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ABSTRACT This work aims to address the image classification problem under open-set protocol: classes in

test set do not appear in the training set. Intuitively, convolutional Neural Network (CNN) with softmax loss

is a straight-forward solution. However, the unknown class (is not predefined in the training set) makes the

boundaries of intra-class and inter-class more blurred, which brings more challenges for image classification.

Although some softmax variants, such as center loss, CosFace loss etc., focus on learning discriminative

features by minimizing the intra-class distance, they do not explicitly maximize inter-class distance, which is

more important for open-set problem verified by our experiments. Besides, even though deepmetric learning,

such as with the contrastive loss and the triplet loss, can learn discriminative features of intra-class and

inter-class, it needs a time-consuming image sampling process during training. In this paper, we propose a

novel normalized maximal margin (NMM) loss for open-set image classification, which not only explicitly

minimizes intra-class distance and maximizes inter-class distance, but also defines their margins. Specially,

after analyzing the advantage of angular space that the softmax loss normalized by the feature and weights

through geometric interpretation, we make NMM work in angular space. Then, the validity of NMM for

discriminative features learning is demonstrated from the view of geometric interpretation as well. After

that, we innovatively determine the upper bound of inter-class margin by theoretical analysis. Finally,

extensive experiments are conducted on popular datasets: CIFAR-100 (object recognition), ImageNet (image

classification), LFW (face recognition) and MSMT17 (person re-identification) to verify the effectiveness

of NMM. The experimental results show that NMM achieves very competitive performance.

INDEX TERMS Deep metric learning, open-set image classification, inter-class distance, convolutional

neural network.

I. INTRODUCTION

Image classification is a fundamental task in computer vision

and pattern recognition. It can easily be categorized as

‘‘closed-set’’ and ‘‘open-set’’ settings [1]. For ‘‘closed-set’’

protocol, all classes in the test set are predefined in the

training set. In comparison, classes of the test set are disjoint

from those of the training set under ‘‘open-set’’ protocol [2],

[3], which is more in line with the real application scenarios.

Take the person re-identification as an example, as shown

in the box 1 in Fig.1. A model is trained by training set,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

then it is applied to the real world where samples (in the

testing phase) are not predefined in training set. At this time,

the test set is divided into two parts: the probe and the

gallery. Under open-set protocol, the model performs image

verification between the probe image and every identity in

the gallery. There are similar situations in the applications

of face recognition and clothing searching etc. (see Fig.1).

In this paper, we focus on ‘open-set’ protocol, which requires

the classifier in the test phrase to classify the unknown class

(is not predefined in the training set) rather than to misclas-

sify as the known class. Clearly, ‘open-set’ protocol is more

challenging than the ‘close-set’ one because the unknown

class makes the boundaries of intra-class and inter-class more
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FIGURE 1. Open-set image classification. Three open-set applications:
person re-identification (box 1), face recognition (box 2) and clothing
search (box 3).

blurred. Therefore, we have to learn a discriminative enough

space to project testing images.

Thanks to the development of Convolutional neu-

ral network (CNN), it has already surpassed human-

level performance on several open-set image classification

benchmarks [4], [5]. Pioneering work [6], which focuses on

the open-set problem, is to learn the identity features via

the softmax loss (Following the [7], we define the softmax

loss as the combination of the last fully connected layer,

softmax function and cross entropy loss). However, even

if softmax loss is the most widely used loss for open-set

problem, it only guides CNNs to learn separable features

that are not discriminative enough because it has a gap of

distance between training and testing, reducing the classi-

fication performance. Taking face recognition for example,

people usually use softmax (inner product distance) to train

a CNN, however, cosine distance is used during test. This

distance gap is illustrated in Fig.2 (a).

To address the above problem, some works propose to

normalize the learned features to bridge the distance gap.

Specially, these methods can be simply divided into two

classes: (i) normalizing feature only [8] and (ii) normal-

izing both features and the weights of classifier [9], [10].

In this way, these methods work in the angular space rather

than Euclidean space. From the view of geometric inter-

pretation, we have demonstrated the features in the angular

space are more discriminative than those in Euclidean space

(see section III-B), which is consistent with the conclusion

of [10]. However, they do not explicitly encourage intra-class

compactness and inter-class separability. To this end, some

softmax variants aimed atminimizing the intra-class distance,

such as center loss [11] and CosFace loss [12] are proposed.

