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SUMMARY

We discuss the identification of genes that are associated with an outcome in RNA sequencing and other

sequence-based comparative genomic experiments. RNA-sequencing data take the form of counts, so

models based on the Gaussian distribution are unsuitable. Moreover, normalization is challenging because

different sequencing experiments may generate quite different total numbers of reads. To overcome these

difficulties, we use a log-linear model with a new approach to normalization. We derive a novel procedure

to estimate the false discovery rate (FDR). Our method can be applied to data with quantitative, two-class,

or multiple-class outcomes, and the computation is fast even for large data sets. We study the accuracy

of our approaches for significance calculation and FDR estimation, and we demonstrate that our method

has potential advantages over existing methods that are based on a Poisson or negative binomial model.

In summary, this work provides a pipeline for the significance analysis of sequencing data.

Keywords: Differential expression; FDR; Overdispersion; Poisson log-linear model; RNA-Seq; Score statistic.

1. INTRODUCTION

In the past 15 years, it has become well understood that disease states and biological conditions are

characterized by distinct patterns of gene expression (see for instance DeRisi and others, 1997; Spellman

and others, 1998; Eisen and Brown, 1999; Brown and Botstein, 1999). During most of that time, the
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J. LI AND OTHERS

microarray has been the primary tool for assessing gene expression. In recent years, a new approach called

RNA sequencing (RNA-Seq) has been developed (see e.g. Mortazavi and others, 2008; Nagalakshmi and

others, 2008; Wang and others, 2009; Wilhelm and Landry, 2009).

Figure 1 shows the protocol of a typical RNA-Seq experiment. Messenger RNAs (mRNAs) from a bi-

ological sample are randomly fragmented into small pieces, which are then reverse transcribed into com-

plementary DNA (cDNA) using random primers. This cDNA library is then amplified using PCR and se-

quenced by a sequencing machine, resulting in millions of short sequence read-outs called “reads.” These

reads can then be mapped to the genome or transcriptome or used for de novo assembly (not illustrated in

Figure 1). The number of reads mapped to a particular region of interest provides a measure of expression

of that region. In this paper, we will for simplicity refer to all such regions of interest as “genes,” though in

practice other regions, such as exons, may be of interest. RNA-Seq overcomes some major limitations of

the microarray by discovering de novo transcripts efficiently (since no reference genome is used to gener-

ate reads) and by avoiding problems associated with cross hybridization (since no hybridization is used).

For these reasons, it is expected that the technique’s popularity will continue to increase (Shendure, 2008).

RNA-Seq, like microarrays, is often used for comparative experiments, where expression measure-

ments are collected for multiple samples, each of which is associated with an “outcome.” This outcome

often takes 1 of 3 forms: (i) two class, such as tumor versus normal, (ii) multiple class, such as tumor type

A versus tumor type B versus tumor type C, or (iii) quantitative, such as blood pressure. In a comparative

experiment, one is typically interested in finding genes that are “associated” with the outcome—genes

that are overexpressed in one or several classes or genes that exhibit increased expression as the quanti-

tative outcome increases. We will refer to such genes as “differentially expressed.” Suppose comparative

experiments are done on n experiments and each experiment measures expression levels of m genes, the

data can be written as an n × m matrix N for which Ni j is the measure of expression for Gene j in Ex-

periment i . For RNA-Seq data, Ni j is a nonnegative integer, that is, the number of reads mapped to this

gene; for microarray data, Ni j is a real number. We also denote the outcome measurement associated with

Experiment i by yi , i = 1, . . . , n.

Many proposals have been made for identifying differentially expressed genes using microarray data

(see e.g. Dudoit and others, 2002; Kerr and others, 2000; Newton and others, 2001; Tusher and others,

Fig. 1. Pipeline for a typical RNA-Seq experiment. Firstly, mRNA is randomly fragmented into small pieces. These

small pieces are then reverse transcribed into a cDNA library by random priming. Then this cDNA library is amplified

via PCR and sequenced by a sequencing machine, producing a list of reads. These reads are mapped to a known

transcriptome which consists of m genes, and the number of reads mapping to each gene is used as a measure of gene

expression. Thus, the results of an RNA-Seq experiment are summarized by a vector of m counts.
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Normalization, testing, and FDR estimation for RNA-sequencing data

2001). However, these approaches are not directly applicable to RNA-Seq data due to intrinsic differ-

ences between the technologies. The RNA-Seq data matrix is composed of nonnegative integers instead

of real numbers and so proposals based on a Gaussian assumption do not directly apply. Secondly, each

