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Abstract— Indisputably Normalized Cuts is one of the most
popular segmentation algorithms in pattern recognition and com-
puter vision. It has been applied to a wide range of segmentation
tasks with great success. A number of extensions to this approach
have also been proposed, including ones that can deal with
multiple classes or that can incorporate a priori information in
the form of grouping constraints. However, what is common for
all these methods is that they are noticeably limited in the type
of constraints that can be incorporated and can only address
segmentation problems on a very specific form. In this paper, we
present a reformulation of Normalized Cut segmentation that
in a unified way can handle linear equality constraints for an
arbitrary number of classes. This is done by restating the problem
and showing how linear constraints can be enforced exactly in the
optimization scheme through duality. This allows us to add group
priors, for example, that certain pixels should belong to a given
class. In addition, it provides a principled way to perform multi-
class segmentation for tasks like interactive segmentation. The
method has been tested on real data showing good performance
and improvements compared to standard normalized cuts.

I. IMAGE SEGMENTATION

Image segmentation can be defined as the task of partitioning an

image into disjoint sets. This visual grouping process is typically

based on low-level cues such as intensity, homogeneity or image

contours. Existing approaches include thresholding techniques,

edge based methods and region-based methods, see [5], [10],

[12], [18], [20], [22]. Extensions to this process includes the

incorporation of grouping constraints into the segmentation pro-

cess. For instance the class labels for certain pixels might be

supplied beforehand, through user interaction or some completely

automated process [8], [18].

Currently the most successful and popular approaches for

segmenting images are based on graph cuts. Here the images

are converted into undirected graphs with edge weights between

the pixels corresponding to some measure of similarity. The

ambition is that partitioning such a graph will preserve some of

the spatial structure of the image itself. These graph methods

were made popular first through the Normalized Cut formulation

of [20] and more recently by the energy minimization method

of [6]. The algorithm in [6] for optimizing objective functions

that are submodular has the advantage of solving many discrete

problems exactly. However, not all segmentation problems can be

formulated with submodular objective functions, nor is it possible

to incorporate linear (or affine) equality constraints.

The work described here concerns the former approach, Nor-

malized Cuts, the relevance of linear grouping constraints and

how they can be included in this framework. A similar extension

to include linear constraints for submodular objective functions

was recently presented in [23].

Incorporating general linear constraints into the Normalized cut

formulation was also attempted by [24]. In this work it was shown

that by making additional assumptions about the segmentation

the porblem can be further relaxed to a simpler, globally solvable

minimization problem. This will however not solve the problem

exactly and only return a lower bound solution to the Normalized

cut relaxation.

It is not the aim of this paper to argue the merits of one

segmentation method, or one cut metric, over another, nor do we

here concern ourselves with how the actual grouping constraints

are obtained. Instead we will focus on the optimization problem

and show through Lagrangian relaxation and duality how one can,

in a unified manner, handle such linear equality constraints exactly

and also in what way these constraints influence the resulting

segmentation.

In addition to the extension of normalized cuts, a key contribu-

tion of this paper is the development of an efficient algorithm for

minimizing objective functions consisting of a ratio of quadratic

functions subject to linear equality constraints. Similar objective

functions have appeared in many other computer vision appli-

cations, for example, [3], [19]. Our framework has the potential

to improve computational efficiency, in particular, for large-scale

problems.

A. Problem Formulation

Consider an undirected graph G, with nodes V and edges E and

where the non-negative weights of each such edge is represented
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by an affinity matrix W , with only non-negative entries and of full

rank. A min-cut is the non-trivial subset A of V such that the sum

of edges between nodes in A and its complement is minimized,

that is, the minimizer of

cut(A, V ) =
X

i∈A
j∈V \A

wij . (1)

This is perhaps the most commonly used method for splitting

graphs and is a well known problem for which efficient solvers

exist for large scale problems. It has however been observed that

this criterion has a tendency to produce unbalanced cuts: smaller

partitions are preferred to larger ones.

In an attempt to remedy this shortcoming, Normalized Cuts

was introduced in [20]. It is basically an altered criterion for

partitioning graphs, applied to the problem of perceptual grouping

in computer vision. By introducing a normalizing term into the

cut metric the bias towards undersized cuts is avoided. The

Normalized Cut of a graph is defined as:

Ncut =
cut(A, V )

assoc(A, V )
+

cut(B, V )

assoc(B, V )
(2)

where A ∪ B = V , A ∩ B = ∅ and the normalizing term is

defined as assoc(A, V ) =
P

i∈A,j∈V wij . It is then shown in [20]

that by relaxing (2) a continuous underestimator of the (minimal)

Normalized Cut can be efficiently computed. These techniques

are then extended in [25] beyond graph bipartitioning to include

multiple segments, and even further in [26] to handle certain types

of linear equality constraints.

One can argue that the drawbacks of the original formulation

for computing the Normalized Cut are that firstly, obtaining

a discrete solution from the relaxed one can be problematic.

Especially in multiclass segmentation where the relaxed solution

is not unique but consists of an entire subspace. Then, the set

of grouping constraints is restricted. Only homogeneous linear

equality constraints can be directly included in the existing theory,

which is of limited practical use. We will show that this excludes

many visually relevant constraints. In [7] an attempt is made at

solving a similar problem with general linear constraints. This

approach does however involve dropping any discrete constraint

all together, leaving one to question the quality or tightness of

the obtained underestimator.

II. NORMALIZED CUTS WITH GROUPING CONSTRAINTS

In this section we propose a reformulation of the relaxation of

Normalized Cuts that in a unified way can handle all types of

linear equality constraints for any number of partitions. First we

show how we through duality theory reach the suggested relax-

ation. The following two sections then show why this formulation

is well suited for dealing with general linear constraints and how

this proposed approach can be applied to multiclass segmentation.

Starting off with the definition of Normalized Cuts in (2), the

cost of partitioning an image with affinity matrix W into two

disjoint sets, A and B, can be written as

Ncut =

P

i∈A
j∈B

wij

P i∈A
j∈V wij

+

P

i∈B
j∈A

wij

P

i∈B
j∈V

wij
. (3)

Let z ∈ {−1, 1}n be the class label vector, W the n×n-matrix

with entries wij , d the n × 1-vector containing the row sums of

W , and D the diagonal n × n-matrix with d on the diagonal. A

1 is used to denote vectors of all ones. We can write (3) as

Ncut =
P

i,j wij(zi−zj)
2

2
P

i(1+zi)di
+

P

i,j wij(zi−zj)
2

2
P

i(1−zi)di
=

=
zT (D−W )z

dT (1+z)
+

zT (D−W )z
dT (1−z)

=

=
2dT 1(zT (D−W )z)
1T ddT 1−zT dT dT z

=
2dT 1(zT (D−W )z)
zT ((1T d)D−ddT )z

. (4)

In the last inequality we used the fact that 1T d = zT Dz. When we

include general linear constraints on z on the form Cz = b, C ∈

R
m×n, the optimization problem associated with this partitioning

cost becomes

inf
z

zT (D−W )z
zT ((1T d)D−ddT )z

s.t. z ∈ {−1, 1}n

Cz = b. (5)

