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Abstract

The elicitation of power priors, based on the availability of historical data, is realized by raising the likelihood function

of the historical data to a fractional power δ, which quantifies the degree of discounting of the historical information

in making inference with the current data. When δ is not pre-specified and is treated as random, it can be estimated

from the data using Bayesian updating paradigm. However, in the original form of the joint power prior Bayesian

approach, certain positive constants before the likelihood of the historical data could be multiplied when different

settings of sufficient statistics are employed. This would change the power priors with different constants, and hence

the likelihood principle is violated.

In this article, we investigate a normalized power prior approach which obeys the likelihood principle and is

a modified form of the joint power prior. The optimality properties of the normalized power prior in the sense

of minimizing the weighted Kullback-Leibler divergence is investigated. By examining the posteriors of several

commonly used distributions, we show that the discrepancy between the historical and the current data can be well

quantified by the power parameter under the normalized power prior setting. Efficient algorithms to compute the scale

factor is also proposed. In addition, we illustrate the use of the normalized power prior Bayesian analysis with three

data examples, and provide an implementation with an R package NPP.

Keywords: Bayesian analysis, historical data, joint power prior, normalized power prior, Kullback-Leibler

divergence

1. Introduction

In applying statistics to real experiments, it is common that the sample size in the current study is inadequate to

provide enough precision for parameter estimation, while plenty of the historical data or data from similar research

settings are available. For example, when design a clinical study, historical data of the standard care might be available

from other clinical studies or a patient registry. Due to the nature of sequential information updating, it is natural

to use a Bayesian approach with an informative prior on the model parameters to incorporate these historical data.

Though the current and historical data are usually assumed to follow distributions from the same family, the population

parameters may change somewhat over different time and/or experimental settings. How to adaptively incorporate the

historical data considering the data heterogeneity becomes a major concern for the informative prior elicitation.

To address this issue, Ibrahim and Chen (1998), and thereafter Chen et al. (2000), Ibrahim and Chen (2000), and

Ibrahim et al. (2003) proposed the concept of power priors, based on the availability of historical data. The basic idea

is to raise the likelihood function based on the historical data to a power parameter δ (0 ≤ δ ≤ 1) that controls the

influence of the historical data. Its relationship with hierarchical models is also shown by Chen and Ibrahim (2006).

For a comprehensive review of the power prior, we refer the readers to the seminar article Ibrahim et al. (2015). The

power parameter δ can be prefixed according to external information. It is also possible to search for a reasonable

level of information borrowing from the prior-data conflict via sensitivity analysis according to certain criteria. For
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example, Ibrahim et al. (2012) suggested the use of deviance information criterion (Spiegelhalter et al., 2002) or the

logarithm of pseudo-marginal likelihood. The choice of δ would depend on the criterion of interest.

Ibrahim and Chen (2000) and Chen et al. (2000) generalized the power prior with a fixed δ to a random δ by

introducing the joint power priors. They specified a joint prior distribution directly for both δ and θ, the parameters in

consideration, in which an independent proper prior for δ was considered in addition to the original form of the power

prior. Hypothetically, when the initial prior for δ is vague, the magnitude of borrowing would be mostly determined

by the heterogeneity between the historical and the current data. However, under the joint power priors, the posterior

distributions vary with the constants before the historical likelihood functions, which violates the likelihood principle

(Birnbaum, 1962). It raises a critical question regarding which likelihood function should be used in practice. For

example, the likelihood function based on the raw data and the likelihood function based on the sufficient statistics

could differ by a multiplicative constant. This would likely yield different posteriors. Therefore, it may not be

appropriate (Neuenschwander et al., 2009). Furthermore, the power parameter has a tendency to be close to zero

empirically, which suggests that much of a historical data may not be used in decision making (Neelon and O’Malley,

2010).

In this article, we investigate a modified power prior which was initially proposed by Duan et al. (2006) for a

random δ. It is named as the normalized power prior since it includes a scale factor. The normalized power prior

obeys the likelihood principle. As a result, the posteriors can quantify the compatibility between the current and

historical data automatically, and hence control the influence of historical data on the current study in a more sensible

way.

The goals of this work are threefold. First, we review the joint power prior and the normalized power prior that

have been proposed in literature. We aim to show that the joint power prior may not be appropriate for a random

δ. Second, we carry out a comprehensive study on properties of the normalized power prior both theoretically and

numerically, shed light on the posterior behavior in response to the data compatibility. Finally, we design efficient

computational algorithms and provide practical implementations along with three data examples.