But they do not specify maximize inter-class distance.

Apart from softmax-based methods for open-set problem,

metric learning, which aims to learn a similarity function,

is also widely used. Recently, prevailing deep metric learning

usually uses neural networks to automatically learn discrim-

inative features x1 and x2 of two samples. Then, a simple

distance metric such as Euclidean distance or cosine dis-

tance is applied to x1 and x2 to determine the similarity of

the two samples. Most widely used loss functions for deep

metric learning are contrastive loss [13] and triplet loss [14].

FIGURE 2. The methods of discriminative feature learning for open-set
image classification. (a) softmax loss-based; (b) metric learning.

Some methods combine softmax loss with contrastive loss

or triplet loss to enhance the discrimination power of

features. They are very common for face recognition and

person re-identification, achieving promising recognition

performance. Unlike softmax, metric learning intrinsically

does not have the distance gap. However, both contrastive loss

and triplet loss cannot constrain on each individual sample,

and thus require carefully designed pair/triplet mining pro-

cedure, as shown in Fig.2 (b), which is time-consuming and

performance-sensitive.

In this paper, we propose a new normalized max mar-

gin (NMM) loss. Following the existing work [15], we nor-

malize the features and the weights of a classifier to make

NMM work in the angular space, bridging the distance gap

between training and testing. Unlike [3], [12], [16], [17]

which only explicitly minimize the intra-class distance,

NMM explicitly minimizes the intra-class distance and

maximizes the inter-class distance which is more impor-

tant for open-set image classification tested by experiments

and defines their margins. Furthermore, the upper bound

of inter-class margin is determined by theoretical analysis.

In addition, NMM is actually one metric learning method.

Unlike contrastive loss and triplet loss, NMM intrinsically

does not have the sample mining procedure, making

the training procedure more efficient. Apart from these,

NMM also has clear geometric interpretations. Supervised by

NMM loss, the learned features can construct a discriminative

angular distance metric that is equivalent to geodesic distance

on a hypersphere manifold. NMM loss can be interpreted

as constraining learned features to be discriminative on a

hypersphere manifold.

The original contributions that we have made in the paper

are highlighted as follows:

• We propose a normalized max margin (NMM) loss

for open-set problem. NMM works in a discriminative

angular space and explicitly minimizes the intra-class

distance and maximizes the inter-class distance, which

is more important for open-set problem tested by exper-

iments. Unlike most existing metric learning methods,

NMM does not have the sample mining procedure.

In addition, NMM has clear geometric interpretations to

make the proposed model more interpretable.
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• We innovatively determine the upper bound of

inter-class margin by theoretical analysis rather than

experiment, which is more appropriate for the open-set

problem.

• We conduct extensive experiments on four databases:

CIFAR-100 (object recognition), ImageNet (image clas-

sification), Labeled Face in the Wild (LFW, face

recognition) and Multi-Scene Multi-Time person ReID

dataset (MSMT17, person re-identification). Experi-

mental results verify the effectiveness of the proposed

method.

II. RELATED WORK

Open-set image classification has been studied for very long

time. How to learn a discriminative enough feature space is

key to the classification performance. In deep learning era,

the methods for the open-set problem can easily be classified

into two categories: softmax loss-based and metric learning.

A. SOFTMAX LOSS-BASED

Deep learning models with different softmax loss functions

can learn different discriminative features. In the early stage,

softmax loss with dot product similarity is widely used for the

open-set problem [6], [18]. However, there is a problem with

different similarity calculation between training and testing,

such as dot product similarity is used for training, cosine

similarity is used for testing, reducing the classification per-

formance. Therefore, feature normalization is proposed to

learn more discriminative features for the open-set prob-

lem, e.g. L2-normalized Euclidean distance and cosine dis-

tance. Parde et al. [19] observe that the L2-norm of features

learned using softmax loss is informative of the quality of the

object (face). Features for frontal faces have a high L2-norm

while blurry faces or extreme-pose faces have low L2-norm.