The above problem is a non-convex, NP-hard optimization prob-

lem. Therefore we are led to replace the discrete z ∈ {−1, 1}n

constraint with the norm constraint zT z = n. This gives us the

relaxed problem

inf
z

zT (D−W )z
zT ((1T d)D−ddT )z

s.t. zT z = n

Cz = b. (6)

This is also a non-convex problem. However, as we shall see in

section III, we are able to solve this problem exactly. Next we will

write problem (6) in homogenized form. The reason for doing this

will become clear later on. Let L and M be the (n+1)× (n+1)

matrices

L =
h

(D−W ) 0
0 0

i

, M =
h

((1T d)D−ddT ) 0
0 0

i

, (7)

and

Ĉ = [C − b] (8)

the homogenized constraint matrix. The relaxed problem (6) can

now be written

inf
z

[ zT 1 ]L[ z
1 ]

[ zT 1 ]M[ z
1 ]

s.t. zT z = n

Ĉ [ z
1 ] = 0. (9)

Finally we add the artificial variable zn+1. Let ẑ be the extended

vector
h

zT zn+1

iT
. Throughout the paper we will write ẑ when

we consider the extended variables and just z when we consider

the original variables. The relaxed problem (6) in its homogenized

form is

inf
ẑ

ẑT Lẑ
ẑT Mẑ

s.t. ẑ2
n+1 − 1 = 0

ẑT ẑ = n + 1

Ĉẑ = 0. (10)

Note that the first constraint is equivalent to ẑn+1 = 1. If ẑn+1 =

−1 then we may change the sign of ẑ to obtain a solution to our

original problem.

The homogenized constraints Ĉẑ = 0 now form a linear

subspace and can be eliminated in the following way. Let N
Ĉ

be

a matrix where its columns form a base of the nullspace of Ĉ. Let
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k + 1 be the dimension of the nullspace. Any ẑ fulfilling Ĉẑ = 0

can be written ẑ = N
Ĉ

ŷ, where ŷ ∈ R
k+1. As in the case with

the z-variables, ŷ is the vector containing all variables whereas

y is a vector containing all but the last variable. Assuming that

the linear constraints are feasible we may always choose a basis

such that ŷk+1 = ẑn+1 = 1. We set

L
Ĉ

= NT

Ĉ
LN

Ĉ
and M

Ĉ
= NT

Ĉ
MN

Ĉ
. (11)

In the new variables, the following formulation is obtained.

inf
ŷ

ŷT L
Ĉ

ŷ

ŷT M
Ĉ

ŷ

s.t. ŷ2
k+1 − 1 = 0

ŷT NT

Ĉ
N

Ĉ
ŷ = ||ŷ||2N

Ĉ
= n + 1. (12)

We will use f(ŷ) to denote the objective function of this problem.

A common approach for solving this kind of problem is to simply

drop one of the two constraints. This may however result in very

poor solutions. We shall see that we can in fact solve this problem

exactly without excluding any constraints.

III. LAGRANGIAN RELAXATION AND STRONG DUALITY

In this section we will show how to solve (6) using Lagrangian

duality. We start by generalizing a lemma from [17] for trust

region problems.

Lemma 1: Let yT A2y + 2bT
2 y + c2 be a positive semidefinite

quadratic form. If there exists a y with yT A3y + 2bT
3 y + c3 < 0,

then, the primal problem

inf
y

yT A1y + 2bT
1 y + c1

yT A2y + 2bT
2 y + c2

, s.t. yT A3y + 2bT
3 y + c3 ≤ 0 (13)

and the dual problem

sup
λ≥0

inf
y

yT (A1 + λA3)y + (b1 + λb3)
T y + c1 + λc3

yT A2y + 2bT
2 y + c2

(14)

has no duality gap.

Proof: Since yT A2y + 2bT
2 y + c2 ≥ 0, the primal problem

can be written as

inf γ1

s.t. yT (A1 − γ1A2)y + 2(b1 − γ1b2)
T y + c1 − γ1c2 ≤ 0

yT A3y + 2bT
3 y + c3 ≤ 0.

(15)

Let M(λ, γ) be the matrix

M(λ, γ) =
h

A1+λA3−γA2 b1+λb3−γb2

(b1+λb3−γb2)
T c1+λc3−γc2

i

. (16)

The dual problem can be written

supλ≥0 infγ2,y γ2

s.t.

»
y

1

–T

M(λ, γ2)

»
y

1

–

≤ 0.
(17)

Since (17) is dual to (15) we have that for their optimal values,

γ∗
2 ≤ γ∗

1 must hold. To prove that there is no duality gap we

must show that γ∗
2 = γ∗

1 . We do this by considering the following

problem,
supγ3,λ≥0 γ3

s.t. M(λ, γ3) º 0.
(18)

Here M(λ, γ3) º 0 means that M(λ, γ3) is positive semidefinite.

We note that if M(λ, γ3) º 0 then there is no y fulfilling

»
y

1

–T

M(λ, γ3)

»
y

1

–

+ ǫ ≤ 0 (19)

for any ǫ > 0. Therefore we must have that the optimal values

fulfill γ∗
3 ≤ γ∗

2 ≤ γ∗
1 . To complete the proof we show that γ∗

3 =

γ∗
1 . We note that for any γ ≤ γ∗

1 we have that

yT A3y + 2bT
3 y + c3 ≤ 0 ⇒

yT (A1 − γA2)y + 2(b1 − γb2)
T y + c1 − γc2 ≥ 0.

(20)

However, according to the S-procedure [4], this is true if and only

if there exists λ ≥ 0 such that M(λ, γ) º 0. Therefore (γ, λ) is

feasible for problem (18) and thus γ∗
3 = γ∗

1 .

We note that for a fixed γ the problem

infy yT (A1 − γA2)y + 2(b1 − γb2)
T y + c1 − γc2

s.t. yT A3y + 2bT
3 y + c3 ≤ 0

(21)

only has an interior solution if A1 −γA2 is positive semidefinite.

If A3 is positive semidefinite then we may subtract k(yT A3y +

2bT
3 y + c3) for any (k > 0) from the objective function to obtain

boundary solutions. This gives us the following corollary.

Corollary 1: Let yT A2y+2bT
2 y+c2 be a positive semidefinite

quadratic form, and A3 be positive semidefinite. If there exists a

y with yT A3y + 2bT
3 y + c3 < 0, then the primal problem

inf
y

yT A1y + 2bT
1 y + c1

yT A2y + 2bT
2 y + c2

, s.t. yT A3y + 2bT
3 y + c3 = 0 (22)

and the dual problem

sup
λ

inf
y

yT (A1 + λA3)y + (b1 + λb3)
T y + c1 + λc3

yT A2y + 2bT
2 y + c2

(23)

has no duality gap.

Next we will show how to solve a problem on a form related

to (12). Let

Â1 =
h

A1 b1
bT
1 c1

i

, Â2 =
h

A2 b2
bT
2 c2

i

, Â3 =
h

A3 b3
bT
3 c3

i

.

Theorem 1: If Â2 and Â3 are positive semidefinite, then the

primal problem

inf
yT A3y+2bT

3
y+c3=n+1

yT A1y + 2bT
1 y + c1

yT A2y + 2bT
2 y + c2

=

= inf
ŷT Â3ŷ=n+1

y2
n+1=1

ŷT Â1ŷ

ŷT Â2ŷ
(24)

and its dual

sup
t

inf
ŷT Â3ŷ=n+1

ŷT Â1ŷ + ty2
n+1 − t

ŷT Â2ŷ
(25)

has no duality gap.