2. A Normalized Power Prior Approach

2.1. The Normalized Power Prior

Suppose that θ is the parameter (vector or scalar) of interest and L(θ|D0) is the likelihood function of θ based on

the historical data D0. In this article, we assume that the historical data D0 and current data D are independent random

samples. Furthermore, denote by π0(θ) the initial prior for θ. Given the power parameter δ, Ibrahim and Chen (2000)

defined the power prior of θ for the current study as

π(θ|D0, δ) ∝ L(θ|D0)δπ0(θ). (2.1)

The power parameter δ, a scalar in [0, 1], measures the influence of historical information on the current study.

The power prior π(θ|D0, δ) in (2.1) was initially elicited for a fixed δ. As the value of δ is not necessarily pre-

determined and typically unknown in practice, the full Bayesian approach extends the case to a random δ by assigning

a reasonable initial prior π0(δ) on it. A natural prior for δ would be a Beta(αδ, βδ) distribution since 0 ≤ δ ≤ 1.

Ibrahim and Chen (2000) constructed the joint power prior of (θ, δ) as

π(θ, δ|D0) ∝ L(θ|D0)δπ0(θ)π0(δ), (2.2)

with the posterior, given the current data D, as

π(θ, δ|D0,D) =
L(θ|D)L(θ|D0)δπ0(θ)π0(δ)

∫ 1

0
π0(δ)

{∫

Θ
L(θ|D)L(θ|D0)δπ0(θ)dθ

}

dδ
, (2.3)

where Θ denotes the parameter space of θ. The prior in (2.2) is constructed by directly assigning a prior for (θ, δ)

jointly (Ibrahim et al., 2015). However, if we integrate θ out in (2.2) we have π(δ|D0) ∝ π0(δ)
∫

Θ
L(θ|D0)δπ0(θ)dθ,

which does not equal to π0(δ). This meant that the initial prior for δ is updated after one observes the historical data

alone. Moreover, in the posterior (2.3), any constant before L(θ|D0) cannot be canceled out between the numerator
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and the denominator. This could yield different posteriors if different forms of the likelihood functions are used. For

example, the likelihood based on the raw data and the likelihood based on the distribution of sufficient statistics could

result in different posteriors. Also, the prior in (2.2) could be improper. Once the historical information is available, a

prior elicited from such information would better be proper. Propriety conditions for four commonly used classes of

regression models can be found in Ibrahim and Chen (2000) and Chen et al. (2000).

Alternatively, one can first specify a conditional prior distribution on θ given δ, then specify a marginal distribution

for δ. The normalizing constant in the first step is therefore a function of δ. Since δ is a parameter, this scale

factor C(δ) =
∫

Θ
L(θ|D0)δπ0(θ)dθ should not be ignored. Therefore, a modified power prior formulation, called the

normalized power prior, was proposed by Duan et al. (2006) which included this scale factor. Consequently, for (θ, δ),

the normalized power prior is

π(θ, δ|D0) ∝
L(θ|D0)δπ0(θ)π0(δ)
∫

Θ
L(θ|D0)δπ0(θ)dθ

, (2.4)

in the region of δ such that the denominator of (2.4) is finite.

When
∫

Θ
L(θ|D0)δπ0(θ)dθ < ∞, the prior in (2.4) is always proper given that π0(δ) is proper, whereas it is not

necessarily the case for that of the joint power prior (2.2). More importantly, multiplying the likelihood function in

(2.2) by an arbitrary positive constant, which could be a function of D0, may change the joint power prior, whereas

the constant is canceled out in the normalized power prior in (2.4).

Using the current data to update the prior distribution π(θ, δ|D0) in (2.4), we derive the joint posterior distribution

for (θ, δ) as

π(θ, δ|D0,D) ∝ L(θ|D)π(θ, δ|D0) ∝
L(θ|D)L(θ|D0)δπ0(θ)π0(δ)

∫

Θ
L(θ|D0)δπ0(θ)dθ

.

Integrating θ out from the expression above, the marginal posterior distribution of δ can be expressed as

π(δ|D0,D) ∝ π0(δ)

∫

Θ
L(θ|D)L(θ|D0)δπ0(θ)dθ
∫

Θ
L(θ|D0)δπ0(θ)dθ

. (2.5)

If we integrate δ out in (2.4), we obtain a new prior for θ, a prior that is updated by the historical information,

π(θ|D0) =

∫ 1

0

π(θ, δ|D0)dδ ∝ π0(θ)

∫ 1

0

L(θ|D0)δπ0(δ)
∫

Θ
L(θ|D0)δπ0(θ)dθ

dδ. (2.6)

With historical data appropriately incorporated, (2.6) can be viewed as an informative prior for the Bayesian

analysis to the current data. Consequently, the posterior distribution of θ can be written as

π(θ|D0,D) ∝ π(θ|D0)L(θ|D) ∝ π0(θ)L(θ|D)

∫ 1

0

L(θ|D0)δπ0(δ)
∫

Θ
L(θ|D0)δπ0(θ)dθ

dδ.

