
Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

 

 

 

 

 

 

 

Sun, B., Welsh, S.S., Edgar, M.P., Shapiro, J.H., and Padgett, 

M.J. (2012) Normalized ghost imaging. Optics Express, 20 (15). p. 

16892. ISSN 1094-4087 

 

Copyright © 2012 The Optical Society of America 
 

A copy can be downloaded for personal non-commercial research or 

study, without prior permission or charge 

 

The content must not be changed in any way or reproduced in any format 

or medium without the formal permission of the copyright holder(s) 

 

 

 

 

http://eprints.gla.ac.uk/73854/ 

 

 

 

 
Deposited on: 9 December 2013 

 
 

http://eprints.gla.ac.uk/view/author/18401.html
http://eprints.gla.ac.uk/view/author/27750.html
http://eprints.gla.ac.uk/view/author/15561.html
http://eprints.gla.ac.uk/view/author/10309.html
http://eprints.gla.ac.uk/view/author/10309.html
http://eprints.gla.ac.uk/view/journal_volume/Optics_Express.html


Normalized ghost imaging

Baoqing Sun,1,∗ Stephen S. Welsh,1 Matthew P. Edgar,1

Jeffrey H. Shapiro,2 and Miles J. Padgett1

1School of Physics and Astronomy, SUPA, University of Glasgow, G12 8QQ, UK
2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, USA
∗sunbaoqing727@gmail.com

www.gla.ac.uk/schools/physics/research/groups/optics/

Abstract: We present an experimental comparison between different

iterative ghost imaging algorithms. Our experimental setup utilizes a spatial

light modulator for generating known random light fields to illuminate a

partially-transmissive object. We adapt the weighting factor used in the

traditional ghost imaging algorithm to account for changes in the efficiency

of the generated light field. We show that our normalized weighting

algorithm can match the performance of differential ghost imaging.

© 2012 Optical Society of America

OCIS codes: (030.4280) Noise in imaging systems; (030.6140) Speckle; (110.1650) Coher-

ence imaging; (200.1130) Algebraic optical processing.
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1. Introduction

Classical ghost imaging (GI) [1–5] uses a series of random light patterns to illuminate an un-

known object. For each pattern the reflected or transmitted light is measured using a single
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element detector. The series of single element measurements, combined with the known light

patterns is used to deduce the object. In some systems the random light pattern is produced as

a time varying laser speckle, and a beam splitter is used to illuminate both the unknown object

and a reference camera, with which the pattern is recorded. Subsequently, the need for the beam

splitter and camera has been removed by implementing a spatial light modulator (SLM) to pro-

duce a random, but known, pattern thereby reducing the number of components in the system

necessary for GI experiments [6, 7]. This latter approach is known as computational GI and in

terms of the experimental arrangement is closely related to the field of single pixel cameras [8].

In all approaches to GI an algorithm is employed to deduce the object using the series of

measurements from the single element detector and either the recorded or computationally

predicted random patterns. The algorithms employed fall into two categories, iterative ones

that give a refined estimate of the object after every new light pattern and measurement, and

inversion ones which infer an object based on the entire series of patterns and measurements.

Iterative algorithms use the measured signal to derive a weighting factor to the correspond-

ing pattern that is then added to the iterative estimate of the object. In this paper we compare

a number of these iterative algorithms within the context of computational GI. The algorithms

we consider are traditional GI (TGI) and differential GI (DGI) [9]. In a computational GI setup,

TGI uses a weighting factor equal to the signal from the detector whereas DGI utilizes a weight-

ing factor that depends on fluctuations in the measured signal and uses an additional detector to

give a normalization. Beyond these two algorithms we introduce a variant of the TGI algorithm,

normalized GI (NGI), which we show can match the performance of DGI.

Key to all these algorithms is that the changes in the measured signal should arise from the

overlap of the known random pattern with the unknown object. Obviously other sources of

signal change are possible; including fluctuations arising from changes in the source intensity

and changes in the efficiency with which the pattern is imprinted. These later sources of noise

scale with the signal level and hence become more significant when the signal is high.