Ranjan et al. [8] add the L2-constraint to the feature descrip-

tors and restrict features to lie on a hypersphere of a fixed

radius. Though these methods achieve promising perfor-

mance on the open-set problem, they do not explicitly mini-

mize intra-class distance and maximize inter-class distance.

To make the features of intra-class more compact and

increase the separation of inter-class, some softmax vari-

ants are proposed. In [11], the authors propose the center

loss which directly constrains the distance between sample

features, making similar features close to their center point.

However, it ignores the unevenness of the sample distribution,

resulting in unclear boundaries between classes. Different

from center loss, Wan et al. [20] propose the L-GM loss in

which features are supposed to be a mixed Gaussian distri-

bution. However, for the open-set problem, the distribution

of the unknown class with multiple categories is completely

different from the distribution of the predefined classes. After

that, some losses with margins are proposed [3], [7], [12],

[16], [17], [21]. Liu et al. [3], [7] propose a large margin

Softmax (LMSoftmax) by adding multiplicative angular

constraints to each identity to improve the feature dis-

crimination on vision classification and face verification.

Due to the non-monotonicity of the LMSoftmax, an oper-

ator is employed to guarantee the monotonicity which

makes LMSoftmax hard to optimize. To overcome this

problem, [12], [16], [17] propose to move the angular

margin to cosine space, which makes the implementation

and optimization much easier than LMSoftmax. Although

these works achieve promising performance on the open-set

problem, they only explicitly minimize intra-class distance.

In [21], the circle loss explicitly minimizes intra-class

distance and maximizes inter-class distance. However,

it requires pair-wise features, one of which is the positive

sample feature and the other one is the negative sample fea-

ture. Besides, for the above margin losses, they mainly focus

on the margin of intra-class. However, we find through exper-

iments that open-set problem is more sensitive to inter-class

margin. Furthermore, the margin value is determined mainly

by experiments, which may affect their applicability for real

scenes with unknown class.

B. METRIC LEARNING

It is widely used for open-set problem due to its strong feature

learning capacity. With the strong feature learning capacity

of deep learning, deep metric learning can perform even

better than the traditional methods [22], [23]. For this, a good

distance metric is critical for its success. A comprehensive

survey of the deep metric learning methods can be accessed

in [24]. Recently, more complicated loss functions were pro-

posed to train a better image representation. Most widely

used loss functions for deep metric learning are contrastive

loss [13] and triplet loss [14]. They both impose Euclidean

margin to features and need sampleminingmechanismwhich

is time consuming. In comparison, our NMM loss works in

a more discriminative angular space and does not need the

sample mining module.

III. NORMALIZED MAXIMAL MARGIN (NMM) LOSS

In this section, we first briefly introduce softmax, feature

and weight normalization. Then we give a deep analysis of

feature normalization from the view of geometric interpreta-

tion. After that, we detail the proposed NMM loss. Finally,

we make deeper analysis on NMM loss including geometric

interpretation and bound discussion.

A. PRELIMINARIES

To better understand the proposed NMM loss, we first briefly

review the original softmax and its variants. The original

softmax is formulated as:

LS = −
1

n

n
∑

i=1

log
e
W T
yi
fi+byi

∑c
j=1 e

W T
j fi+bj

(1)

where fi is the deep feature of sample i (the i-th output of

the fully connected layer), yi is the true label of sample i,

W T
yi

is the weight of fi, the W T
yi
fi is called as the target

logit [14] of the i-th sample, bj is the bias of the j-th class. The

softmax function can be generalized by setting the logit as
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a function φ(Wj, f ):

LS = −
1

n

n
∑

i=1

log
eφ(Wyi

,fi)

∑c
j=1 e

φ(Wj,fi)
(2)

where φ(Wj, fi) = W T
j fi + bj

1) WEIGHTS NORMALIZATION

To improve the discriminative capacity of the learned features

for the open-set problem, the weights from the classifier are

normalized. To facilitate the analysis on the loss function,

we set the bias bj = 0 as [3]. Then, the logit of Eq. (2) can be

changed to:

φ(Wj, fi) =
Wj

‖Wj‖
fi = ‖fi‖ cos < Wj, fi > (3)

We can see that the original softmax function with dot

product similarity is converted to the one with cosine

similarity (angular space), which is claimed to be more

discriminative [3].