Below we describe some variations of the normalized power prior. A primary extension deals with the presence of

multiple historical studies. Similar to Ibrahim and Chen (2000), the prior defined in (2.4) can be easily generalized.

Suppose there are m historical studies, denote by D0 j the historical data for the jth study, j = 1, . . . ,m and D0 =

(D01, . . . ,D0m). The power parameter for each historical study can be different, and we can further assume they

follow the same independent initial prior. Let δ = (δ1, . . . , δm), the normalized power prior of the form (2.4) can be

generalized to

π(θ, δ|D0) ∝

{

∏m
j=1 L(θ|D0 j)

δ jπ0(δ j)

}

π0(θ)

∫

Θ

{ m
∏

j=1

L(θ|D0 j)
δ j

}

π0(θ)dθ

.

This framework would accommodate the potential heterogeneity among historical data sets from different sources

or collected at different time points. Data collected over a long period may be divided into several historical data sets to
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ensure the homogeneity within each data. Examples of implementing the power prior approach using multiple histor-

ical studies can be found in Duan et al. (2006), Gamalo et al. (2014), Gravestock and Held (2019) and Banbeta et al.

(2019).

An important extension is based on the partial borrowing power prior (Ibrahim et al., 2012; Chen et al., 2014a),

in which the historical data can be borrowed only through some common parameters with fixed δ. For instance, when

evaluating cardiovascular risk in new therapies, priors for only a subset of the parameters are constructed based on the

historical data (Chen et al., 2014b). Below we describe the partial borrowing normalized power prior, which is an

extension of the partial borrowing power prior. Let θ = (θc, θ1) be the parameter of interest in the current study, and

let (θc, θ0) be the parameter in a historical study, where θc is a subset of the common parameters. Now

π(θ, δ|D0) ∝

{

∫

Θ0
L(θc, θ0|D0)δπ0(θc, θ0)dθ0

}

π0(θ1)π0(δ)
∫

Θc

{

∫

Θ0
L(θc, θ0|D0)δπ0(θc, θ0)dθ0

}

dθc

(2.7)

defines the partial borrowing normalized power prior, where Θ0 and Θc denote the parameter spaces of θ0 and θc,

respectively. In this case, the dimensions ofΘ0 and Θc can be different, which is another advantage of using the prior

in (2.7).

In addition, for model with latent variables ξ, one can also extend the fixed borrowing to a random δ under the

normalized power prior framework. Denote g(ξ) the distribution of ξ and assume θ is the parameter of interest, we

have two strategies to construct a power prior for θ when δ is fixed. One way is to discount directly on the likelihood

of D0 expressed as
∫

Ξ
L(θ|D0, ξ)g(ξ)dξ, where Ξ denotes the domain of ξ. The normalized power prior is of the form

π(θ, δ|D0) ∝

{∫

Ξ
L(θ|D0, ξ)g(ξ)dξ

}δ
π0(θ)π0(δ)

∫

Θ

{∫

Ξ
L(θ|D0, ξ)g(ξ)dξ

}δ
π0(θ)dθ

. (2.8)

Another borrowing strategy is to discount the likelihood of D0 conditional on ξ, while g(ξ) is not discounted such

that the power prior with δ fixed has the form π0(θ)
∫

Ξ
L(θ|D0, ξ)

δg(ξ)dξ. Ibrahim et al. (2015) named such a prior

partial discounting power prior. We propose its counterpart beyond a fixed δ, the partial discounting normalized

power prior, which is formulated as

π(θ, δ|D0) ∝

{∫

Ξ
L(θ|D0, ξ)

δg(ξ)dξ
}

π0(θ)π0(δ)
∫

Θ

{∫

Ξ
L(θ|D0, ξ)δg(ξ)dξ

}

π0(θ)dθ
. (2.9)

Ibrahim et al. (2015) argued that the partial discounting power prior is preferable due to both practical reasons and

computational advantages. Both of the (2.8) and (2.9) can be extended to models with random effects, in which the

distribution g(ξ) may depend on additional unknown variance parameters.

Finally, we note that in the complex data analysis practice, the extensions described above might be combined.