RNA-Seq experiment generates a different total number of reads, so count Ni j depends not only on the

expression of Gene j but also on the total number of reads generated by Experiment i (
∑m

j=1 Ni j ). For

example, if no genes are differentially expressed between Experiments 1 and 2, but
∑m

j=1 N1 j = 1 × 106

and
∑m

j=1 N2 j = 2 × 106, then it is likely that N2 j ≃ 2N1 j , for any j = 1, . . . , m. In this case, we

say that the “sequencing depth” of Experiment 2 is twice that of Experiment 1. The sequencing depth is a

measure of the relative number of reads generated by an experiment. Counts from each experiment should

be “normalized” by the sequencing depth of that experiment before any comparison is made between ex-

periments. However, accurate estimation of the sequencing depth is often not trivial (reviewed in Section

2.1). Given sequencing depth estimates, the normalization is often done implicitly (i.e. including the se-

quencing depth as a term in the model) rather than explicitly (i.e. scaling each count by the corresponding

sequencing depth and using the scaled data for detecting differential expression).

In this paper, we develop a method for detecting differentially expressed genes on the basis of RNA-

Seq data. Our proposal is based on a Poisson log-linear model. Unlike existing methods, our method can

be used not only in the case of a two-class outcome but also for a multiple-class or quantitative outcome.

A new type of normalization is performed in our method. We also develop a new permutation plug-

in approach for estimating the false discovery rate (FDR), and we demonstrate that the resulting FDR

estimates are more accurate than past methods from the literature.

The rest of this paper is organized as follows. In Section 2, we review existing work. In Section

3, we present a log-linear model for sequencing data and an associated score statistic for quantifying

differential expression. In Section 4, we suggest a strategy for FDR estimation. We study the performance

of our proposed method in a simulation study in Sections 5 (Poisson data) and 6 (negative binomial data).

Section 7 contains an application to two real data sets, and Section 8 contains the Discussion.

2. A REVIEW OF EXISTING WORK

2.1 Normalization for sequence data

As mentioned previously, RNA-Seq data must be normalized by the sequencing depth before any com-

parison of the counts between experiments can be made. We let di denote the sequencing depth for Exper-

iment i ; this is a measure of the number of reads generated by Experiment i . It seems natural to estimate

di by
∑m

j=1 Ni j , the total number of reads generated by Experiment i . We will refer to this approach as

“total-count normalization.” However, total-count normalization can lead to very poor results, as one can

see from a toy example with two experiments. Suppose that each experiment measures the expression

of 101 genes. Suppose also that N1 j = 100 and N2 j = 80 for j = 1, . . . , 100 and that N1 j = 0 and

N2 j = 2000 for j = 101. In this case,
∑m

j=1 N1 j =
∑m

j=1 N2 j =10 000, so total-count normalization

gives d̂1 = d̂2. This suggests that counts from the two experiments are directly comparable, and all genes

are differentially expressed. However, it seems much safer to believe that only Gene 101 is differentially

expressed and that a better estimate of sequencing depth is d̂1 = 1.25d̂2.

Several past proposals have sought to overcome the problems associated with total-count normaliza-

tion. Trimmed mean of M values (TMM) normalization (Robinson and Oshlack, 2010) estimates sequenc-

ing depth after excluding genes for which the ratio of counts between a pair of experiments is too extreme

or for which the average expression is too extreme. Quantile normalization (Bullard and others, 2010)

estimates the sequencing depth of an experiment by the upper quantile of its counts. In DESeq (Anders

and Huber, 2010), the sequencing depth is estimated by the count of the gene with the median count ratio

across all genes. These three methods give d̂1 = 1.25d̂2 in the above example.
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J. LI AND OTHERS

2.2 Identification of differentially expressed genes from RNA-Seq data

A number of proposals have been made for identifying differentially expressed genes from RNA-Seq data

in the case of a two-class outcome. With the exception of baySeq (Hardcastle and Kelly, 2010), these

methods yield a p-value for each gene to indicate the extent to which it is differentially expressed. Bloom

and others (2009) apply a t-test to the total-count normalized data. ’t Hoen and others (2008) take a

square-root transformation for the total-count normalized data to stabilize the variance and then apply a

t-test. A number of methods based on a Poisson distribution have also been developed. Marioni and others

(2008) propose a Poisson log-linear model and use the classical likelihood ratio test (LRT) to calculate the

p-value. Here, the total-count normalization is used implicitly. Bullard and others (2010) take a similar

approach but use quantile normalization rather than total-count normalization. In DEGseq proposed by

Wang and others (2010), it is assumed that log ratios of the counts have a normal distribution and a z-score

is calculated. Log-linear models based on a negative binomial distribution have also been developed in

order to deal with overdispersion in some RNA-Seq data sets. Robinson and others (2010) adapt methods

previously developed for SAGE data (Robinson and Smyth, 2007, 2008; Baggerly and others, 2004; Lu

and others, 2005) to RNA-Seq data. Their method, edgeR, can use either total-count normalization or

TMM normalization to estimate the sequencing depth, and it estimates the dispersion of the negative

binomial distribution from replicates in each class. The dispersion parameters can be estimated for each

gene or can be common to all genes, making this method quite flexible. Another method, DESeq by

Anders and Huber (2010), also uses a negative binomial distribution and uses local regression to estimate

the relationship between the variance and the mean.