As shown in [3], they set ‖Wj‖ = 1 by l2 normalization,

making the predictions only depend on the angle between the

feature vector and the weights.

2) FEATURE NORMALIZATION
Apart from weights normalization, feature normalization is

also widely used to solve the open-set problem. The feature

normalization can be formulated as:

φ(Wj, fi) = γW T
j

fi

‖fi‖
= γ ‖Wj‖ cos < Wj, fi > (4)

where γ is a scalar to help network convergence which was

discussed in [8]. It is observed in [19] that the l2-norm of

features learned is informative for the quality of the face.

Specifically, features with good quality (e.g. frontal faces)

have a higher l2-norm than blurry faces with large poses.

The advantages of feature normalization are also discussed

in [8]–[10].

3) WEIGHTS AND FEATURE NORMALIZATION

The weights and features can also be l2 normalized

together [15]:

φ(Wj, fi) = γ
W T
j fi

‖Wj‖‖fi‖
= γ cos < Wj, fi > (5)

where γ is a scalar, l2 normalization on features and weights

lead to a so-called hypersphere metric learning. Normalizing

the features and weights can remove the radial variations and

push every feature to distribute on a hypersphere manifold.

4) ADDITIVE ANGULAR MARGIN
Apart from performing normalization in softmax loss, some

recent researches add angular margin to softmax loss, e.g.

SphereFace [3], CosFace [12] and ArcFace [16]. Take Cos-

Face [12] for example, the formulation is:

LCosFace = −
1

n

n
∑

i=1

log
eγ (cos(θyi )−δ)

eγ (cos(θyi )−m) +
∑c

j=1,j 6=yi
eγ cos(θj)

(6)

where cos(θ) denotes the cosine similarity between the fea-

ture and the weight, δ is the margin in the angular space, γ is

a scalar.

B. FEATURE NORMALIZATION ANALYSIS

The feature normalization [9] was originally proposed to

bridge the gap between training and test. For example, the

Euclidean distance was used for training, but cosine distance

for test. The existence of this gap will potentially reduce the

recognition performance. We will analyze the reasons with

geometric interpretation as follows.

Fig.3(a) and Fig.3(b) represent training using dot prod-

uct similarity (softmax) and testing using cosine similarity

respectively. In Fig.3(a), four hyperplanes clearly separate

four classes in training space, and the red arrows are the

corresponding normal vectors. These hyperplanes do not

always get through the origin of coordinates due to the

existence of the bias of one classifier, e.g., b in Eq.(1).

In Fig.3(b), the features are normalized to a sphere and the

bias is removed during test, leading to class overlapping on

the sphere (the normalized feature space). Therefore, if it

keeps consistence during training and testing in the way of

removing the bias and normalizing the features, we can obtain

more discriminative features.

FIGURE 3. The distance gap between training and testing.

C. NORMALIZED MAXIMAL MARGIN LOSS

As analyzed above, the normalization of feature and/or

weight in the softmax loss can change the inner product

distance to angular distance, thereby improving the feature

discrimination. However, most of these methods [12], [20] do

not explicitly maximize inter-class distance. Metric learning

explicitly minimizes the intra-class distance and maximizes

the inter-class distance. In addition, metric learning does

not have the distance gap during training and test. How-

ever, metric learning methods intrinsically need the sample

mining mechanism, e.g. hard negative sampling, which is

time-consuming and performance-sensitive.

In this paper, we propose a novel loss function named Nor-

malized Max Margin loss (NMM) that explicitly minimizes

the intra-class distance and maximizes the inter-class dis-

tance and defines their margins respectively. The challenges

of constructing NMM are how to combine the distances of

inter-class and intra-class and how to integrate inter-class
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FIGURE 4. Visualization of unnormalized features (Row 1) and normalized features (Row 2). Different colors indicate different classes.
The features are trained using MNIST dataset.

margin with inter-class distance. For this purpose, NMM loss

is represented as:

LNMM =
1

n

n
∑

i=1

[max{0, l − s̃yi,i}
︸ ︷︷ ︸

intra−class

+
∑

j 6=yi

max{0, s̃j,i − m}

︸ ︷︷ ︸

inter−class

]

(7)

where l and m are the margins of intra-class and inter-class

terms respectively. The learned feature is given as:

s̃k,i =
W T
k fi

‖Wk‖‖fi‖
(8)

where Wk is k-th column of the weight from last fully

connected layer and fi is the output of layer penultimate.