For example, one can consider a partial borrowing normalized power prior with multiple historical data, where the

borrowing is carried out only through some selected mutual parameters. Another example is in Chen et al. (2014b),

where the partial borrowing power prior is used in the presence of latent variables. Further variations for specific

problems will be explored elsewhere.

2.2. Computational Considerations in the Normalized Power Prior

For the normalized power prior, the only computational effort in addition to that of the joint power prior is to

calculate the scale factor C(δ) =
∫

Θ
L(θ|D0)δπ0(θ)dθ. In some models the integral can be calculated analytically up

to a normalizing constant, so π(θ, δ|D0,D) can be expressed in closed forms. The posterior sample from π(θ, δ|D0,D)

can be obtained by first sampling from π(δ|θ,D0,D) or π(δ|D0,D), then from π(θi|θ−i, δ,D0,D), where θ−i is θ without

the ith element. It is typically achieved by using a Metropolis-Hastings algorithm (Chib and Greenberg, 1995) for δ,

followed by Gibbs sampling for each θi.

However, C(δ) needs to be calculated numerically in some models. General Monte Carlo methods to calculate the

normalizing constant in the Bayesian computation can be applied. Since the integrand includes a likelihood function
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powered to δ ∈ [0, 1], we consider the following approach, which best tailored to the specific form of the integral.

It is based on a variant of the algorithm in Friel and Pettitt (2008) and Van Rosmalen et al. (2018) using the idea of

path sampling (Gelman and Meng, 1998). The key observation is that log C(δ) can be expressed as an integral of the

expected log-likelihood of historical data, where the integral is calculated with respect to a bounded one-dimensional

parameter. This identity can be written as

log C(δ) =

∫ δ

0

Eπ(θ|D0,δ∗){log[L(θ|D0)]}dδ∗, (2.10)

which is an adaptive version of the results from Friel and Pettitt (2008). Proof is shown in Appendix A. For given δ∗,

the expectation in (2.10) is evaluated with respect to the density π(θ|D0, δ
∗) ∝ L(θ|D0)δ

∗

π0(θ). Therefore the integrand

can be calculated numerically if we can sample from π(θ|D0, δ
∗). This is the prerequisite to implement the power prior

with a fixed power parameter; hence no extra condition is required to calculate log C(δ) using (2.10). By choosing an

appropriate sequence of δ∗ we can approximate the integral numerically.

When sampling from the posterior π(θ, δ|D0,D) using the normalized power prior, C(δ) needs to be calculated

for every iteration. Van Rosmalen et al. (2018) suggested that the function log C(δ) can be well approximated by

linear interpolation. Since δ is bounded, it is recommended to calculate a sufficiently large number of the log C(δ)

for different δ on a fine grid before the posterior sampling, then use a piecewise linear interpolation at each iteration

during the posterior sampling. In addition to the power prior with fixed δ, the only computational cost is to determine

log C(δ) for selected values of δ ∈ [0, 1] as knots. Details of a sampling algorithm is provided in Appendix B.

Sampling from the density π(θ|D0, δ
∗) can be computationally intensive in some models. Therefore the knots

should be carefully selected given limited computational budget. A rule of thumb based on our empirical evidence

is to select more grid points close to 0, to account for the larger deviation from piecewise linearity in log C(δ) when

δ → 0. An example is to use {δs = (s/S )c}Ss=0 with c > 1. Recently, Carvalho and Ibrahim (2020) noted that C(δ)

is a strictly convex function but not necessarily monotonic. They design primary grid points by prioritizing the

region where the derivative C′(δ) is close to 0, then use a generalized additive model to interpolate values on a

larger grid. In practice, one may consider combining the two strategies above by adding some grid points used

by Carvalho and Ibrahim (2020) into the original design {δs = (s/S )c}Ss=0. In addition, when C(δ) is not monotone,

piecewise linear interpolation with limited number of grid points also needs to be cautious, especially around the

region where C′(δ) change signs.

2.3. Normalized Power Prior Approach for Exponential Family

In this section we discuss how to make inference on parameter θ (scalar or vector-valued) in an exponential

family, incorporating both the current data D = (x1, . . . , xn) and the historical data D0 = (x01, . . . , x0n0
). Suppose that

the data comes from an exponential family with probability density function or probability mass function of the form

(Casella and Berger, 2002)

f (x|θ) = h(x) exp

{
k

∑

i=1

wi(θ)ti(x) + τ(θ)

}

, (2.11)

where the dimension of θ is no larger than k. Here h(x) ≥ 0 and t1(x), . . . , tk(x) are real-valued functions of the

observation x, and w1(θ), . . . ,wk(θ) are real-valued functions of the parameter θ. Define w(θ) = (w1(θ), . . . ,wk(θ))′.