Proof: Let γ∗ be the optimal value of problem (12). Then

γ∗ = inf
ŷT Â3ŷ=n+1

y2
n+1=1

ŷT Â1ŷ

ŷT Â2ŷ

= supt inf
ŷT Â3ŷ=n+1

y2
n+1=1

ŷT Â1ŷ+ty2
n+1−t

ŷT Â2ŷ

≥ supt inf
ŷT Â3ŷ=n+1

ŷT Â1ŷ+ty2
n+1−t

ŷT Â2ŷ

≥ supt,λ inf ŷ
ŷT Â1ŷ+ty2

n+1−t+λ(ŷT Â3ŷ−(n+1))

ŷT Â2ŷ

= sups,λ inf ŷ

ŷT Â1ŷ+sy2
n+1−s+λ(yT A3y+yn+12bT

3 y+c3−(n+1))

ŷT Â2ŷ
=

= supλ infy2
n+1

=1
ŷT Â1ŷ+λ(yT A3y+2bT

3 y+c3−(n+1))

ŷT Â2ŷ
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= supλ infy
yT A1y+2bT

1 y+c1+λ(yT A3y+2bT
3 y+c3−(n+1))

yT A2y+2bT
2

y+c2

= γ∗, (26)

where we let s = t + c3λ. In the last two equalities, Corollary 1

was used twice. The third row of the above proof gives us that

µ∗ = sup
t

inf
ŷT Â3ŷ=n+1

ŷT Â1ŷ + ty2
n+1 − t

ŷT Â2ŷ
=

= sup
t

inf
ŷT Â3ŷ=n+1

ŷT Â1ŷ + ty2
n+1 − t ŷT Â3ŷ

n+1

ŷT Â2ŷ
=

= sup
t

inf
ŷT Â3ŷ=n+1

ŷT
“

Â1 + t
“ˆ

0 0
0 1

˜
− Â3

n+1

””

ŷ

ŷT Â2ŷ
. (27)

Finally, since strong duality holds, we can state the following

corollary.

Corollary 2: If t∗ and ŷ∗ solves (25), then (ŷ∗)T N̂ ŷ∗ = n+1

and y∗k+1 = 1. That is, ŷ∗ is an optimal feasible solution to (24).

IV. THE DUAL PROBLEM AND CONSTRAINED NORMALIZED

CUTS

Returning to our relaxed problem (12) we start off by intro-

ducing the following lemma.

Lemma 2: L and M as defined in (7) are both (n+1)×(n+1)

positive semidefinite matrices of rank n− 1. Their 2-dimensional

nullspaces are spanned by n1 = [ 1 ... 1 0 ]T and n2 = [ 0 ... 0 1 ]T .

Consequently, L
Ĉ

and M
Ĉ

as defined in (11) are also positive

semidefinite.

Proof: L is the zero-padded positive semidefinite Laplacian

matrix of the affinity matrix W and is hence also positive semidef-

inite. For M it suffices to show that the matrix (1T d)D − ddT is

positive semidefinite,

vT ((1T d)D − ddT )v =
P

i di

P

j djv
2
j −

`P

i divi

´2

=
P

i,j didjvj(vj − vi) =
P

i didivi(vi − vi) +

+
P

i,j<i didjvj(vj − vi) + djdivi(vi − vj) =
P

i,j<i didj(vj − vi)
2 ≥ 0, ∀v ∈ R

n. (28)

The last inequality comes from di > 0 for all i which means that

(1T d)D − ddT , and thus also M , are positive semidefinite.

The second statement follows since both Lni = Mni = 0 for

i = 1, 2.

Next, since

vT Lv ≥ 0, ∀v ∈ R
n ⇒ vT Lv ≥ 0, ∀v ∈ Null(Ĉ) ⇒

⇒ wT N
Ĉ

T LN
Ĉ

T w ≥ 0, ∀w ∈ R
k ⇒

⇒ wT L
Ĉ

w ≥ 0, w ∈ R
k,

it holds that L
Ĉ

º 0, and similarly for M
Ĉ

.

Assuming that the original problem is feasible then we have

that, as f(ŷ) of problem (24) is the quotient of two positive

semidefinite quadratic forms and therefore f(ŷ) is non-negative,

a minimum for the relaxed Normalized Cut problem will exist.

Theorem 1 states that strong duality holds for a program on

the form (24). Consequently, we can apply the theory from

the previous section directly and solve (12) through its dual

formulation. Let

E
Ĉ

=
ˆ

0 0
0 1

˜
−

NT

Ĉ
N

Ĉ

n+1 = NT

Ĉ

h
− I

n+1
0

0 1

i

N
Ĉ

(29)

and let θ(ŷ, t) denote the Lagrangian function. The dual problem

is then

sup
t

inf
||ŷ||2

N
Ĉ

=n+1
θ(ŷ, t) =

ŷT (L
Ĉ

+ tE
Ĉ

)ŷ

ŷT M
Ĉ

ŷ
. (30)

The inner minimization is the well known generalized Rayleigh

quotient, for which the minimum is given by the algebraically

smallest generalized eigenvalue1 of (L
Ĉ

+ tE
Ĉ

) and M
Ĉ

. Letting

λG
min(t) and vG

min(t) denote the smallest generalized eigenvalue

and corresponding generalized eigenvector of (L
Ĉ

+ tE
Ĉ

) and

M
Ĉ

, we can write problem (30) as

sup
t

λG
min(L

Ĉ
+ tE

Ĉ
, M

Ĉ
). (31)

It can easily be shown that the minimizer of the inner problem of

(30), is given by a scaling of the generalized eigenvector, ŷ(t) =

(||vG
min(t)||N

Ĉ
)vG

min(t). The relaxed Normalized Cut problem can

thus be solved by finding the maximum of (31). As the objective

function is the point-wise infimum of functions linear in t, it is a

concave function, as is expected from dual problems. So solving

(31) means maximizing a concave function in one variable t, this

can be carried out using standard methods for one-dimensional

optimization.

Unfortunately, the task of solving large scale generalized eigen-

value problems can be demanding, especially when the matrices

involved are dense, as the case is here. This can however be

remedied. By exploiting the unique matrix structure we can

rewrite the generalized eigenvalue problem as a standard one.