2.3 Corrections for multiple comparisons

Due to the large number of genes in a typical RNA-Seq data set, correction for multiple comparisons is

very important. The FDR (Benjamini and Hochberg, 1995) provides an attractive measure of control for

multiple testing in genomic settings. The true FDR is unknown on real data sets; one can estimate it using

the procedure of Benjamini and Hochberg (1995), which requires the availability of accurate p-values.

Past papers on RNA-Seq data have used the asymptotic distributions of the test statistics in order to obtain

p-values; we will refer to these as “theoretical p-values.” Unfortunately, if the sample size is small or if

the model assumed for the data does not hold, these theoretical p-values can be quite wrong, leading to

inaccurate estimates of FDR.

A solution is a permutation plug-in procedure (Tusher and others, 2001; Storey, 2002; Storey and

Tibshirani, 2003, 2002; Storey, 2003), which is often used in the analysis of microarray data. It uses

permutations to generate the null distribution of the test statistics and then derives p-values from this

data-specific null distribution. We will show that it is not straightforward to adapt this simple approach to

sequencing data and that doing so in a naive way can lead to incorrect results.

3. POISSON LOG-LINEAR MODEL, ESTIMATION, AND TESTING

3.1 A log-linear model for sequencing data

We again let N denote an n ×m data matrix, where Ni j is the count for Gene j in Experiment i . Let Ni · =
∑m

j=1 Ni j , N· j =
∑n

i=1 Ni j , N·· =
∑n

i=1

∑m
j=1 Ni j . We assume that Ni j ∼ Poisson(μi j ), where the

form of μi j is given by a log-linear model depending on the type of outcome. In the case of a quantitative

outcome yi ∈ R which we assume to be centered, (
∑n

i=1 yi = 0), μi j takes the form

log μi j = log di + log β j + γ j yi . (3.1)
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Normalization, testing, and FDR estimation for RNA-sequencing data

Here, di is the sequencing depth for Experiment i , and we assume that
∑n

i=1 di = 1, without loss of

generality. β j captures the expression level of Gene j , and γ j is the slope for the association of Gene j

with the outcome. γ j = 0 means that Gene j is unrelated to the outcome. A gene is associated with the

outcome if γ j �= 0.

In the case of a two-class or multiple-class outcome, let K denote the number of classes, yi ∈

{1, . . . , K } the class label for Experiment i , and Ck the indices of the experiments in class k, that is,

Ck = {i : yi = k}. Then, μi j takes the form

log μi j = log di + log β j +

K
∑

k=1

γ jk I(i∈Ck ). (3.2)

Then, γ j1 = . . . = γ j K = 0 indicates that the expression of Gene j is not associated with the class labels.

When K = 2, this is equivalent to past proposals (Marioni and others, 2008; Bullard and others, 2010;

Witten and others, 2010; Wang and others, 2010).

3.2 A new method for data normalization

We fit the model via the following two-step procedure:

Step 1. We fit the model under the null hypothesis that no gene is associated with the outcome:

log μi j = log di + log β j . (3.3)

Let the fit from this model be μ̂i j = N
(0)
i j .

Step 2. We fit an additional term to the model in order to accommodate differential expression:

log μi j = log N
(0)
i j + γ j yi (3.4)

in the case of a quantitative outcome and

log μi j = log N
(0)
i j +

K
∑

k=1

γ jk I(i∈Ck ) (3.5)

in the case of a two-class or multiple-class outcome.

We now consider the problem of fitting the model in Step 1. Step 2 will be considered in Section 3.3.

We fit β j by maximum likelihood: β̂ j = N· j . We could also estimate di by maximum likelihood, resulting

in d̂i = Ni ·
N··

, which is exactly the total-count normalization approach previously shown to be problematic.

Instead, we seek a set S of genes that are not differentially expressed and use the estimate

d̂i =

∑

j∈S Ni j
∑

j∈S N· j

. (3.6)

Note that total-count normalization is a special case of the above estimate when S is taken to be the full

set of genes. We employ a Poisson goodness-of-fit statistic to estimate which genes belong to S. Given

the estimate d̂i as well as the maximum likelihood estimate β̂ j = N· j , the expected value of Ni j is d̂i N· j .