Furthermore, define

T (x) =

















1

n

n
∑

j=1

t1(x j), . . . .,
1

n

n
∑

j=1

tk(x j)

















′

(2.12)

as the compatibility statistic to measure how compatible a sample x = (x1, . . . ., xn) is with other samples in providing

information about θ. The density function of the current data can be expressed as

f (D|θ) = h(D) exp
{

n[T (D)′w(θ) + τ(θ)]
}

, (2.13)
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where h(D) =
∏n

j=1 h(x j) and T (D) stands for the compatibility statistic related to the current data D. Accordingly,

the compatibility statistic and the density function similar to (2.12) and (2.13) for the historical data D0 can be defined

as well. The joint posterior of (θ, δ) can be written as

π(θ, δ|D0,D) ∝
exp

{

[δn0T (D0)′ + nT (D)′]w(θ) + (δn0 + n)τ(θ)
}

π0(θ)π0(δ)
∫

Θ
exp

{

δn0[T (D0)′w(θ) + τ(θ)]
}

π0(θ)dθ
. (2.14)

Integrating θ out from (2.14), the marginal posterior distribution of δ is given by

π(δ|D0,D) ∝ π0(δ)

∫

Θ
exp

{

[δn0T (D0)′ + nT (D)′]w(θ) + (δn0 + n)τ(θ)
}

π0(θ)dθ
∫

Θ
exp

{

δn0[T (D0)′w(θ) + τ(θ)]
}

π0(θ)dθ
.

The behavior of the power parameter δ can be examined from this marginal posterior distribution. Similarly, the

marginal posterior distribution of θ can be derived by integrating δ out in π(θ, δ|D0,D), but it often does not have

a closed form. Instead the posterior distribution of θ given D0, D and δ is often in a more familiar form. There-

fore we may learn the characteristic of the marginal posterior of θ by studying the conditional posterior distribution

π(θ|D0,D, δ), together with π(δ|D0,D).

In the following subsections we provide three examples of the commonly used distributions, where the posterior

marginal density (up to a normalizing constant) of δ can be expressed in closed forms. It can be extended to many

other distributions as well by choosing appropriate initial priors π0(θ).

2.3.1. Bernoulli Population

Suppose we are interested in making inference on the probability of success p from a Bernoulli population with

multiple replicates. Assume the total number of successes in the historical and the current data are y0 =
∑n0

i=1
x0i and

y =
∑n

i=1 xi respectively, with the corresponding total number of trials n0 and n. The joint posterior distribution of p

and δ can be easily derived as the result below and the proof is omitted.

Result 1. Assume that the initial prior distribution of p follows a Beta(α, β) distribution, the joint posterior distribution

of (p, δ) can be expressed as

π(p, δ|D0,D) ∝ π0(δ)
pδy0+y+α−1(1 − p)δ(n0−y0)+n−y+β−1

B(δy0 + α, δ(n0 − y0) + β)
,

where B(a, b) =
Γ(a)Γ(b)

Γ(a+b)
stands for the beta function.

Integrating p out in π(p, δ|D0,D), the marginal posterior distribution of δ can be expressed as

π(δ|D0,D) ∝ π0(δ)
B(δy0 + y + α, δ(n0 − y0) + n − y + β)

B(δy0 + α, δ(n0 − y0) + β)
.

The conditional posterior distribution of p given δ follows a Beta(δy0 + y + α, δ(n0 − y0) + n − y + β) distribution.

However, the marginal posterior distribution of p does not have a closed form.

2.3.2. Multinomial Population

As a generalization of the Bernoulli/binomial to k ≥ 3 categories, in a multinomial population assume we observe

historical data D0 = (y01, y02, . . . , y0k) and the current data D = (y1, y2, . . . , yk), with each element represents the

number of success in that category. Let n0 =
∑k

i=1 y0i and n =
∑k

i=1 yi. Suppose the parameter of interest is θ =

(θ1, θ2, . . . , θk) which adds up to 1. We have the following results below.

Result 2. Assume the initial prior of θ follows a Dirichlet distribution with π0(θ) ∼ Dir(α1, α2, . . . , αk), the joint

posterior of (θ, δ) can be expressed as

π(θ, δ|D0,D) ∝ π0(δ)

k
∏

i=1

θ
y0iδ+yi+αi−1

i

Γ
(

n0δ +
∑k

i=1 αi

)

∏k
i=1 Γ(y0iδ + αi)

,
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where Γ(·) stands for the gamma function.