First we note that the generalized eigenvalue problem Av = λBv

is equivalent to the standard eigenvalue problem B−1Av = λv,

if B is non-singular. Furthermore, in large scale applications it is

reasonable to assume that the number of variables n + 1 is much

greater than the number of constraints m. Then the base for the

null space of the homogenized linear constraints N
Ĉ

can then be

written on the form N
Ĉ

=
ˆ c c0

I

˜
. Now we can write

M
Ĉ

=
ˆ c c0

I

˜T
(
h

((1T d)D−ddT ) 0
0 0

i

)
ˆ c c0

I

˜
=

=

(
D:=

h

D1 0
0 D2

i

d:=
h

d1

d2

i

)

=
h

D2 0

0 cT
0 D1c0+1

i

| {z }

D̃

+

+
h

cT cd1+d2 0

cT
0 cT

0 d1 1

i

| {z }

V

»
D1

1
−1

–

| {z }

S

»
c c0

dT
1 cT +dT

2 dT
1 c0

0 1

–

=

= D̃ + V SV T . (32)

Hence, M
Ĉ

is the sum of a positive definite, diagonal matrix

D̃ and a low-rank correction V SV T . As a direct result of the

Woodbury matrix identity [11] we can express the inverse of M
Ĉ

as

M
Ĉ
−1 = (D̃ + V SV T )−1 =

= D̃−1
“

I − V (S−1 + V T D̃−1V )−1V D̃−1
”

. (33)

Despite the potentially immense size of the entering matrices,

this inverse can be efficiently computed since D̃ is diagonal

and the size of the square matrices S and (S−1 + V T D̃−1V )

are both typically manageable and therefore easily inverted. Our

1A generalized eigenvalue of two matrices A and B is a scalar λ =
λG(A, B) such that for a vector v with ||v|| = 1, the equation Av = λBv
has a solution.
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generalized eigenvalue problem then turns into the problem of

finding the smallest algebraic eigenvalue of the matrix M
Ĉ
−1L

Ĉ
.

The dual problem becomes

sup
t

λmin

`
(D̃−1(I − V (S−1 + V T D̃−1V )−1V D̃−1)

N
Ĉ

T (L
Ĉ

+ tE
Ĉ

)N
Ĉ

´
. (34)

Not only does this reformulation provide us with the more famil-

iar, standard eigenvalue problem but it will also allow for very

efficient computations of multiplications of vectors to this matrix.

This is a crucial property, since, even though M
Ĉ
−1(L

Ĉ
+ tE

Ĉ
)

is still dense, it is the product and sum of diagonal (D̃−1, E
Ĉ

),

sparse (L
Ĉ

, N
Ĉ

) and low rank matrices (V , S−1). It is a very

structured matrix to which iterative eigensolvers can successfully

be applied. We will return to this in section VI-C.

In certain cases it might however occur that the quadratic

form in the denominator is only positive semidefinite and thus

singular. These cases are easily detected and must be treated

separately. As we then can not invert M
Ĉ

and rewrite the problem

as a standard eigenvalue problem we must instead work with

generalized eigenvalues, as defined in (31). This is preferably

avoided as this is typically a more computationally demanding

formulation, especially since the entering matrices are dense.

Iterative methods for finding generalized methods for structured

matrices such as L
Ĉ

+ tE and M
Ĉ

, do however exist [21]. Note

that the absence of linear constraints is such a special instance.

However, in that case homogenization is completely unnecessary.

Problem (6) with Cz = b removed is an standard unconstrained

generalized Rayleigh quotient and the solution is given by the

generalized eigenvalue λT
G(D − W, (1T d)D − ddT ).

Now, if t∗ and ŷ∗ = (||vG
min(t∗)||N

Ĉ
)vG

min(t∗) are the optimiz-

ers of (30), Corollary 2 certifies that (y∗)T NT

Ĉ
N

Ĉ
y∗ = n+1 and

that ŷ∗k+1 = 1. With ẑ∗ =
h

z∗

ẑ∗

n+1

i

= N
Ĉ

ŷ∗ and ẑn+1 = ŷn+1,

we have that z∗ prior to rounding is the minimizer of (6). Thus

we have shown how to, through Lagrangian relaxation, solve the

relaxed, linearly constrained Normalized Cut problem exactly.

Finally, the solution to the relaxed problem must be discretized

in order to obtain a solution to the original binary problem (5).

This is typically carried out by applying some rounding scheme

to the solution.

A. Multi-Class Constrained Normalized Cuts

Multi-class Normalized Cuts is a generalization of (2) for an

arbitrary number of partitions,

Nk
cut =

kX

l=1

cut(Al, V )

assoc(Al, V )
. (35)

If one minimizes (35) in an iterative fashion, by, given the current

k-way partition, finding a new partition while keeping all but two

partitions fixed. This procedure is known as the α−β-swap when

used in graph cuts applications, [6]. The associated subproblem

at each iteration then becomes

Ñk
cut =

cut(Ai, V )

assoc(Ai, V )
+

cut(Aj , V )

assoc(Aj , V )
+
X

l 6=i,j

cut(Al, V )

assoc(Al, V )
=

=
cut(Ai, V )

assoc(Ai, V )
+

cut(Aj , V )

assoc(Aj , V )
+ c, (36)

where pixels not labeled i or j are fixed. Consequently, mini-

mizing the multi-class subproblem can be treated similarly to the

bipartition problem. At each iteration we have a problem on the

form

inf
z

f(z) =
zT (D−W )z

−zT ddT z+(1T d)2

s.t. z ∈ {−1, 1}n

Cz = b, (37)

where W, D, C and b will be dependent on the current partition

and choice of labels to be kept fixed. These matrices are obtained

by removing rows and columns corresponding to pixels not la-

beled i or j, the linear constraints must also be similarly altered to

only involve pixels not currently fixed. Given an initial partition,

randomly or otherwise, iterating over the possible choices until

convergence ensures a multi-class segmentation that satisfies all

constraints. There is however no guarantee that this method

will avoid getting trapped in local minimum and producing a

sub-optimal solution, but during the experimental validation this

procedure always produced satisfactory results.

V. SOLVING LARGE-SCALE HERMITIAN EIGENVALUE

PROBLEMS

In an attempt to keep the paper self-contained, this section will

give an brief overview to one of the most important methods

available for computing eigenvalues and eigenvectors of large

matrices. This technique, known as the Lanczos algorithm, is

based on projections onto Krylov subspaces. This trivial extension

of the simple power iteration turns out to give one of the most

powerful methods for extracting eigenvalues of large Hermitian

matrices. The method was first introduced in 1950 [13] as a way

of reducing an entire matrix to tridiagonal form. Unfortunately,

due to issues with round-off errors, the method failed miserably in

this capacity. However, twenty years later it was discovered that

despite this shortcoming the Lanczos algorithm is still an effective

tool for computing extremal eigenvalues and their eigenvectors.

The Krylov subspaces associated with a square symmetric

matrix A ∈ R
n×n for a vector q1 is defined as

Kk = span
n

q1, Aq1, A2q1, ..., Ak−1q1

o

, (38)

This simple type of subspace, which is uniquely determined by

A and q1, is of considerable importance for numerous iterative

methods for extracting eigenvalues. It turns out that the eigen-

values of the projection of a symmetric matrix A onto a Krylov

subspace approximates the actual eigenvalues of A very well. In

addition, there exists an orthogonal base Qk for Kk that reduces

A to a tridiagonal form.

One way of finding an orthogonal base Qk for a Krylov

subspace of a general square matrix A is through a Gram-

Schmidt-like procedure known as the Arnoldi method, [1]. This

base Qk = [ q1 q2 ... qk ] is orthogonal by construction. It can also

be shown that each vector qj = pj−1(A)q1, where pj−1 is a

(j-1)-th degree polynomial, and that Qk consequently spans Kk.