So the goodness-of-fit statistic is

GOF j =

n
∑

i=1

(Ni j − d̂i N· j )
2

d̂i N· j

. (3.7)

527

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

s
ta

tis
tic

s
/a

rtic
le

/1
3
/3

/5
2
3
/2

4
8
0
1
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



J. LI AND OTHERS

We set S to be the genes whose GOF j values are in the (ε, 1 − ε) quantile of all GOF j values, where

ε ∈ (0, 1
2
) is a fixed constant. Using this S in (3.6) results in an updated d̂i , which in turn can be used

in (3.7). We use the maximum likelihood estimate for di as an initial estimate and then iterate to get the

final estimate. The estimate of di converges quickly: In our simulation study, five iterations suffice. The

choice of ε will affect the performance of our method, since a larger ε excludes more genes, leading to an

estimate with less bias, but more variance. To obtain the results reported in this paper, we used ε = 0.25.

That is, we used half of the genes to estimate the sequencing depth. In Section 5, we show that this yields

accurate results relative to existing methods for normalizing the experiments. Given d̂i and β̂ j , N
(0)
i j is

simply their product.

3.3 Score statistics for hypothesis testing

In Step 2 of the model-fitting procedure described in Section 3.2, we fit an additional term to the log-linear

model (3.3) that measures the extent to which each gene is associated with the outcome (3.4, 3.5). While

we are somewhat interested in the resulting parameter estimate, our main interest lies in determining

whether the estimate is nonzero. A number of tools are available for hypothesis testing in log-linear

models (see e.g. Agresti, 2002); these include the likelihood ratio statistic, the Wald statistic, and the

score statistic. In this paper, we propose the use of a score statistic, as it does not require estimation of

the parameter being tested. In the interest of brevity, we will refer to genes that are not truly differentially

expressed as “null” genes and will refer to differentially expressed genes as “non-null.”

We begin with the case of a quantitative outcome. In (3.4), given N
(0)
i j , the log likelihood is given by

L =
∑n

i=1

∑m
j=1

[

Ni j (log N
(0)
i j + γ j yi ) − N

(0)
i j exp(γ j yi )

]

, and so the score statistic for Gene j is

S j =

(

∂L
∂γ j

|γ j =0

)2

−E ∂2 L

∂γ 2
j

|γ j =0

=

[

∑n
i=1 yi (Ni j − N

(0)
i j )

]2

∑n
i=1 y2

i N
(0)
i j

. (3.8)

For a two-class or multiple-class outcome, given N
(0)
i j in (3.5), the log likelihood is L =

∑n
i=1

∑m
j=1

[

Ni j (log N
(0)
i j +

∑K
k=1 γ jk I(i∈Ck )) − N

(0)
i j exp(

∑K
k=1 γ jk I(i∈Ck ))

]

and so the score statistic

for Gene j is given as

S j =

K
∑

k=1

(

∂L
∂γ jk

|γ jk=0

)2

−E ∂2 L

∂γ 2
jk

|γ jk=0

=

K
∑

k=1

[

∑

i∈Ck
(Ni j − N

(0)
i j )

]2

∑

i∈Ck
N

(0)
i j

. (3.9)

These score statistics are unsigned. In the case of a quantitative or two-class outcome, a signed score

statistic can be obtained (see Supplementary Material in Section 1, available at Biostatistics online).

We have illustrated by simulation (Supplementary Material in Section 8, available at Biostatistics

online) that when the Poisson log-linear model holds exactly, the empirical sampling distribution of the

above score statistic for a null gene seems to closely follow the chi-squared law (with appropriate degrees

of freedom).

4. ESTIMATION OF THE FDR

We now consider the standard permutation plug-in estimate for FDR (see e.g. Tusher and others, 2001;

Storey, 2002; Storey and Tibshirani, 2003), and we show that this approach must be modified in order to

yield accurate results for the Poisson model.
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Normalization, testing, and FDR estimation for RNA-sequencing data

The usual permutation plug-in estimate for FDR is as follows:

1. Compute (unsigned) statistics S1, S2, . . . , Sm based on the data.

2. Permute the n outcome values B times. In the bth permutation, compute statistics Sb
1 , Sb

2 , . . . , Sb
m

based on the permuted data.

3. For a range of values of a cut-point C for the statistic, let

R̂ =
∑m

j=1 I(S j >C), V̂ = π̂0

B

∑m
j=1

∑B
b=1 I(Sb

j >C).

4. Estimate the FDR at a cut-point C by ˆFDRC = V̂ /R̂.

In Step 3 above, π̂0 is an estimate of π0, the true proportion of null genes in the population.