The marginal posterior of δ can be derived by integrating θ out as

π(δ|D0,D) ∝ π0(δ)
Γ
(

n0δ +
∑k

i=1 αi

)

∏k
i=1 Γ(y0iδ + yi + αi)

Γ
(

n + n0δ +
∑k

i=1 αi

)

∏k
i=1 Γ(y0iδ + αi)

.

Similar to the Bernoulli case, the marginal posterior distribution of θ does not have a closed form. The conditional

posterior distribution of θ given δ follows a Dirichlet distribution with Dir(δy01 + y1 + α1, . . . , δy0k + yk + αk).

2.3.3. Normal Linear Model and Normal Population

Suppose we are interested in making inference on the regression parameters β from a linear model with current

data

Y = Xβ + ǫ, with ǫ ∼ MVN(0, σ2In), (2.15)

where the dimension of vector Y is n and that of β is k. Similarly, we assume the historical data has the form

Y0 = X0β + ǫ0, with ǫ0 ∼ MVN(0, σ2In0
). Assume that both X′

0
X0 and X′X are positive definite. Define

β̂0 = (X′0X0)−1X′0Y0, S 0 = (Y0 − X0β̂0)′(Y0 − X0β̂0),

β̂ = (X′X)−1X′Y, and S = (Y − Xβ̂)′(Y − Xβ̂).

Now, let’s consider a conjugate initial prior for (β, σ2) as the following. π0(σ2) ∝ σ−2a, with a > 0, and β|σ2 either

has a MVN(µ0, σ
2R−1) distribution, which includes the Zellner’s g−prior (Zellner, 1986) or π0(β|σ2) ∝ 1, which is a

noninformative prior. Here we assume R as a known positive definite matrix. Hence, the initial prior can be written as

π0(β, σ2) ∝
1

(σ2)a+ kb
2

exp

{

−
b

2σ2

(

β − µ0

)′
R

(

β − µ0

)

}

, with b = 0 or 1. (2.16)

We have the following theorem whose proof is given in Appendix A.

Theorem 2.1. With the set up above for the normal linear model (2.15) and the initial prior of (β, σ2) as in (2.16),

suppose the initial prior of δ is π0(δ). Then, the following results can be shown.

(a) The normalized power prior distribution of (β, σ2, δ) is

π(β, σ2, δ|D0) ∝
π0(δ)M0(δ)

(

σ2
)

δn0+kb

2
+a

exp

{

−
1

2σ2

[

δ {S 0 + bH0(δ)} + Q(δ, β)
]

}

,

where

Q(δ, β) = (β − β∗)′
(

bR + δX′0X0

)

(β − β∗),

β∗ =
(

bR + δX′0X0

)−1 (

bRµ0 + δX
′
0X0β̂0

)

,

H0(δ) =
(

µ0 − β̂0

)′
X′0X0

(

bR + δX′0X0

)−1
R

(

µ0 − β̂0

)

, and

M0(δ) =

∣

∣

∣bR + δX′
0
X0

∣

∣

∣

1
2

Γ
(

δn0+(b−1)k

2
+ a − 1

)

{

δ
S 0 + bH0(δ)

2

}

δn0+(b−1)k

2
+a−1

.

(b) The marginal posterior density of δ, given (D0,D), can be expressed as

π(δ|D0,D) ∝
π0(δ)

∣

∣

∣bR + δX′
0
X0

∣

∣

∣

1
2 Γ

(

n+δn0+(b−1)k

2
+ a − 1

)

∣

∣

∣bR + δX′
0
X0 + X′X

∣

∣

∣

1
2 Γ

(

δn0+(b−1)k

2
+ a − 1

)

M(δ)

,
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where

M(δ) = [δ {S 0 + bH0(δ)} + S + H(δ)]
n
2

[

1 +
S + H(δ)

δ {S 0 + bH0(δ)}

]

δn0+(b−1)k

2
+a−1

,

and H(δ) = (β∗ − β̂)′X′X
(

bR + δX′0X0 + X′X
)−1 (

bR + δX′0X0

)

(β∗ − β̂).

(c) The conditional posterior distribution of β, given (δ,D0,D), is a multivariate Student t-distribution with location

parameters µ, shape matrix Σ, and the degrees of freedom ν as

µ =
(

bR + δX′0X0 + X′X
)−1 {

(bR + δX′0X0)β∗ + X′Xβ̂
}

,

Σ =
S + H(δ) + δ {S 0 + bH0(δ)}

ν

(

bR + δX′0X0 + X′X
)−1
, and

ν = (b − 1)k + δn0 + n + 2a − 2.