This base also has the property that it reduces A to an upper

Hessenberg matrix which means that the matrix has zero entries

below the first subdiagonal. That is

QT
k AQk = Hk, (39)

where Hk is upper Hessenberg. Further, if A is symmetric then

HT
k = (QT

k AQk)T = QT
k AQk = Hk (40)
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and hence Hk must be tridiagonal. Consequently, the orthogonal

base Qk reduces A to the tridiagonal form

Tk =

2

6
6
4

α1 β2 0 ... 0
β2 α2 β3 ... 0
0 β3 α3 ... 0

...
...

...
. . .

...
0 0 ... βk αk

3

7
7
5

. (41)

So for Hermitian matrices the Arnoldi method can then be

simplified into what is known as the symmetric Lanczos method,

[16].

Algorithm 5.1

Lanczos Method for Symmetric Eigenvalue Problems

Begin with q0 = 0 and user supplied starting vector r0.

β0 = ||r0||

for i = 1, 2, ... until convergence

qi = ri−1/βi−1 (1)

p = Aqi (2)

αi = qT
i p (3)

ri = p − αiqi − βi−1qi−1 (4)

βi = ||ri|| (5)

end

In exact arithmetic arithmetic this algorithm will produce an

orthogonal base Qk for Kk that also tridiagonalizes A. However,

in reality this orthogonality is usually lost in later iteration, owing

to round-off errors. In practical Lanczos algorithms some form of

reorthogonalizing step is therefore typically incorporated, see [16]

for more on this topic.

Originally, the Lanczos method was a procedure for tridiago-

nalizing a matrix A, it is however its connection to the eigenvalues

of A that makes it so interesting. Let θ(k) and s(k) denote the

solution to the resulting tridiagonal eigensystem Tks = θs after

k iterations. Since K1 ⊂ K2 ⊂ ... ⊂ Kn = R
n it follows from

the Cauchy interlacing theorem that

λ1 = λ1(A) = θ
(n)
1 ≤ ... ≤ θ

(2)
1 ≤ θ

(1)
1 . (42)

Consequently, a side effect of the Lanczos algorithm (5.1) is that

it will will produce a decreasing sequence of eigenvalues θ
(k)
1

that approaches λ1. A natural consequence is then to take θ(k)

and s(k) as approximations of the eigenvalues and eigenvectors

of A, with λ = θ(k) and v = Qks(k). By continuing the Lanczos

method, solving the k × k system Tks = θs at each iteration and

terminating when the norm of the residual (||(AQ−θ(k))s(k)||) is

sufficiently small, we can obtain eigenvalues that are arbitrarily

close to λ1. From computational point of view, a crucial property

here is also the tridiagonality of Tk, since such such eigensystems

can be solved extremely efficiently. This clearly motivates the use

of Krylov subspaces.

The Lanczos procedure 5.1 can easily be extended to handle

generalized eigenvalue problem for positive definite symmetric

matrices A and M . We present this algorithm here without any

further discussion, see [16].

Algorithm 5.2

Lanczos Method for Generalized Eigenvalue Problems

Begin with user supplied starting vector u0.

r0 = Mu0

β0 =
q

uT
0 r0

p0 = 0

for i = 1, 2, ... until convergence

qi = ui−1/βi−1 (1)

ūi = Aqi − pi−1βi−1 (2)

αi = qT
i ūi (3)

pi = ri/βi−1 (4)

ri = ūi − piαi (5)

ui = M−1ri (6)

βi =
q

uT
i ri (7)

end

This algorithm produces a base for Kk that tridiagonalizes A

as before but instead of being orthogonal, is M-orthogonal. That

is

QT
k AQk = Tk (43)

QT
k MQk = Ik, (44)

effectively reducing the generalized eigenvalue problem Ax =

λMx again into a tridiagonal eigensystem Tks = θs.

One of the major benefits of Lanczos methods is that the

entering matrices does not have to be directly defined, instead

they can be implicitly defined through operators that return how

A, M and M−1A acts upon arbitrary vectors, corresponding to

step (2) and (3) in algorithm (5.2). This makes this procedure

especially well suited for the type of large sparse and structured

matrices we deal with in this work.

VI. EFFICIENT OPTIMIZATION

A. Subgradient Optimization

First we present a method, similar to that used in [15] for

minimizing binary problems with quadratic objective functions,

based on subgradients for solving the dual formulation of our

relaxed problem. We start off by noting that as θ(t) is a pointwise

infimum of functions linear in t it is easy to see that this

is a concave function. Hence the outer optimization of (25)

is a concave maximization problem, as is expected from dual

problems. Thus a solution to the dual problem can be found by

maximizing a concave function in one variable t. Note that the

choice of norm does not affect the value of θ it only affects the

minimizer ŷ∗.

It is widely known that the eigenvalues are analytic (and

thereby differentiable) functions as long as they are distinct. Thus,

to be able to use a steepest ascent method we need to consider

subgradients. Recall the definition of a subgradient [2], [15].

Definition 1: If a function g : R
k+1 7→ R is concave, then

v ∈ R
k+1 is a subgradient to g at σ0 if

g(σ) ≤ g(σ0) + vT (σ − σ0), ∀σ ∈ R
k+1. (45)

One can show that if a function is differentiable then the derivative

is the only vector satisfying (45). We will denote the set of all

subgradients of g at a point t0 by ∂g(t0). It is easy to see that
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this set is convex and if 0 ∈ ∂g(t0) then t0 is a global maximum.

Next we show how to calculate the subgradients of our problem.

Lemma 1: If ŷ0 fulfills F (ŷ0, t0) = θ(t0) and ||ŷ0||
2
N

Ĉ
= n+1,

then

v =
ŷT
0 E

Ĉ
ŷ0

ŷT
0 M

Ĉ
ŷ0

(46)

is a subgradient of θ at t0. If θ is differentiable at t0, then v is

the derivative of θ at t0.

Proof: The statement follows from

θ(t) = min
||ŷ||2

N
Ĉ

=1

ŷT (L
Ĉ

+ tE
Ĉ

)ŷ

ŷT M
Ĉ

ŷ
≤

ŷT
0 (L

Ĉ
+ tE

Ĉ
)ŷ0

ŷT
0 M

Ĉ
ŷ0

=

ŷT
0 (L

Ĉ
+ t0E

Ĉ
)ŷ0

ŷT
0 M

Ĉ
ŷ0

+
ŷT
0 E

Ĉ
ŷ0

ŷT
0 M

Ĉ
ŷ0

(t − t0) =

= θ(t0) + vT (t − t0). (47)

1) A Subgradient Algorithm: Next we present an algorithm

based on the theory of subgradients. The idea is to find a simple

approximation of the objective function. Since the function θ is

concave, the first order Taylor expansion θi(t), around a point ti,

always fulfills fi(t) ≤ f(t). If ŷi solves inf ||ŷ||2
N

Ĉ
=n+1 F (ŷ, ti)

and this solution is unique then the Taylor expansion of θ at ti is

θi(t) = F (ŷi, ti) + vT (t − ti). (48)

Note that if ŷi is not unique fi is still an overestimating function

since v is a subgradient.