The estimation is typically made by comparing the numbers of observed and permutation statistics

that fall in the smaller (nonsignificant) range of values. In particular, the usual estimate is π̂0 =
∑m

j=1 I(S j�q2ζ )/(m(1 − 2ζ )). Here q2ζ is the 2ζ quantile of the distribution of permuted values Sb
j ; typi-

cally ζ = 0.25 is used. Notice that this is a “pooled” estimate of the permutation distribution, which uses

permutation values from all genes to estimate the null distribution for all genes.

The use of the pooled permutation distribution to estimate FDR works well when S j is a two-sample

t-statistic computed from Gaussian data (i.e. each Ni j is normally distributed). However, a problem arises

in the Poisson setting considered in this paper since the null and non-null genes have very different per-

mutation distributions. To illustrate this point, we generated two-class data from a Poisson model with

n = 12 and m = 20 000 and 2000 of the genes differentially expressed (the exact details of the simula-

tion are given in the next section). Figure 2 shows histograms of the actual null distribution of the score

statistics (left), the permutation distribution of the score statistics using the non-null genes (middle) and

null genes (right). We see that while the permutation distribution from null genes is very similar to the

actual null distribution, the permutation distribution from non-null genes has much heavier tails. This is

likely due to the dependence between the mean and variance in the Poisson distribution. As a result, the

estimate of FDR based on the permutation distribution of all genes greatly overestimates the true FDR.

(see Sections 5 and 6 for a detailed simulation study and Supplementary Material Sections 2 and 3, avail-

able at Biostatistics online, for more details and a theoretical analysis.) Thus, we would like to use the

Fig. 2. Histograms of score statistics for simulated data with a two-class outcome. Here, we use the signed version of

the score statistic for a more clear display. The permutation distribution of the non-null genes (middle) is much wider

than the permutation distribution of the null genes (right), which is very similar to the true null distribution (left).

529

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

s
ta

tis
tic

s
/a

rtic
le

/1
3
/3

/5
2
3
/2

4
8
0
1
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



J. LI AND OTHERS

permutation distribution from the null genes only; however, this requires knowledge of which genes are

truly null. So, instead we use the permutations from genes whose observed score is small.

The details are as follows. As before, we permute the outcome B times, producing statistics Sb
j for

genes j = 1, 2, . . . , m and permutations b = 1, 2, . . . , B. Then to estimate π0, we let M be the indices

of the values of S j falling in the (η, 1 − η) quantiles of its distribution. Let q ′
2ζ be the 2ζ quantile of the

collection of permuted values Sb
j , b = 1, 2, . . . , B, j ∈ M . Then, π̂ ′

0 =
∑m

j=1 I(S j�q ′
2ζ )/(m(1 − 2ζ )). We

use ζ = η = 0.25 in this paper.

Finally, we let D denote the indices of the values of S j that are less than the π̂ ′
0 quantile of its distri-

bution; set D contains genes that are likely to be null. To estimate the FDR for a cut-point C for the score

statistic, we compute

R̂ =

m
∑

j=1

I(S j >C), V̂ ′ =
1

B

∑

j∈D

B
∑

b=1

I(Sb
j >C),

ˆFDRC = V̂ ′/R̂. (4.1)

We study the accuracy of this estimate in the next section. We refer to the procedure outlined in Sections

3 and 4 as “PoissonSeq.”

5. A SIMULATION STUDY FOR POISSON-DISTRIBUTED DATA

5.1 Simulation design

We now present the results of a simulation study to evaluate PoissonSeq under the Poisson log-linear

model of Section 3. Details of the simulation setup are in Supplementary Materials (available at Biostatis-

tics online) Section 6, but we provide a brief overview here. There are m = 20 000 genes and n = 12

experiments. We generate di and β j , so that the total number of counts per gene and the total number of

counts per experiment roughly match the numbers observed in real RNA-Seq data sets. Ten percent of

the genes are taken to be non-null; of these non-null genes, 80% are upregulated and the other 20% are

downregulated.

5.2 A comparison of FDR estimates

In the top three panels of Figure 3, true and estimated FDR curves obtained using PoissonSeq are shown

(averaged over 100 simulations) for different outcome types. We also show the FDR estimates obtained

using the usual permutation plug-in strategy and the theoretical p-value approach (i.e. we convert the score

statistics to p-values using their asymptotic distributions and then use the R package “qvalue” (Storey and

Tibshirani, 2003) to convert p-values to FDRs). The true FDR curves for these three methods are the

same since all use the score statistics defined by (3.8) and (3.9). Both our FDR estimation method and

the theoretical p-value strategy accurately estimate FDR, whereas the usual permutation plug-in method

substantially overestimates FDR for reasons discussed in the previous section. Note that in this simulation,

the theoretical p-value approach estimates FDR accurately since the p-values upon which it relies are

accurate. However, in Section 6, we will show that reliance on theoretical p-values can lead to poor

estimation of FDR if the data violates the Poisson model.