If k = yi that is the true class label of sample i, s̃yi,i denotes

the intra-class distance of smaple i. If k = j that is the class

label different from the class of sample i, s̃j,i is the inter-class

distance. It is worth noting that the bias is removed. Thus,

our NMM loss works in angular space. In addition, NMM is

a linear combination of s̃k,i which is differentiable [15]. Thus,

our NMM is differentiable.

Clearly, NMM loss consists of two terms: the first item

max{0, l − s̃yi,i} describes the intra-class cosine similarity

of sample i, and restricts the distance s̃yi,i with margin l.

l=1 means intra-class loss will be activated when the angular

between sample and its correspondingW larger than 0 degree.

The second term
∑

j 6=yi
max{0, s̃j,i−m}models the inter-class

cosine similarity of sample i, and restricts the distance s̃j,i
with margin m. m=0 means inter-class loss will be activated

when the angular between sample and other w less than

90 degree. The twomargins l andm encourage a CNN to learn

a clear class bound. The combination of two terms encourages

the intra-class compactness and inter-class separability.

Unlike aforementioned softmax variants and metric learn-

ing, our NMM has three key advantages: (1) it explicitly

minimizes the intra-class distance and maximizes the

inter-class distance; (2) it defines their margins respectively,

as intra-class term in Eq. (7)) with margin l and inter-class

term in Eq. (7) with margin m; (3)it intrinsically removes the

sampling mechanism.

D. FEATURE VISUALIZATION ANALYSIS

In this section, we analyze the effects of our NMM by fea-

ture visualization. Feature and weight normalization make

our NMM work in the angular space like SphereFace. For

comparison, we visualize the feature distributions trained by

several loss functions that are work in angular space in Fig.4:

softmax loss, COCO loss [9], CosFace loss [12] and our

NMM loss. We used MNIST (10 classes) as the training data,

and a LeNet variant is used to output 3D features, for training.

These networks are supervised by those four loss functions.

We train our NMM loss with l = 1.0,m = 0.5. After training,

we plot the obtained 3D features as shown in Fig.4 (Row 1),

and then normalize these features on a hypersphere (Row 2).

From Fig.4 (Row 1), we can see the features of our NMM

loss is more compact than others. In Row 2, all the features

are normalized on a sphere. We can see that the features of

NMM are more separable than other features. Thus, we can

conclude that NMM can learn very discriminative features by

explicitly optimizing intra- and inter-distance.

E. MARGINS ANALYSIS

To analyze the effects of NMM margins m and l setting on

the training process, we first analyze the initial distribution

of samples in the feature space. We find that the samples ini-

tially distribute on a very small cluster as shown in Fig.5(a).

In Fig.5(b), if the features are fed to the RELU, then the

negative parts are removed. If the features are normalized,
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FIGURE 5. The initial distributions of samples. Dots indicate samples.
(a) features before passing activation function; (b) features after RELU
activation; (c) features are normalized.

then they distribute on a sphere as shown in Fig.5(c). In all

these 3 cases, the samples all initially distribute on a small

cluster.

To verify the assumption that samples initially dis-

tribute on a small cluster, we conduct a quantitative experi-

ment. We chose a popular Person Re-Identification database

Market-1501 [25], which is a typical open-set task. We ran-

domly initialized ResNet50 model to map all train samples

(11159 images) to the feature space. Then, we compute the

cosine similarity of all the pairs (111592 in all). Fig.6 shows

the statistical histogram of cosine similarity. We can see that

the minimal cosine value is 0.994 which means the maximal

angular distance between two features (1 pair) is 6 degrees.

Therefore, all samples are gathered in a small cluster (< 6◦).

FIGURE 6. The statistical histogram of the cosine similarity. We use all
the 11159 images from Market-1501 for visualize. The cosine similarity of
all the pairs 111592 are computed. We use a randomly initialized
ResNet50 for feature extraction.