One can assume that the function θi approximates θ well

in a neighborhood around t = ti if the smallest eigenvalue is

distinct. If it is not we can expect that there is some tj such that

min(θi(t), θj(t)) is a good approximation. Thus we will construct

a function θ̄ of the type

θ̄(t) = inf
i∈I

F (ŷi, ti) + vT (t − ti) (49)

that approximates θ well. That is, we approximate θ with the

point-wise infimum of several first-order Taylor expansions, com-

puted at a number of different values of t, an illustration can be

seen in Fig. 1. We then take the solution to the problem supt θ̄(t),

given by

supt,α α

α ≤ F (ŷi, ti) + vT (t − ti), ∀i ∈ I, tmin ≤ t ≤ tmax
(50)

as an approximate solution to the original dual problem. Here,

the fixed parameters tmin, tmax are used to express the interval

for which the approximation is believed to be valid. Let ti+1

denote the optimizer of (50). It is reasonable to assume that θ̄

approximates θ better the more Taylor approximations we use in

the linear program. Thus, we can improve θ̄ by computing the

first-order Taylor expansion around ti+1, add it to (50) and solve

the linear program again. This is repeated until |tN+1 − tN | <

ǫ for some predefined ǫ > 0, and tN+1 will be a solution to

supt θ(t).

2) Initialization: In order for the problem (50) to have a

meaningful (finite) solution the set I needs to have at least size

two. Further more, since the function is concave, there must be

i ∈ I and j ∈ I (i 6= j) such that ti ≤ t∗ ≤ tj , where t∗ is

the optimal solution. In order to achieve this we will start the

algorithm by using the asymptotic behavior of θ(t).

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.08

−0.06

−0.04

−0.02

0

 

 

Objective function
Approximation
Global optima

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.08

−0.06

−0.04

−0.02

0

 

 

Objective function
Approximation
Global optima

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.08

−0.06

−0.04

−0.02

0

 

 

Objective function
Approximation
Global optima

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.08

−0.06

−0.04

−0.02

0

 

 

Objective function
Approximation
Global optima

Fig. 1. Approximations of a randomly generated objective function after the
first four iterations of the algorithm.

Let h+ = at+b and h− = ct+d be the asymptote as t → ±∞

respectively. To find a we need to compute the limit value of
θ(t)

t

as t → ∞.

a = lim
t→∞

θ(t)

t
= lim

t→∞

1

t

 

min
ŷ

ŷT (L
Ĉ

+ tE
Ĉ

)ŷ

ŷT M
Ĉ

ŷ

!

= (51)

= lim
t→∞

min
ŷ

 

1

t

ŷT L
Ĉ

ŷ

ŷT M
Ĉ

ŷ
+

ŷT E
Ĉ

ŷ

ŷT M
Ĉ

ŷ

!

= (52)

= min
ŷ

ŷT E
Ĉ

ŷ

ŷT M
Ĉ

ŷ
= λ1(EĈ

, M
Ĉ

) =
ŷT
1 E

Ĉ
ŷ1

ŷT
1 M

Ĉ
ŷ1

(53)

Similarly for the asymptote at −∞ we get

c = lim
t→−∞

θ(t)

t
= λ1(−E

Ĉ
, M

Ĉ
) = (54)

= λn(E
Ĉ

, M
Ĉ

) =
ŷT
n E

Ĉ
ŷn

ŷT
n M

Ĉ
ŷn

(55)

where λ1 and λn are the smallest and largest generalized eigen-

values of (E
Ĉ

, M
Ĉ

), the corresponding eigenvectors are denoted

ŷ1 and ŷn.

Finding b requires us to compute limt→∞ θ(t) − at.

b = lim
t→∞

θ(t) − at = lim
t→∞

 

min
ŷ

ŷT (L
Ĉ

+ tE
Ĉ

)ŷ

ŷT M
Ĉ

ŷ

!

(56)

−
ŷT
1 E

Ĉ
ŷ1

ŷT
1 M

Ĉ
ŷ1

t =
ŷT
1 L

Ĉ
ŷ1

ŷT
1 M

Ĉ
ŷ1

(57)

And d becomes

d = lim
t→−∞

θ(t) − ct =
ŷT
n L

Ĉ
ŷn

ŷT
n M

Ĉ
ŷn

(58)

Thus initializing the algorithm only requires finding the ex-

tremal eigenvalues for the pencil (E
Ĉ

, M
Ĉ

). As this does not

involve the Laplacian matrix L
Ĉ

this eigenproblem can be solved

very little computational effort.

B. A Second Order Method

The algorithm presented in the previous section uses first order

derivatives only. We would however like to employ higher order
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methods to increase efficiency. This requires calculating second

order derivatives of (25). Most formulas for calculating the second

derivatives of eigenvalues involves all of the eigenvectors and

eigenvalues. However, determining the entire eigensystem is not

feasible for large scale systems. We will show that it is possible

to determine the second derivative of an eigenvalue function by

solving a certain linear system only involving the corresponding

eigenvalue and eigenvector.

The generalized eigenvalues and eigenvectors fulfill the follow-

ing equations,

((L
Ĉ

+ tE
Ĉ

) − λ(t)M
Ĉ

)ŷ(t) = 0 (59)

||ŷ(t)||2N
Ĉ

= n + 1. (60)

To emphasize the dependence on t we write λ(t) for the

eigenvalue and ŷ(t) for the eigenvector. By differentiating (59)

one obtains

(E
Ĉ
− λ′(t)M

Ĉ
)ŷ(t) + ((L

Ĉ
+ tE

Ĉ
) − λ(t)M)ŷ′(t) = 0. (61)

This (k + 1) × (k + 1) linear system in ŷ′(t) will have a rank

of k, assuming λ(k) is a distinct eigenvalue. To determine ŷ′(t)

uniquely we differentiate (60), obtaining

ŷT (t)N
Ĉ

T N
Ĉ

ŷ′(t) = 0. (62)

Thus, the derivative of the eigenvector ŷ′(t) is determined by the

solution to the linear system

h
(L

Ĉ
+tE

Ĉ
)−λ(t)M

Ĉ

ŷT (t)N
Ĉ

T N
Ĉ

i

ŷ′(t) =
h

(−E
Ĉ

+λ′(t)M
Ĉ

)ŷ(t)
0

i

. (63)

If we assume differentiability at t, the second derivative of θ(t)

can now be found by computing d
dtθ

′(t), where θ′(t) is equal to

the subgradient v given by (46),

θ′′(t) =
d

dt
θ′(t) =

d

dt

ŷ(t)T E
Ĉ

ŷ(t)

ŷ(t)T M
Ĉ

ŷ(t)
(64)

=
2

ŷ(t)T M
Ĉ

ŷ(t)
ŷT (t)

`
E

Ĉ
− θ′(t)M

Ĉ

´
ŷ′(t). (65)

1) A Modified Newton Algorithm: Next we modify the algo-

rithm presented in the previous section to incorporate the second

derivatives. Note that the second order Taylor expansion is not

necessarily an over-estimator of θ. Therefore we can not use the

the second derivatives as we did in the previous section.

Instead, as we know θ to be infinitely differentiable when the

smallest eigenvalue λ(t) is distinct, strictly convex around its

optimum t∗, Newton’s method for unconstrained optimization can

be applied. It follows from these properties of θ(t) that Newton’s

method [2] should be well behaved on this function and that

we could expect quadratic convergence in a neighborhood of

t∗. All of this, under the assumption that θ is differentiable in

this neighborhood. Since Newton’s method does not guarantee

convergence we have modified the method slightly, adding some

safeguarding measures.