Next, we compare the true and estimated FDR curves for PoissonSeq with those obtained using four

popular methods. Since most existing methods can be applied only to a two-class outcome, we limit the

comparison to that setting. The methods to which we compare PoissonSeq are (The version numbers of R

packages we used are listed in Supplementary Material in Section 14, available at Biostatistics online): (1)

SAM applied to the square root of the total-count normalized data. SAM refers to the modified t-statistic

approach of Tusher and others (2001). This is similar to the normal distribution–based model of ’t Hoen
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Normalization, testing, and FDR estimation for RNA-sequencing data

Fig. 3. FDR curves for simulated (top three panels) Poisson distributed data and (bottom three panels) negative bi-

nomial distributed data. The left, middle, and right panels show results from data with different types of outcome

(averaged over 100 simulations). The solid curves show the true FDRs; the broken curves are estimates. All curves

are based on the score statistic (3.8 and 3.9) but use different methods to estimate FDRs: PoissonSeq, the usual per-

mutation plug-in method (permutation), and the theoretical p-value method (theoretical p-value). The true FDR curve,

which is the same for all three procedures, is also shown. In the Poisson case, both PoissonSeq and the theoretical

p-value method give much more accurate FDR estimates than the usual permutation plug-in method. In the negative

binomial case, the PoissonSeq estimate of FDR is much more accurate than the other two estimates.

and others (2008). (2) The method of Marioni and others (2008), implemented in the R package DEGSeq

(Wang and others, 2010). This method uses the same Poisson log-linear model as in PoissonSeq, but

the experiments are normalized using total counts, and theoretical p-values combined with the method of

Benjamini and Hochberg (1995) are used to estimate FDRs. (3) The edgeR method with total count nor-

malization. This method assumes a negative binomial distribution for the counts. (4) The edgeR method

with TMM normalization. Again, a negative binomial distribution is assumed.

The resulting true and estimated FDR curves are shown in the left panel of Figure 4. Our method and

edgeR with TMM normalization yield almost identical true FDRs, which are lower than those obtained

using the other methods. Our method accurately estimates FDR, whereas edgeR with TMM normalization

overestimates it. SAM on square-root transformed data substantially overestimates the FDR, since it uses

the usual permutation-based plug-in estimate, which is conservative. Marioni and others (2008) and edgeR

with total-count normalization severely underestimate FDR.
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J. LI AND OTHERS

Fig. 4. FDR curves for simulated (left) Poisson-distributed data and (right) negative binomial distributed data. The

solid curves show the true FDRs; the broken curves are estimates. These are results (averaged over 100 simulations)

on data with two-class outcome using different methods: our method (PoissonSeq), SAM applied to the square root

of total-count normalized data (SAM), the method proposed by Marioni and others (2008) (LRT on Poisson), edgeR

with the default total-count normalization (edgeR, total-count norm.), and edgeR with TMM normalization (edgeR,

TMM norm). In the Poisson case, we see that only edgeR with TMM normalization and our PoissonSeq method yield

accurate FDR estimates. PoissonSeq and edgeR with TMM normalization also yield much lower true FDRs than the

other methods. In the negative binomial case, only the results using PoissonSeq and edgeR with TMM normalization

are shown. We see that the true FDR curves of the two methods are almost the same, while our estimate is more

accurate.

Interestingly, edgeR with two different types of normalization gives quite different results, in terms

of both true FDRs and estimated FDRs. This indicates that improper normalization (specifically, total-

count normalization) cannot only give more (true) false positives, as previously reported (Robinson and

Oshlack, 2010; Bullard and others, 2010), but can also seriously underestimate FDRs.

Since the other three methods we considered do not accurately estimate FDR, hereafter, we will limit

our comparison of PoissonSeq to edgeR with TMM normalization.

5.3 A comparison of normalization approaches

In the previous section, we noted that the choice of normalization can have a major effect. We now evaluate

the accuracy of different methods for estimating sequencing depth. Suppose that the true and estimated

sequencing depths are d1, . . . , dn and d̂1, . . . , d̂n , respectively. Without loss of generality, we assume
∑n

i=1 di =
∑n

i=1 d̂i = 1. We use the chi-square distance d =
∑n

i=1
(d̂i −di )

2

di
, which seems to be a

reasonable choice for measuring differences in percentages. The results are shown in Table 1. We see that

the error of our normalization procedure is about 1% of the errors of TMM normalization or normalization

used by DESeq, although TMM normalization and normalization used by DESeq are more accurate than

total-count normalization and quantile normalization.