2. Experimental setup

The experimental setup is shown in Fig. 1. Here a random light pattern is generated from a

simulated superposition of plane waves using random numbers, which is then sent to an SLM

to produce a synthesized speckle field. The SLM has 512× 512 pixels in the window of size
3.584×3.584mm.We pass a collimated laser of wavelength λ = 632.8nm through a polarizing
beam splitter and a half-wave plate, before illuminating the SLM window. The speckle field is

generated by modulation of the SLM and the returning light field is then magnified by a simple

telescope system consisting of 150mm and 450mm biconvex lenses. The object is located at

the focus plane of the 450mm lens, which is also the image plane of the SLMwindow. A 50 : 50

beam splitter is placed before the object in order to split the speckle field into two beams; the

object beam (I(xS)) and the reference beam (I(xR)). The object beam illuminates the object and
is then collected by a bucket detector, thus providing an computational GI setup. The additional

reference beam for monitoring the light differentiates our system from previous experimental

computational GI configurations. Since we are generating a computer hologram that is then sent

to the SLM to create the speckle field, we can therefore predict the light field at the reference

arm, negating the demand for a CCD camera, and requiring only a second bucket detector.

It should be noted that for TGI based on our computational GI setup, only the object bucket

detector is needed. The additional bucket detector in the reference arm is only required for NGI

and DGI. Light intensities detected by the object and reference bucket detectors are indicated

by S and R respectively, and the speckle field is described by I(x,y). As we use a 50 : 50 beam
splitter, it is understood that I(x,y) = 2I(xS,yS) = 2I(xR,yR).

(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16893



633nm

laser

SLM

450 mm150 mm

BS1 BS2
S

R

Fig. 1. Computational ghost imaging setup used in the experiment. A spatial light modula-

tor (SLM) is used to generate a random speckle field, as described in the text and a beam

splitter (BS) is used to measure a reference signal R on a bucket detector before the object.

The signal, S, is measured on a bucket detector which collects the light transmitted after

the object.

3. Iterative ghost imaging algorithms

In all iterative GI techniques, the transmitting object located after the beam splitter, BS2, is re-

constructed by correlating the speckle field intensity measured at S and R, then adding together

each successive frame with a suitable weighting factor. The transmitted light power detected

after the object can be expressed as

S=

∫

Al

I(xS,yS)T (xS,yS)dxSdyS, (1)

where the laser area is Al and T (xS,yS) is the (intensity) object transmission function, while the
background reference is expressed as

R=

∫

I(xR,yR)dxRdyR. (2)

3.1. Traditional Ghost Imaging

In TGI, the reconstruction result of the object, O(x,y) is retrieved from the correlation between
S and I(x,y). We define for each iteration, i, the contribution to the reconstruction to be [7]

Oi(x,y) = (S−〈S〉)(I(x,y)−〈I(x,y)〉) , (3)

where < . >≡ 1
M

Σr denotes an ensemble average for M iterations. We obtain the final recon-

struction by averaging over all iterations such that O(x,y) = 〈Oi(x,y)〉. It is easy to under-
stand the reconstruction as being derived from the weighted sum of the speckle field for each

measurement. Therefore S is the weight for the speckle field for each measurement. One draw-

back of using this algorithm is that the reconstruction is heavily weighted to the size of the

signal S and is thus susceptible to fluctuations in the generated light field. These fluctuations

can arise from either changes to the laser power or the efficiency of the SLM in computational

GI.
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3.2. Differential ghost imaging

Differential GI [9], first performed by Ferri et al, utilizes a second bucket detector to extract

a reference signal which is used in the reconstruction to weight the speckle field based on the

average transmission signal relative to the average reference signal. Similarly, each contribution

to the reconstruction can be expressed as

Oi(x,y) =

(

S−
〈S〉

〈R〉
R

)

(I(x,y)−〈I(x,y)〉) . (4)

Thus we obtain the final result by summing for all iterations. We observe the second term in

brackets on the right hand side of Eq. (3) and Eq. (4) are both identical however the first term

in brackets of Eq. (4) is now weighted according to the average value of S, which is normalized

to the average value of R. As demonstrated in [9] the DGI algorithm improves by order of

magnitude the SNR of the measurement with respect to TGI. Moreover, a key difference from

TGI, it is no longer sensitive to other sources of noise. For example, fluctuations in the laser

power or changes to the SLM efficiency will affect both the reference signal and the transmitted

signal, and thus the contribution to the reconstruction will be weighted more appropriately.