At a given iteration of the Newton method we have evaluated

θ(t) at a number of points ti. As θ is concave we can easily

find upper and lower bounds on t∗, denoted by tmin, tmax, by

looking at the derivative of the objective function for these values

of t = ti,

tmax = min
i;θ′(ti)≤0

ti, and tmin = max
i;θ′(ti)≥0

ti. (66)

At each step in the Newton method, a new iterate is found by

approximating the objective function is by its second-order Taylor

approximation

θ(t) ≈ θ(ti) + θ′(ti)(t − ti) +
θ′′(ti)

2
(t − ti)

2
(67)

and finding its maximum. By differentiating (67) it is easily shown

that its optimum, as well as the next point in the Newton sequence,

is given by

ti+1 = −
θ′(ti)

θ′′(ti)
+ ti. (68)

If ti+1 is not in the interval [tmin, tmax] then the second

order expansion can not be a good approximation of θ, here the

safeguarding comes in. In these cases we simply fall back to

the first-order method of the previous section. If we successively

store the values of θ(ti), as well as the computed subgradients at

these points, this can be carried out with little extra computational

effort. Then, the upper and lower bounds tmin and tmax are

updated, i is incremented by 1 and the whole procedure is

repeated, until convergence.

If the smallest eigenvalue λ(ti) at an iteration is not distinct,

then θ′′(t) is not defined and a new Newton step can not be

computed. In these cases we also use the subgradient gradient

method to determine the subsequent iterate. However, empirical

studies indicate that non-distinct smallest eigenvalues are ex-

tremely unlikely to occur.

C. Approximating Derivatives of Eigenvalues and Eigenvectors

The use of second order derivatives for maximizing (25), as

discussed in the previous section, should significantly reduce

the number of required iterations. The algebraic expression for

θ′′(t) in (65) does have a significant disadvantage. It requires

solution of a very large linear system (63), this task can be as

demanding as determining the smallest generalized eigenvalue of

(L
Ĉ

+ tE
Ĉ

, M
Ĉ

).

This means that we reduce the number of iterations but also

increase the computational effort needed at each step. In this

section we discuss how one can compute an approximation of

the second derivative of the smallest eigenvalue.

The underlying idea is best explained by, instead of (63),

looking at the unconstrained optimization problem

min
x

xT (L
Ĉ

+ tE
Ĉ
− λM

Ĉ
)x − 2bT x. (69)

Since (L
Ĉ

+ tE
Ĉ
− λM

Ĉ
) º 0 and (L

Ĉ
+ tE

Ĉ
− λM

Ĉ
)v = 0, a

solution to this problem is given by x∗ = (L
Ĉ

+ tE
Ĉ
−λM

Ĉ
)+b,

for which vT x∗ = 0 , thus minimizing (69) is equivalent to

solving (63).

If we now constrain the above program to some m-dimensional

linear subspace P of R
n we get

min
x∈P⊆Rn

xT (L
Ĉ

+ tE
Ĉ
− λM

Ĉ
)x − 2bT x. (70)

Letting U be a base for P we can write (70) as

min
y∈Rm

yT UT (L
Ĉ

+ tE
Ĉ
− λM

Ĉ
)Uy − 2bT Uy. (71)

The optima of this problem y∗ will most likely not be equal

to x∗ and will hence only be an approximate solution to (70).

From the equivalence to problem (63), y∗ can consequently also

be regarded as an approximate solution to that linear system. We
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have that (x∗)T (L
Ĉ

+tE
Ĉ
−λM

Ĉ
)x∗−2bT x∗ ≤ (y∗)T UT (L

Ĉ
+

tE
Ĉ
− λM

Ĉ
)Uy∗ − 2bT Uy∗, obviously with equality if m = n.

How well the solution to (71) approximates (63) will clearly

depend on the subspace P , so a great deal of care is needed

when choosing U . Ideally, the resulting system should also one

that can be solved with relative ease. It turns out that the base

for the Krylov space Qk associated with the matrices L
Ĉ

+

tE
Ĉ

and M
Ĉ

is a good choice. As this base is has already

been computed when determining the generalized eigenvalues of

(L
Ĉ

+tE
Ĉ

, M
Ĉ

) no additional work is needed. Recalling that Qk

simultaneously tridiagonalizes both L
Ĉ

+ tE
Ĉ

and M
Ĉ

, that is

QT
k (L

Ĉ
+ tE

Ĉ
)Qk = Tk and QT

k M
Ĉ

Qk = I, inserting Qk into

(71) gives

min
y∈Rm

yT QT
k (L

Ĉ
+ tE

Ĉ
− λM

Ĉ
)Qky − 2bT Qky = (72)

= yT (Tk − λI)y − 2bT Qky. (73)

A solution to this problem is given by y∗ = (Tk − λI)+QT
k b,

with x̃ = Qky an approximate solution to (70) will then be

x̃ = QT
k (Tk − λI)+QT

k b. (74)

Since typically k << n, we now have not only a much smaller

problem but also one that is tridiagonal, such systems can be

solved extremely efficiently.

Combining (74) with (65) we can give a formulation for an

approximation of the second derivative of our objective function

(25).

θ̃′′k (t) = −bT x̃ = (75)

=
−2

vT Mv
vT (λ′M − E)T Qk(Tk − λI)+QT

k (λ′M − E)v (76)

Since v = Qks and (Tk − λI)s = 0 we can simplify this

expression to

λ̃′′
k(t) =

−2

vT Mv
vT ET Qk(Tk − λI)+QkEv (77)

We can now use the approximation of θ′′(t) in the Newton-

like method of section VI-B.1 in order to maximize the concave

Lagrangian dual function (25). However since we now only have

an overestimating approximation of θ′′(t) we can not be certain

of how this method will now behave. In the following section

we will show experimentally that the approximation of θ′′(t) still

results in an efficient algorithm.

VII. EXPERIMENTAL VALIDATION

The experiments are divided into two separate parts. The first

one evaluates the proposed reformulation of Normalized Cuts and

linear grouping constraints. The second part evaluates the different

numerical methods, discussed previously, for efficiently solving

the resulting optimization problem.

A. Normalized Cuts Reformulation and Linear Grouping Con-

straints

A number of experiments were conducted to evaluate our

proposed formulation but also to illustrate how relevant visual

information can be incorporated into the segmentation process

through non-homogeneous, linear constraints and how this can

influence the partitioning.

All images were gray-scale of approximately 100-by-100 pixels

in size. The affinity matrix was calculated based on edge infor-

mation, as described in [14]. The one-dimensional maximization

over t was carried out using a golden section search, typically

requiring 15− 20 eigenvalue calculations. The relaxed solution z

was discretized by simply thresholding at 0.

Firstly, we compared our approach with the standard Nor-

malized Cut method, Fig. 2. Both approaches produce similar

Fig. 2. Image segmentation using the standard Normalized Cut algorithm
(left) and the reformulated Normalized Cut algorithm with no constraints
(right).

results, suggesting that in the absence of constraints the two

formulations are equivalent. However, where our approach has

the added advantage of being able to handle linear constraints.