We also simulated data with the same mean function but following a negative binomial distribution

(simulation details are in the next section). The results are also shown in Table 1. Interestingly, our nor-
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Normalization, testing, and FDR estimation for RNA-sequencing data

Table 1. The performance of different methods for estimating the sequencing depth

Poisson data Negative binomial data

Mean of error SE of error Mean of error SE of error

Total count 4.0 × 10−3 4.0 × 10−3 5.3 × 10−3 5.2 × 10−3

Quantile 7.9 × 10−4 1.3 × 10−4 8.0 × 10−4 1.7 × 10−4

TMM 8.1 × 10−5 1.3 × 10−5 8.9 × 10−4 1.3 × 10−4

DESeq 5.6 × 10−5 4.8 × 10−6 5.2 × 10−4 9.1 × 10−5

Ours 6.2 × 10−7 2.5 × 10−7 1.5 × 10−4 6.9 × 10−5

malization procedure, which assumes a Poisson model for the data, still gives the smallest error among

the five methods.

Our method, the TMM method, and the DESeq method for estimating sequencing depth implicitly

assume that a minority of the genes are differentially expressed. To explore whether our method still out-

performs other methods when a substantial fraction of genes are non-null, we simulate data with 50%

of genes differentially expressed, in both the Poisson setting and the negative binomial (φ = 0.25) set-

ting. As shown in Supplementary Table 1 (available at Biostatistics online), our method still substantially

outperforms all the other methods.

6. OVERDISPERSED DATA

The log-linear model (3.1, 3.2) assumes that counts are sampled from a Poisson distribution, leading to a

simple form of the score statistic. However, counts in real data sets may be overdispersed, especially for

data from biological replicates. To apply our method to overdispersed data, we use a simple transformation

to make the data follow a Poisson distribution more closely and then apply our method to the transformed

data.

We define the overall overdispersion of the data as O =
∑

j∈S GOF j − (1 − 2ε)(n − 1)(m − 1),

where GOF j is defined by (3.7) and S is the set of genes whose GOF is in the (ε, 1 − ε) quantile of all

GOF j ’s. If the data is Poisson distributed and the genes are independent of each other, then
∑

j∈S GOF j

should approximately follow a χ2 distribution with (1 − 2ε)(n − 1)(m − 1) degrees of freedom. Thus, the

expectation of O is approximately 0. Therefore, we seek a power transformation Ni j ← N θ
i j , where θ is

a constant, such that O ≃ 0 so that the data approximately fits the model (3.1, 3.2). The transformed data

does not take on integer values, but the formulas from the previous section can still be applied.

Simulations show that our method gives a very accurate estimate of θ if the data are truly a power

of the Poisson distribution (Supplementary Material Section 9, available at Biostatistics online). A more

realistic model for overdispersed RNA-Seq data is a negative binomial distribution, in which the mean

μ and variance σ 2 are linked by σ 2 = μ + φμ2, where φ is the “dispersion” parameter. The Poisson

distribution is a special case of the negative binomial distribution with φ = 0. We generated negative

binomial data with a particular mean and dispersion and used our method to estimate θ . The resulting

transformed data have approximately a Poisson distribution (Supplementary Material Section 10, available

at Biostatistics online).

In the description above, we assume that θ is the same constant for all genes. However, this assump-

tion may be too restrictive. Simulations suggest (see Supplementary Material Section 11, available at

Biostatistics online) that when φ is a constant, the relationship between log μ and the proper value of θ−1

is roughly linear, and larger μ requires larger θ−1 or smaller θ . Therefore, instead of using the same θ for

all genes, we divide the genes into 10 groups according to the value of N· j , and we estimate a value of θ
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J. LI AND OTHERS

for each group of genes. Then, we fit a natural cubic spline (or a straight line if we assume the dispersion

of each gene is the same) for these 10 pairs of θ−1 and log N· j and use it to predict θ for each gene.

To evaluate the performance of this approach, we generated counts from the negative binomial distri-

bution with φ = 0.25. The means for the cells are the same as for the Poisson data in the previous section.

The bottom three panels of Figure 3 display the FDR curves for different outcome types and different

methods for estimating FDR: our PoissonSeq procedure, the usual permutation plug-in method, and the

theoretical p-value method. We see that our PoissonSeq method is the only one that gives accurate FDR

estimates. The right panel of Figure 4 compares our PoissonSeq method and edgeR with TMM normal-

ization (with the dispersion set as constant). We find that the true FDR curves are almost identical. While

our PoissonSeq method gives uniformly accurate estimates of FDR curve, edgeR overestimates the higher

part of the curve.