3.3. Normalized ghost imaging

3.3.1. Normalized ghost imaging with two detectors

As seen in Eq. (4), larger values of Smeasured by the bucket detector results in a greater weight

for that particular speckle field, therefore external noise sources can still affect the overall re-

construction. There exists another iterative algorithm which instead normalizes each individual

measurement S, as well as the running average, according to the reference signal R, resulting

in an arguably more intuitive approach for dealing with time varying noise sources. We call

this approach normailized GI (NGI). The algorithm used to describe each contribution to the

reconstruction in NGI is given by

Oi(x,y) =

(

S

R
−

〈S〉

〈R〉

)

(I(x,y)−〈I(x,y)〉) , (5)

where we have assumed
〈S〉
〈R〉 ≈

〈

S
R

〉

for a large number of measurements. By considering Eqs.

(4) and (5) we can summarize the difference between the two algorithms as

〈O(x,y)NGI〉=
1

〈R〉
〈O(x,y)DGI〉 . (6)

3.3.2. Normalized ghost imaging with a single detector

In a computational GI setup, we can show that the additional detector used to measure the ref-

erence signal in DGI and NGI can instead be estimated based on the known light field reflected

from the SLM and the average measured signal S for an arbitrary number of previous iterations.

Calculating R negates the requirement for an additional detector, whilst improving the perfor-

mance of the reconstruction compared to TGI, thus single-detector NGI (SNGI) is identical to

the TGI experimental setup, with only a modified algorithm.

3.4. Signal-to-noise ratio analysis

To make a quantitative comparison between the NGI and the existing algorithms, we adopt

a similar approach as used by Ferri et al and investigate the theoretical contribution to the

signal-to-noise ratio (SNR) for objects with varying transmission functions. In [9] the authors
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(a) (b)

Fig. 2. (a) A typical speckle pattern hologram. (b) The measured intensity distribution of

the speckle pattern (blue) and an exponential curve (red).

express the average quantity of Eq. (4) in terms of the object transmission fluctuation δT (x,y)=
T (x,y)−T ,

〈O(x,y)DGI〉= As 〈I〉
2

δT (x,y), (7)

where As is the average speckle area and T =
∫

Al
〈I(x,y)〉T (x,y)dxdy/

∫

Al
〈I(x,y)〉dxdy is the

average transmission function of the object. Note that Eq. (7) is obtained under the assump-

tions of uniform illumination (the average speckle beams are constant over their area) and

perfect resolution (the speckle area is much smaller compared to features of the object). The

corresponding signal of DGI can be defined as

(∆〈ODGI〉)
2 = As

2
〈I〉4 (∆T )2, (8)

where ∆T is the variation of the object transmission function to be detected. Similarly, using

Eq. (6), we can express the signal of NGI as

(∆〈ONGI〉)
2 = As

2 〈I〉
4

〈R〉2
(∆T )2. (9)

The speckle patterns used in our experiment exhibit complex-Gaussian behaviour, such that

the intensity is exponentially distributed (see Fig. 2), and the noise associated to the measure-

ment of O(x,y) can be expressed as

〈

δO2(x,y)
〉

=
〈

O(x,y)2
〉

−〈O(x,y)〉2 , (10)

for which it can be shown that 〈O(x,y)〉= 0, thus the second term on the right hand side (RHS)
of in Eq. (10) may be omitted. Again, under the assumptions of uniform illumination and perfect

resolution, the noise of DGI can be expressed as

〈

O2DGI
〉

≈ AsAl 〈I〉
4

δT 2, (11)

where δT 2= T 2−T
2
and T 2=

∫

Al
〈I(x,y)〉T 2(x,y)dxdy/

∫

Al
〈I(x,y)〉dxdy. Using linearization

we can write
S

R
≈

〈S〉

〈R〉

(

1+
δS

〈S〉
−

δR

〈R〉

)

, (12)
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where δS and δR are the zero-mean deviation of S and R, thus the noise of NGI is shown to be

〈

O2NGI
〉

≈ AsAl
〈I〉4

〈R〉2
δT 2. (13)