The simplest such constraint might be the hard coding of some

pixels, i.e. pixel i should belong to a certain class. This can be

expressed as the linear constraints zi = ±1, i = 1, . . . , m. In

Fig. 3 it can be seen how a number of such hard constraints

influences the segmentation of the image in Fig. 2.

Fig. 3. Image segmentation with constraints (left) and constraints applied
(right).

Another visually significant prior is the size or area of the

resulting segments, that is, constraints such as
P

i zi = 1T z = a.

The impact of enforcing limitations on the size of the partitions

is shown in Fig. 4.

Excluding and including constraints such as, pixel i and j

should belong to the same or separate partitions, zi + zj = 0

or zi − zj = 0, is yet another meaningful constraint. The result

of including a combination of all the above types of constraints

can be seen in Fig. 5.

Finally, we also performed a multi-class segmentation with

linear constraints, Fig. 6.

We argue that these results, not only indicate a satisfactory

performance of the suggested method, but also illustrate the

relevance of linear grouping constraints in image segmentation

and the impact that they can have on the resulting partitioning.

These experiments also indicate that even a simple rounding

scheme as the one used here can often suffice. As we threshold
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Fig. 4. Original image (top left), segmentation without constraints (top
middle) and segmentation boundary and constraints applied (top right). Seg-
mentation with area constraints, (area=100 pixels) (middle left), segmentation
boundary and constraints applied (middle right). Segmentation with area
constraints, (area=2000 pixels) (bottom left), segmentation boundary and
constraints applied (bottom right).

at zero, hard, including and excluding constraints are all ensured

to hold after discretizing. Only the area constraints are not

guaranteed to hold, however, since the relaxed solution has the

correct area, thresholding it typically produces a discrete solution

with roughly the correct area.

B. Numerical Experiments

In this section a number of experiments were conducted in an

attempt to evaluate the suggested numerical approaches. As we

are mainly interested in maximizing a concave, piece-wise differ-

entiable function, the underlying problem is actually somewhat

irrelevant. However, in order to emphasize the intended practical

application of the proposed methods, we ran the subgradient- and

modified Newton algorithms on both smaller, synthetic problems

as well as on larger, real-world data. For comparison purposes

we also include the results of a golden section method [2], used

in [9], as a baseline algorithm.

First, we evaluated the performance of the proposed methods

on a large number of synthetic problems. These were created

by randomly choosing symmetric, positive definite, 100 × 100

matrices. As the computational burden lies in determining the

generalized eigenvalue of the matrix pencil (L
Ĉ

+ tE
Ĉ

, M
Ĉ

) we

wish to reduce the number of such calculations. Fig. 7 shows the

required number of eigenvalue evaluations for the subgradient

method, the Newton method and its approximation, as well as

the baseline golden section search.

The two Newton methods clearly outperform the subgradient

approach and golden section search. The difference between the

standard Newton and the approximate Newton methods is not

as discernible. It appears that the approximation of the first and

second order derivatives of the smallest generalized eigenvalue

produced by the base of the Krylov space is sufficiently accurate

to ensure fast convergence.

Fig. 5. Original image (top left), segmentation without constraints (top mid-
dle), segmentation boundary and constraints applied (top right). Segmentation
with hard, including and excluding, as well as area constraints, (area=25% of
the entire image) (middle left), segmentation boundary and constraints applied
(middle right). Segmentation with constraints, (area=250 pixels) (bottom left),
segmentation boundary and constraints applied (bottom right). Here a solid
line between two pixels indicates an including constraint, and a dashed line
an excluding.

Fig. 6. Original image (top left), three-class segmentation without constraints
(top middle), segmentation boundary (top right). Three-class segmentation
with hard, including and excluding constraints (bottom left), segmentation
boundary and constraints applied (bottom right).

Finally, we applied our methods to two real world examples.

The underlying motivation for investigating an optimization prob-

lem of this form was to segment images with linear constraints

using Normalized Cuts. The first image used was the same as

in Fig. 3. The linear constraints included were hard constraints,

that is, the requirement that that certain pixels should belong to

the foreground or background. The second image is of a traffic

intersection where one wishes to segment out the small car in the

top corner. We have a probability map of the image, giving the

likelihood of a certain pixel belonging to the foreground. Here

the graph representation is based on this map instead of the gray-

level values in the image. The approximate size and location

of the vehicle is known and included as linear constraint into

the segmentation process. The resulting partition can be seen in
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Fig. 7. The average number of eigenvalue evaluations required by the
different algorithms, as a function of tolerance, for 100 synthetically generated
experiments.

Fig. 9.

In both these real world cases, the resulting segmentation will

always be the same, regardless of approach. What is different

is the computational complexity of the different methods. Once

again, the two gradient based approaches are much more efficient

than a golden section search, and their respective performance

comparable. As the methods differ in what is required to compute,

a direct comparison of them is not a straight forward procedure.

Comparing the run time would be pointless as the degree to

which the implementations of the individual methods have been

optimized for speed differ greatly. However, as it is the eigen-

value computations that are the most demanding we believe that

comparing the number of such eigenvalue calculations will be a

good indicator of the computational requirements for the different

approaches. It can be seen in Fig. 8 and 9 how the subgradient

methods converge quickly in the initial iterations only to slow

down as it approaches the optimum. This is in support of the

above discussion regarding the linear appearance of the function

θ(t) far away from the optimum. We therefore expect the modified

Newton method to be superior when higher accuracy is required.

In conclusion we have proposed three methods for efficiently

optimizing a piece-wise differentiable function using both first-

and second order information applied to the task of partitioning

images. Even though it is difficult to provide a completely accu-

rate comparison between the suggested approaches it is obvious

that the Newton based methods are superior.

VIII. CONCLUSIONS

We have presented a reformulation of the classical Normalized

Cut problem that allows for the inclusion of linear grouping

constraints into the segmentation procedure, through a Lagrangian

dual formulation. A method for how to efficiently find such a cut,

even for very large scale problems, has also been given. A number

of experiments as well as a theoretical proof were also supplied

in support of these claims.

Improvements to the presented method include, firstly, the one-

dimensional search over t. As the dual function is the point-wise

infimum of the eigenvalues of a matrix, it is sub-differentiable and

utilizing this information should greatly reduce the time required

for finding t∗. Then, an issue that was left open in this work is the

rounding scheme. The relaxed solution z is currently discretized
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Fig. 8. Top: Resulting segmentation (left) and constraints applied (right).
Here an X means that this pixel belongs to the foreground and an O
to the background. Bottom: Convergence of the modified Newton (solid),
subgradient (dashed) and the golden section (dash-dotted) algorithms. The
algorithms converged after 9, 14 and 23 iterations, respectively.

by simple thresholding at 0. Even though we can guarantee that

z prior to rounding fulfills the linear constraints, this is not

necessarily true after thresholding and should be addressed. For

simpler constraints, as the ones used here, rounding schemes that

ensure that the linear constraints hold can easily be devised. An

in-depth discussion on different procedures for discretization is

outside the scope of the present paper.

Finally, the question of properly initializing the multi-class

partitioning should also be investigated as it turns out that this

choice can affect both the convergence speed and the final result.
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