(d) The conditional posterior distribution of σ2, given (δ,D0,D), follows an inverse-gamma distribution with shape

parameter
(b−1)k+δn0+n

2
+ a − 1, and scale parameter 1

2
[S + H(δ) + δ {S 0 + bH0(δ)}].

Theorem 2.1 provides a general case for the normal linear model with certain conjugate prior structure. We can

easily obtain the results for a regular normal population with such conjugate structure. One of the results for a normal

population N(µ, σ2) with π0(µ, σ2) ∝ σ−2a and π0(δ) ∼ Beta(αδ, βδ) can be found in Duan et al. (2006).

3. Optimality Properties of the Normalized Power Prior

In investigating the optimality properties of the normalized power priors, we use the idea of minimizing the

weighted Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) that is similar to, but not the same as in

Ibrahim et al. (2003).

Recall the definition of the KL divergence,

K(g, f ) =

∫

Θ

log

(

g(θ)

f (θ)

)

g(θ)dθ,

where g and f are two densities with respect to Lebesgue measure. In Ibrahim et al. (2003), a loss function related

to a target density g, denoted by Kg, is defined as the convex sum of the KL divergence between g and two posterior

densities. One is the posterior density without using any historical data, denoted by f0 ∝ L(θ|D)π0(θ), and the other is

the posterior density with the historical and current data equally weighted, denoted by f1 ∝ L(θ|D0)L(θ|D)π0(θ). The

loss is defined as

Kg = (1 − δ)K(g, f0) + δK(g, f1),

where the weight for f1 is δ. It is showed that, when δ is given, the unique minimizer of Kg is the posterior distribution

derived using the power prior, i.e.,

π(θ|D0,D, δ) ∝ L(θ|D0)δL(θ|D)π0(θ).

Furthermore, Ibrahim et al. (2003) claim that the posterior derived from the joint power prior also minimizes Eπ0(δ)

(

Kg

)

when δ is random.

We look into the problem from a different angle. Since the prior for θ without the historical data is π0(θ) with
∫

Θ
π0(θ)dθ = 1, we further denote the prior for θ when fully utilizing the historical data as π1(θ) ∝ π0(θ)L(θ|D0), with

∫

Θ
π1(θ)dθ = 1. Clearly

π1(θ) = Q(D0)π0(θ)L(θ|D0), (3.1)

where Q−1(D0) =
∫

Θ
π0(θ)L(θ|D0)dθ is a normalizing constant.

Suppose we have a prior π0(δ). For any function g(θ|δ), define the expected weighted KL divergence between g

and π0, and between g and π1 as

Lg = Eπ0(δ) {(1 − δ)K(g, π0) + δK(g, π1)} , (3.2)

where 0 ≤ δ ≤ 1. We have the following theorem whose proof is given in Appendix A.
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Theorem 3.1. Suppose π(δ|D0) = π0(δ). The function g(θ|δ,D0) that minimizes the expected weighted KL divergence

defined in (3.2) is

π∗(θ|δ,D0) =
L(θ|D0)δπ0(θ)

∫

Θ
L(θ|D0)δπ0(θ)dθ

,

from which we deduce the normalized power prior π(θ, δ|D0) in (2.4).

Note that the last claim in Theorem 3.1 comes from

π(θ, δ|D0) = π(θ|δ,D0)π(δ|D0) = π(θ|δ,D0)π0(δ).

The assumption of π(δ|D0) = π0(δ) indicates that the original prior of δ does not depend on D0, which is reasonable.

4. Posterior Behavior of the Normalized Power Prior

In this section we investigate the posteriors of both θ and δ under different settings of the observed statistics. We

show that by using the normalized power prior, the resulting posteriors can respond to the compatibility between D0

and D in an expected way. However, the posteriors are sensitive to different forms of the likelihoods under same data

and model using the joint power priors.

4.1. Results on the Marginal Posterior Mode of the Power Parameter

Some theoretical results regarding the relationship between the posterior mode of δ and the compatibility statistic

defined in (2.12) are given as follows. Their proofs are given in Appendix A.

Theorem 4.1. Suppose that historical data D0 and current data D are two independent random samples from an

exponential family given in (2.11). The compatibility statistic for D0 and D are T (D0) and T (D) respectively as

defined in (2.12). Then the marginal posterior mode of δ is always 1 under the normalized power prior approach, if

d

dδ
log π0(δ) + h1(D0,D, δ) + n0[T (D0) − T (D)]′h

2
(D0,D, δ) ≥ 0, (4.1)

for all 0 ≤ δ ≤ 1, where

h1(D0,D, δ) =
n0

n

∫

Θ

log L(θ|D)[π(θ|D0,D, δ) − π(θ|D0, δ)]dθ,

and

h2(D0,D, δ) =

∫

Θ

w(θ)[π(θ|D0,D, δ) − π(θ|D0, δ)]dθ.