Based on the aforementioned initial distribution, we then

analyze how the margins affect the training. From our NMM

loss in Eq. (7), the samples move under two forces from

intra-class term and inter-class term, respectively. The former

(intra-class) guides the sample to move to its center. The latter

(inter-class) ensures the centers of all classes far from each

other. The latter can be viewed as one regularizer. Clearly,

the regularizer should be larger than 0, meaning that we

have to keep the regularizer to avoid model overfitting. Thus,

we think one critical point is that the force of inter-class term

is 0 (no regularizer). In other words, the regularizer can avoid

the model overfitting, but it will make the model hard to

converge. The stronger the regularizer is, the harder themodel

converges.

Why does the regularizer make the model hard to con-

verge? As shown in Fig.7, there are 3 classes (each

color indicates one class) and 10 samples (4 green, 4 red

and 3 blue points). Note that we only draw 3 classifier

centers W (the same color of W and the samples are from

the same class). Fig.7(a) is the initial distribution. In Fig.7(b),

we add our NMM loss to the samples. After training,

the effective feature space is compressed to a size equal to

summation of inter-class and intra-class margin as shown

in Fig.7(c). This is the reason why strengthening the regular-

izer can avoid the model overfitting and help to learn a more

discriminative feature space. In Fig.7(b), the colored shadow

regions that mean the inter-class force for those samples,

which do not have the same color as shadow (not the same

class), will be activated. The white regions mean that samples

are guided by intra-class force only. The inter-class margin

m controls the size of its corresponding region: the smaller

the m, the larger the region. For example, if the inter-class

region larger than the situation in Fig.7(b), it will cause some

overlapped regions where the samples will be guided bymore

than two forces corresponding to the overlapped regions. The

joint force will make a wrong direction to the sample. This

is the reason why the regularizer makes the model hard to

converge. Therefore, we can see that the inter-class margin

playsmore significant role for the open-set problem that owns

unknown class with large distribution.

FIGURE 7. The critical state of margin m setting. Different colors of dots
indicate different classes. (a) the initial distribution of samples before
training; (b) the margin m is performed at the critical state where the
shadow regions are tangent to each other; (c) the distribution of samples
after training.

Since the critical state is that the inter-class term is equal

to 0, which means there are no overlapped sector region

such as Fig.8. When the inter-class margin is larger than the

situation of Fig.8, the regularizer is larger than 0 and we can

learn a discriminative feature space, but the model is hard to

convergence. Instead, when the inter-class margin is smaller

than the situation of Fig.8, the regularizer is 0 and the model

is easy to train, but the discriminative feature space is weak.

Thus, the critical state is the situation we can make the model

easy to converge and learn a relatively discriminative feature

space.
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FIGURE 8. The geometric description of critical state that two shadow
regions are tangent to each other.

Based on the aforementioned analysis and the critical state,

we compute the upper bound of inter-classmarginm. It means

we do not need to consider the value of m larger than the

upper bound. We have the normalized feature x, unit weight

vectorsW , the number of classes asC andK is the dimension

of the learned features. Suppose that the learned features

separately stay on the surface of a hypersphere and their cen-

ters are around the corresponding weight vectorW , in which

W evenly distributes in the sphere. Then we have

m ≤

√

1

2
(9)

where K ≥ 3 and 2 < C < K + 1.

Proof: For K ≥ 3 and ||W || = 1, the inequality below

holds [12]:

C(C − 1)W T
i Wj =

∑

i,j,i 6=j

W T
i Wj (10)

∑

i,j,i 6=j

W T
i Wj = (

∑

i

Wi)
2 − (

∑

i

W 2
i ) ≤ 0 (11)

Combining Eqs. (10) and (11), we can obtain W T
i Wj ≤ 0.

Fig.8 shows the critical state when every two shadow regions

are tangent to each other. Thus, we have 2θ = ϕ, where θ is

the angle corresponding to inter-class margin m and ϕ is the

angle of two adjacent cluster centersW . Thus, we have

cosϕ = W T
i Wj (12)

Since cos θ = m and 2θ = ϕ, we combine Eqs.(10), (11),

(12) to get:

m ≤

√

1

2
(13)

The inter-class margin makes the learned features have

better separability, reducing the intra-class distance at the

same time. The intra-class margin makes its features more

compact, reducing the number of features falling near to the

inter-class margin to increase the accuracy of classification.

