation.

Z-scores thus provide an index of the expression level

of the miRNA with respect to the cellular pool

of miRNA. Unlike other normalization methods

Z-scores are not influenced by the addition of new

datasets allowing flexible cross-platform validation of

miRNA microarray profiling experiments (Bargaje

et al. 2010).

Recently, Wang et al. (2010) suggested the pre-

evaluation of the overall miRNA expression pattern

by a panel of miRNAs using RT-qPCR assays to build

a logistic regression model based on these results. The

personalized logistic regression model based on 29

miRNAs efficiently calibrated the variance across

arrays and improved miRNA microarray discovery

accuracy compared with different scaling methods,

LOESS or quantile normalization (Wang et al. 2010).

However, selection of the miRNAs included in pre-

evaluations seems rather empirical. This personalized

logistic regression model approach needs to be

evaluated by further independent studies to estimate

robustness of this normalization method.
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Normalization techniques for small RNA-seq data

An advantage of RNA-seq is that it can capture

transcriptome dynamics without sophisticated nor-

malization of data sets (Wang et al. 2009). This might

hold true for direct RNA sequencing approaches

(Ozsolak et al. 2009). At present, however, standard

normalization methods for non-direct RNA-seq are

not sufficient to remove RNA composition bias

because relying on library size (Robinson and

Oshlack 2010). Systematic technical bias such as

RNA ligase preferences, reverse transcription reac-

tion, and PCR based amplification during library

preparation are likely to contribute to bias in RNA-

seq experiments (Linsen et al. 2009).

Small RNA-seq approaches relying on cDNA

library-construction are strongly biased towards cer-

tain small RNAs (Linsen et al. 2009) largely inde-

pendent of the sequencing platform but strongly

determined by the method used for small RNA library

preparation. However, a satisfactory correction model

has not yet been identified (Linsen et al. 2009). As

these biases are systematic and highly reproducible

(Marioni et al. 2008), RNA-seq may be suited for

determining relative expression differences between

samples (Linsen et al. 2009).

However, technical sample to sample variations

may be introduced before and in follow-up steps of

library preparation. Nevertheless, several small RNA-

seq studies do not report on data normalization at all.

Following microarray technology, quantile normali-

zation of small RNA-seq data has been utilized to

remove systematic bias between samples (Pradervand

et al. 2010) and other normalization strategies

established for microarrays could theoretically be

applied as well.

At present, scaling to library size is the standard

procedure to normalize small RNA-seq experiments.

Using this method reads are divided by the total

number of small RNA-seq reads aligning to the

genome (Marques et al. 2010). Alternatively, the

relative frequency of miRNAs is determined by

normalizing miRNA reads against the total count of

18–22 nucleotide reads or total number of reads that

map to known miRNAs, respectively (Zhang et al.

2009; Linsen et al. 2009; Git et al. 2010). Normalized

data is then reported as reads (or transcripts) per

million for each respective library. However, the

problem underlying the analysis of RNA-seq data is

that while the total number of reads for a library is

known, the composition of the RNA population is

unknown. Thus, library size scaling might have its

limitations for datasets with markedly different RNA

composition (Robinson and Oshlack 2010; Marques

et al. 2010).

Only recently, trimmed mean of M values (TMM)

normalization has been suggested to remove RNA

composition bias as the number of reads for a gene is

dependent not only on the gene’s expression level and

length, but also on the population of RNA from

which it originates (Robinson and Oshlack 2010).

RNA population differences like abundance or

diversity of different small RNA species lead to a

different distribution of available reads per gene and

may skrew data. Therefore, TMM equates the overall

expression levels of genes between samples by

estimation of relative RNA production levels or scale

factors, respectively, that can be incorporated into

currently used statistical methods for differential

expression analysis without modification of the

sampling properties of the data itself. Similar to

assumptions made in microarray normalization pro-

cedures such as LOESS or quantile normalization,

TMM assumes that the majority of genes common to

both samples, are not differentially expressed. More-

over, simulation studies indicate that the TMM

method is robust against deviations to this assumption

up to about 30% of differential expression in one

direction (Robinson and Oshlack 2010). It can be

expected that this assumption will not be violated for

most small RNA-seq applications. Thus, independent

utilization and evaluation of TMM normalization can

be awaited in the near future.

Conclusions and perspectives

Introducing normalization strategies to raw expres-

sion data is crucial for the reduction of false positives

or negative data points. In many ways mRNA and

miRNA experiments face similar influencing factors

introducing bias. However, the nature of miRNA

profiling data which mirrors the distinct biogenesis

and physicochemical nature of miRNAs can chal-

lenge conventional normalization methods originally

developed for mRNA expression data. Thus, several

normalization methods have been adapted or pro-

posed for miRNA expression profiling analyses.
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Biological or experimental setups which are

accompanied by significant global changes in miRNA

amount or composition may not meet certain

assumptions on data distribution, e.g., if miRNA

biogenesis pathways are affected or very distinct

tissues are compared. Thus, non-parametric or

assumption free transformation methods and specific

scaling approaches emerge as robust, frequently used

methods in addition to parametric and linear normal-

ization techniques. The combination of two normal-

ization methods, that in each case handle different

aspects of microarray data has been shown to be able

to outperform other individual techniques in some

cases (Risso et al. 2009; Pradervand et al. 2009). It is

unlikely that a set of truly universal reference

miRNAs will be identified, but similar to mRNA a

subset of promising candidates will further emerge.

The importance of validating suitable reference genes

in a sample-specific context remains.

When novel miRNA discovery is not of priority,

assumption based technologies can still be the

method of choice as RT-qPCR and hybridization

based microarrays still surpass RNA-seq technology

with respect to absolute RNA expression quantifica-

tion. RNA-seq was shown to be strongly biased

towards certain small RNAs. In contrary to micro-

arrays, these shortcomings might not be overcome

with the use of synthetic spike-in controls until a

suitable correction model for sequence specific biases

has been developed. Generally, evaluation of nor-

malization methods is most in its infancy for RNA-

seq, but has both a great potential and a challenging

demand to be further optimized.

In conclusion, there are many distinct ways to

normalize miRNA expression profiling datasets ulti-

mately leading to uncovering a layer of post-

transcriptional regulatory complexity. Individual

selection of the optimal normalization method,

dependent on the characteristics of the dataset, can

be strongly recommended. Standard normalization

methods may carefully need to be scrutinized in

specific biological contexts. It still remains unclear

which method uniformly outperforms the others

under different experimental setup, if there is any

single approach fulfilling these demands at all.

Evaluation of the goodness of a normalization

method remains a challenge on its own. The reduc-

tion in the coefficient of variation as well as the

concordance with good positive controls or inter-

platform as well as inter-technology validations,

respectively, measured as consistency of p values or

fold-changes, may serve as evaluation criteria.
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