Finally, we show that the SNR contribution for NGI is

SNRNGI = SNRDGI =
M

Nspeckle

∆T 2

δT 2
, (14)

where Ns = Al/As is the number of speckles in the field. The SNR contribution for NGI is found
to be identical to that of the DGI algorithm derived in [9]. For comparison the SNR contribution

for TGI was shown to be

SNRTGI =
M

Nspeckle

∆T 2

T 2
. (15)

Therefore we can examine the difference between the NGI (or DGI) and TGI algorithms by

obtaining the ratio of SNR calculations, given as

SNRNGI

SNRTGI
= 1+

T
2

T 2−T
2
. (16)

As highlighted by Ferri et al, the difference is always greater than 1 and dependent only upon

the variation in the object transmission function.

4. Experiment results

We generated a series of random speckle patterns using an SLM by simulating the interference

of many plane waves on a computer. The real and imaginary amplitude components and the

wave vector !k of each simulated plane wave is Gaussian distributed. Figure 2 shows a typi-

cal example of the speckle patterns generated on the SLM and the exponentially distributed

intensity for many patterns, implying that the speckle hologram has complex-Gaussian statis-

tics, thereby a good approximation for real speckle fields [10]. A binary transmissive object,

5mm× 5mm in size, is located after a 3× magnification telescope in the image plane of the

SLM. Since we know both the object and the random speckle field projected to the SLM, we

are able to simulate the expected results for comparison with our experiment. Experimental and

simulated reconstruction results after 10000 iterations are shown in Fig. 3. The simulated re-

construction is produced assuming no external noise sources. The partially transmissive object

used is indicated in the bottom right of Fig. 3. It is clear that the DGI and NGI algorithms

provide very similar results, as predicted from the theory, and both show improved background

subtraction compared to TGI.

Compared with the traditional computational GI setup, the NGI algorithm requires a refer-

ence bucket detector. However, as discussed in section 3.3.2, the advantage of computational

GI means that we can replace this bucket detector with a virtual reference detector generating

a simulated R. Thus we can negate the requirement for the reference detector and return the

system to a true single element camera, which we call single-detector NGI (SNGI). The two

major factors that dominate the value of R are from the different speckle patterns displayed on

the SLM and fluctuations of the incident laser power. We can computationally predict changes

to the value of R due to the speckle pattern, whereas fluctuations of the laser power can be sim-

ulated by using a rolling average for a particular series of S measurements. The bottom row in

Fig. 3 shows the experimental results for reconstructing the object using the SNGI algorithm.
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simulationexperimentalgorithm
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10000100010010

Fig. 3. Experimental results (middle column) for TGI, DGI and NGI reconstruction algo-

rithms as they evolve (10, 100, 1000 and 10000 iterations from left to right, respectively)

with the corresponding simulated results (right column). The transmissive object is shown

in the lower right. The bottom row shows the evolution for reconstructing the object with

the NGI algorithm using a single detector and predicting the reference signal R, termed

here the SNGI algorithm.

We observe similar results compared with DGI and NGI algorithms indicating an improved

performance compared with the TGI algorithm for single element camera.

To demonstrate the effect of object transmission function on the performance of NGI com-

pared with TGI and DGI algorithms we used a similar experimental approach to that in Ref. [9].

By scanning a knife edge (located in the image plane of the SLM, as before) across the speckle

field in well defined steps (for which ∆T = 1), we measured the SNR’s for the final object recon-
struction obtained after 5000 random speckle iterations. The beam size used was 10× 10mm
and the speckle size at the plane of the object was found to be δs ∼ 90µm, providing around

Ns∼ 12500 speckles. The experimental results and theoretical predictions for the SNR’s of each
iterative algorithm are shown in Fig. 4. Note that the y-axis has been normalized to the number

of iterations. We observe close quantitative agreement between the theory and the measure-

ments. The results indicate that for low transmissive objects, all algorithms reconstruct with

similar SNR, while for more transmissive objects the DGI and NGI algorithms become more

efficient in comparison to TGI due to the differential nature of the reconstruction. Further-

more, we observe that when using a single detector, SNGI is a more efficient algorithm for

reconstructing objects of all transmissions compared to TGI. We observe that for increasing

transmissive objects SNGI becomes less efficient than NGI, for which the reason is the subject

of ongoing research. Similar to [9], we find a systematic discrepancy between the experimental

results of TGI and the theoretical predictions.
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Fig. 4. Signal-to-noise ratio’s for DGI, NGI, SNGI and TGI versus transmitting area. Trans-

mitting ratio is defined as the ratio between the transmitting area of the object and the area

of the speckle field.