But obviously, the open-set problem is more sensitive to the

inter-class margin than the intra-class margin. The determina-

tion of intra-class margin mainly relied on experiments which

will be introduced in section IV-A2.

IV. EXPERIMENTS

In this section, we conduct a series of experiments to ver-

ify the effectiveness of the proposed NMM. Specifically,

we evaluate our method on a toy dataset (a subset of

CIFAR-100 for object recognition), the ILSVR2012 dataset

(a subset of ImageNet with more classes for image classi-

fication) and two ‘real’ datasets (LFW [26] for face recog-

nition, MSMT17 [27] for Person Re-identification). For the

experiments on CIFAR-100, we also evaluate the effects of

the hyper-parameters (margins l and m) of NMM. Then,

we use the best hyper-parameters from CIFAR-100 for the

following experiments on ILSVR2012, LFW and MSMT17.

In this experiment, we compare our method with the state-of-

the-art competitors: the softamx+cross-entropy loss (base-

line), Center loss [11], COCO loss [9], SphereFace loss [3],

CosFace loss [12], ArcFace loss [16] and other state-of-the-

art methods on face recognition and Person Re-identification

task.

A. CIFAR-100 (OBJECT RECOGNITION)

1) DATASET AND SETTINGS

The 100 classes in the CIFAR-100 are grouped into 20 super-

classes. Each image comes with a ‘‘fine’’ label (the class

to which it belongs) and a ‘‘coarse’’ label (the super-

class to which it belongs). To simulate the open-set prob-

lem, we randomly divide the 100 classes into 90 (train)

and 10 (test) respectively. We choose the 10-class test set

(600 images per class) from 10 different coarse labels (super-

class). 100 images from each class construct the probe,

the others work as the gallery. We use VGG16 [24] as our

backbone architecture. The models are trained with batch

size of 512, the learning rate starts from 0.1 and is divided

by 0.4087 after each 10 epochs. The training is finished at

30 epochs. The mean Average Precision (mAP) is used to

measure the performance.

2) RESULTS

First, we evaluate the effects of the setting of two

hyper-parametersm and l of NMM loss. From Section Upper

Bound of Inter-class Margin m, we get the upper bound of m

is

√

1
2

≈ 0.71. In addition, we find the performance of NMM

is insensitive to intra-class margin l. Therefore, we set the l

and m from 1.0 to 0.8, 0.2 to 0.7 respectively. If m is smaller

than 0.2, the model fails to converge because it causes very

large inter-class loss (see Section Upper Bound of Inter-class

Margin m for detail). The results are shown in Table 1.

With the increase of m, the mAP increases consistently, and

achieves the best performance atm = 0.7. In addition, we can

see that the performance is not sensitive to the setting of l.

In this paper, l is set to 0.9.

We compare the proposedNMMwith some state-of-the-art

loss functions for open-set problem in CIFAR-100 dataset.

The results are shown in Table 2. We use the same back-

bone network and all the loss functions select their best

hyper-parameters (γ = 10 for COCO loss, m = 4 for
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TABLE 1. The effects of the setting of margins < l , m >.

TABLE 2. Comparisons on CIFAR 100.

SphereFace, γ = 5, δ = 0.4 for CosFace loss, m = 0.5 for

ArcFace loss and learning rate 0.1 for all.) via grid searching.

We can see that our method significantly outperforms the

other loss functions, which demonstrates the effectiveness of

NMM for the open-set problem.

B. ImageNet (IMAGE CLASSIFICATION)

1) DATASET AND SETTINGS

ILSVR2012, a subset of ImageNet, contains 1000 classes

and totally 1.3M training images. Similarly, to simulate the

open-set problem, 900 classes with 1M images of training

images are used for the model training and the remaining

100 classes are used to test the model. In the new test set,

100 images from each class are selected as the probe, the oth-

ers are gallery. We use VGG16 [28] as our backbone archi-

tecture. In addition, all the images are reshaped to 256×256.

The model is trained with batch size of 512, the learning rate

starts from 0.1 and is divided by 0.4087 after each 10 epochs.

The training is finished at 80 epochs.