7. PERFORMANCE ON REAL DATA SETS

We applied our method to the RNA-Seq data set in Marioni and others (2008). This data set contains 5

human kidney samples and 5 human liver samples. The reads were mapped to all human genes. After

filtering genes with no more than 5 reads total, we are left with 18 228 genes. We applied our PoissonSeq

method and edgeR with TMM normalization to the data. The estimated FDR curves are shown in the left

panel of Figure 5. Both methods suggest that the FDR is almost 0 for the ∼11 000 most significant genes.

However, the estimated FDRs become quite different if more than 11 000 genes are called significant.

When all genes are called significant, PoissonSeq’s FDR estimate is about 0.34 and that of edgeR is 1. The

latter estimate is inconsistent with the estimate that the first 11 000 genes are essentially all differentially

expressed, since if we assume that this is true, then the FDR for all 18 228 genes cannot exceed 1 −

11 000/18 228≃ 0.40. (In fact, this is consistent with the estimate given by PoissonSeq.)

We also applied our method to the Tag-Seq data set in ’t Hoen and others (2008). The technology of

Tag-Seq experiments is slightly different from RNA-Seq, but they both involve identifying differentially

expressed genes on the basis of sequencing data. We choose this data set since it is known to be overdis-

persed (see the manual of the edgeR package). This data set contains 4 samples in each group, and the

Fig. 5. FDR curves estimated by PoissonSeq and edgeR with TMM normalization for two data sets: (left) the data set

from Marioni and others (2008) and (right) the data set from ’t Hoen and others (2008).
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Normalization, testing, and FDR estimation for RNA-sequencing data

counts are mapped to 844 316 tags. 111 809 tags are left for analysis after tags with less than 5 total reads

are filtered. The right panel of Figure 5 shows the FDR estimates for PoissonSeq and edgeR with TMM

normalization. The FDR estimates from PoissonSeq are lower than those from edgeR. Since this is real

data, we do not know which estimate is more accurate.

8. DISCUSSION

We have proposed a Poisson log-linear model for sequencing data in the case of a general outcome type.

In the case of a two-class outcome, our model is equivalent to past proposals in the literature; however,

our model also accommodates other outcome types. We propose a new and more accurate method for

estimating sequencing depth, which is known to play a crucial rule in the performance of any model for

sequencing data (Robinson and Oshlack, 2010). Furthermore, we proposed a new method for estimating

FDR. Our proposed method does not rely on theoretical p-values, which can be grossly inaccurate for

sequencing data, and it also overcomes the poor behavior of the traditional permutation-based plug-in

estimates for FDR in the Poisson setting. We have shown that our method outperforms competitors in

terms of both true and estimated FDR.

Our method is fast: on a two-class problem, FDR estimation for a data set with 20 000 genes and 12

experiments on the basis of 100 permutations takes ∼15 s on a Windows 7 laptop with a 2.40 GHz proces-

sor and 2 GB of memory. As a comparison, edgeR takes ∼2.5 min. Our method is available in an extension

package called “PoissonSeq” for the R statistical environment (R Development Core Team, 2011).

Our method is based on the Poisson distribution, and possible overdispersion in the data is handled by

taking a power transformation. Since the likelihood of the Poisson distribution is very simple, the Poisson

log-linear model is easily extended to different outcome types and potentially to different experimental

designs. On the other hand, the negative binomial model rarely has explicit solutions, and estimation of

the dispersion parameter by current algorithms for RNA-Seq differential expression analysis like edgeR

and DESeq require duplicates (multiple experiments with the same outcome), which are not generally

available for quantitative outcomes. To more accurately model RNA-Seq data, other aspects of the data

could be incorporated in the Poisson log-linear model, such as transcript length bias (Oshlack and Wake-

field, 2009), bias in sequencing rates due to nucleotide content (see e.g. Li and others, 2010; Hansen and

others, 2010; Srivastava and Chen, 2010), and more. We leave this to future work.

We have proposed a new procedure for estimating FDR. This approach attempts to exclude non-null

genes from the pooled permutation distribution used in FDR estimation. This procedure could potentially

also improve FDR estimation for other problems that are characterized by a mean–variance dependence

in the underlying distribution.

Our method for estimating FDRs has some limitations. Firstly, when dealing with overdispersed data,

we assume that the transformation power θ depends only on the gene expression. Secondly, we assume

that the libraries are totally exchangeable so that permutation gives equivalent data sets under the null hy-

pothesis (see Supplementary Material Section 13, available at Biostatistics online). Third, our approach,

like other methods from the literature, assumes that all genes are independent from each other (see Sup-

plementary Materials Section 12). Fourth, there are a number of tunable parameters in the procedure; the

simple default choices used in this paper may not perform well in all cases. In recent years, DNA se-

quencing, chromatin immunoprecipitation sequencing, and other approaches related to RNA sequencing

have risen in popularity. The methods that we have proposed should be applicable to many of these related

technologies.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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