5. Normalization in matrix inverse algorithms

5.1. Introduction to matrix inverse algorithms and compressive sensing

As an alternative to the iterative techniques discussed above, we can choose to record all the

signals for a complete set of speckle patterns and then treat the image reconstruction as one of

matrix inversion. The series ofM speckle patterns, each containing N pixels can be represented

by a M×N matrix. If the object is also represented as an N element column vector, then the

vector containing the measured signals is a M element vector. This relationship is expressed as







Si
...

SN






=



 M×N



×



 T(x,y)



 . (17)

In the case where the number of speckle patterns equals the number of pixels then theM×N

matrix is square, such that its inverse can be calculated and the object vector determined. How-

ever when M < N and or N is large, the system is ill-conditioned and calculating the inverse

of the matrix is not straightforward. Problems of this type are wide spread in physics and tech-

niques for solving them have been developed. Within our system the appeal is to reconstruct the

image of N pixels fromM measurements whereM<N. That this is possible is based on the fact

that natural images are sparse and the reconstruction can be obtained by solving a convex opti-

mization problem [11], which is a generalization of a linear least squares problem. In contrast

to iterative methods, compressive GI (CGI) needs to take all measurements, represented here,

in some compressible basis (in this case a discrete cosine transform which has been applied to

each row of the M×N matrix). Solving the convex optimization problem requires minimizing

the ℓ1 norm [12].
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Fig. 5. (a) Experimental result of Normalized known vector reconstruction method (S/R)

having SNR = 9.95. (b) Standard CGI reconstruction from S having SNR = 7.39.

5.2. Normalized compressive ghost imaging

By normalizing the measured object signal relative to the reference signal as performed above,

such that S′ ≡ S/R, we can apply the CGI technique [13] to reconstruct our object. Equation (17)
can then be written for normalized CGI (NCGI) as







S′i
...

S′N






=



 M×N



×



 T(x,y)



 . (18)

Performing both NCGI and CGI analyses using the same experimental data (acquired using

the experimental setup in Fig. 1) we obtain the reconstruction in Fig. 5. We observe a clear im-

provement using the NCGI algorithm compared to the CGI algorithm, manifest as an increased

SNR value. The efficiency with which NCGI can reconstruct sparse images over CGI is deter-

mined by the level of noise in the system. We find that when there is no system noise present,

both reconstructions are essentially identical. Thus the main improvement in employing NCGI

over CGI with the additional reference detector is the ability to protect the reconstruction from

time varying noise sources.

6. Conclusion

In conclusion we have compared different iterative GI methods to reconstruct an object and

studied a new GI algorithm, which we call normalized GI (NGI). The performance of the dif-

ferential GI (DGI) and NGI algorithms show good quantitative agreement as predicted by the

theoretical foundations that support them. Our results indicate that by normalizing the meas-

ured signal relative to a reference signal, a more appropriate weighting factor is applied to the

ensemble average of the estimated object, compared to the traditional GI (TGI) algorithm. Our

analysis of the measured SNR and the object transmission shows a significant improvement for

more transmissive objects in comparison to TGI. Furthermore, we have shown it is possible to

apply normalization to systems with a single detector, SNGI, by estimating the reference signal.

We have also investigated normalization within a compressive matrix inversion method, show-

ing similar results to an non-normalized algorithm but with enhanced noise suppression. We

believe the NGI algorithm will be a useful resource for imaging where alternative techniques

are required in the future.

(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16900



Acknowledgments

At the time when this work was ready for publication the authors found through private com-

munication with Alessandra Gatti and Fabio Ferri that they had similar findings, for whom

we thank for useful discussion. MJP would like to thank the Royal Society and the Wolfson

Foundation. The work of JHS was supported by the DARPA Information in a Photon (InPho)

Program. We gratefully acknowledge the financial support from the UK EPSRC.

(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16901


	Sun.pdf
	0B0Bhttp://eprints.gla.ac.uk/73854/