2) RESULT

For a comparison, our NMM and 6 competitors

(softmax + cross-entropy, center loss, COCO loss,

SphereFace, Cosface, ArcFace loss) are trained using the

same backbone architecture under their best hyperparame-

ters. The classification results are shown in Table 3. From

this table we can see that although more classes in Ima-

geNet decrease the classification performance of the model

compared with in CIFAR-100 dataset, NMM can learn more

discriminative features of inter-class. Hence it outperforms

other loss functions.

C. LFW (FACE RECOGNITION)

1) DATASETS

We use CASIA-WebFace [29] (removing the images of

identities appearing in test sets) to train our models.

CASIA-WebFace has 494,414 face images belonging to

TABLE 3. Comparisons on ImageNet.

10,575 different individuals. These face images are horizon-

tally flipped for data augmentation. We use the well-known

LFW benchmark [26] for test. LFW includes 13,233 face

images from 5,749 different identities. The dataset contains

faces with large variations in pose, expression and illumina-

tions. We follow the ‘‘unrestricted with labeled outside data’’

protocol on the dataset. The score (metric) is computed by the

cosine distance of two features.

2) PREPROCESSING AND SETTINGS

Face detection and landmark detection are performed by

MTCNN [30]. The detected faces are aligned to 128 × 128.

For this experiment, we use ResNet50 [31] as our backbone

architecture. The model is trained with batch size of 512 on

four GPUs. The learning rate starts from 0.1 and is divided

by 0.4087 after each 10 epochs. The training is finished at

80 epochs.

The face recognition results of ResNet50 with our NMM

and 6 competitors are reported in Table 4. We can see that our

NMM greatly outperforms the competitors.

We compare our NMMwith state-of-the-art methods. Note

that most existing face verification systems achieve very

high performance with much bigger training data than ours.

As shown in Table 4, the state-of-the-art methods use 200M

images for FaceNet [32], 2.6M for DeeFR [33], and 4M for

DeepFace [5], compared with 0.5M of our method. Despite

this, our NMM achieves very competitive performance.

TABLE 4. Face recognition performance on LFW.

D. MSMT17 (PERSON RE-IDENTIFICATION)

1) DATASET AND SETTINGS

MSMT17 [27] contains 126,441 bounding boxes, 4,101 iden-

tities, which are significantly larger than the previous

databases used for person re-identification. The ratio of
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training and test set is 1:3. The training set contains

32,621 bounding boxes of 1,041 identities, and the test set

contains 93,820 bounding boxes of 3,060 identities. From

the test set, 11,659 bounding boxes are randomly selected

as query and the other 82,161 bounding boxes are used as

gallery. We use ResNet50 [31] as our backbone architecture.

The model is trained with batch size of 512 on four GPUs.

The learning rate begins with 0.1 and is divided by 0.1 after

each 30 epochs. The training is finished at 40 epochs.

2) RESULT

From Table 5, we can see our NMM outperforms another

6 competitors: softmax, Center loss, COCO loss, SphereFace

loss, CosFace loss, ArcFace loss. We also compare

NMM with other state-of-the-art methods reported on

MSMT17 database: GoogLeNet [34], PDC [35] and GLAD

[36]. Our NMM loss also works better than them, showing

the effectiveness of our proposed method.

TABLE 5. Person re-id performance on MSMT17.

V. CONCLUSION

In this paper, we propose a novel loss function NMM to

guide the deep CNNs to learn highly discriminative features

for boosting the performance of deep open-set image classi-

fication. Our NMM (1) explicitly maximizes the inter-class

distance and minimizes the intra-class distance; (2) defines

the margins of intra-class and inter-class; (3) does not need

samples pairing while deep metric learning does. We provide

the well-formed geometrical and theoretical interpretation to

verify the effectiveness of the proposed NMM on generating

strong feature representation, following by extensive experi-

ments on various datasets. Furthermore, the upper bound of

inter-class margin is innovatively determined by theoretical

analysis. Our approach consistently outperforms many com-

petitors: softmax, centre loss, COCO loss, SphereFace loss,

CosFace loss and ArcFace loss across several benchmarks.

Compared with the state-of-the-art methods, our method

achieves very competitive performance.

In the future, we will explore the ways of automatically

selecting the parameters for the margin and incorporating

class-specific or sample-specificmargins. In addition, wewill

extend the use of our method to other computer vision

tasks.
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