The first term in (4.1) is always non-negative if the prior of δ is a nondecreasing function. Hence, if one uses

uniform prior on δ, this term is zero. The second term, h1(D0,D, δ), is always non-negative by using the property of

KL divergence. It is 0 if and only if π(θ|D0,D, δ) = π(θ|D0, δ), which means given δ and D0, current data D does not

contribute to any information for θ. This could be a rare case. The third term in (4.1) depends on how close T (D0)

and T (D) are to each other. When T (D0) = T (D), the third term is zero, and hence the posterior mode of δ is 1. Since

h1(D0,D, δ) is non-negative, the posterior mode of δ may also achieve 1 as long as the difference between T (D0) and

T (D) is negligible from a practical point of view. On the other hand, for the joint power prior approach, we have the

following result.

Theorem 4.2. Suppose that current data D comes from a population with density function f (x|θ), and D0 is a related

historical data. Furthermore, suppose that the initial prior π0(δ) is a non-increasing function and the conditional

posterior distribution of θ given δ is proper for any δ. Then for any D0 and D, if

max
0≤δ≤1

∫

π0(θ) f (D|θ) f (D0|θ)
δ log f (D0|θ)dθ

∫

π0(θ) f (D|θ) f (D0|θ)δdθ
< ∞, (4.2)

then there exists at least one positive constant k0 such that π(δ|D0,D) has mode at δ = 0 under the joint power prior,

where L(θ|x) = k0 f (x|θ).
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The assumption in (4.2) is valid in the case that all the integrals are finite positive values when δ is either 0 or 1.

Usually this condition satisfies when π0(θ) is smooth. The proof of this result is also given in the Appendix A. For a

normal or a Bernoulli population, our research reveals that π(δ|D0,D) has mode at δ = 0 in many scenarios regardless

of the level of compatibility between D and D0. Note that the results in Theorem 4.2 is not limited to exponential

family distributions.

A primary objective of considering δ as random is to let the posterior inform the compatibility between the histor-

ical and the current data, given a vague initial prior on δ. This allows adaptive borrowing according to the prior-data

conflict. Theorem 4.1 indicates that, when the uniform initial prior of δ is used, the posterior of δ could potentially

suggest borrowing more information from D0 as long as D is compatible with D0. In practice, this has the potential to

reduce the sample size required in D in the design stage, and to provide estimates with high precision in the analysis

stage. Theorem 4.2 shows that, on the other hand, if one considers the joint power prior with an arbitrary likelihood

form and a smooth initial prior π0(θ), it is possible that the posterior of δ could not inform the data compatibility.

This suggests the opposite, meaning that adaptive borrowing might not be true when using the joint power prior; see

Section 4.2 for more details.

4.2. Posteriors of Model Parameters

We investigate the posteriors of all model parameters in Bernoulli and normal populations, to illustrate that differ-

ent forms of the likelihoods could result in different posteriors, which affects the borrowing strength.

For independent Bernoulli trials, two different forms of the likelihood functions are commonly used. One is based

on the product of independent Bernoulli densities such that LJ1(p|D0) = py0 (1 − p)n0−y0 , and another is based on

the sufficient statistic, the summation of the binary outcomes, which follows a binomial distribution LJ2(p|D0) =

c1 py0(1 − p)n0−y0 , where c1 =

(

n0

y0

)

. Assuming π0(p) ∼ Beta(α, β), the corresponding posteriors are

πJ1(p, δ|D0,D) ∝ π0(δ)pδy0+y+α−1(1 − p)δ(n0−y0)+n−y+β−1

and

πJ2(p, δ|D0,D) ∝ cδ1πJ1(p, δ|D0,D),

respectively. After marginalization we have

πJ1(δ|D0,D) ∝ π0(δ)B(δy0 + y + α, δ(n0 − y0) + n − y + β),

πJ2(δ|D0,D) ∝ cδ1πJ1(δ|D0,D).

We denote these two scenarios as JPP1 and JPP2 in Figure 1.

For the normal population, we also consider two different forms of the likelihood functions. One uses the product

of n0 independent normal densities

LJ1(µ, σ2|D0) = (2πσ2)−
n0
2 exp















−

∑n0

i=1
(x0i − µ)

2

2σ2















,

where x0i is the value of the ith observation in D0. Another less frequently used form is the density of sufficient

statistics f (x̄0, s
2
0
|µ, σ2), where x̄0 and s2

0
are the sample mean and variance of D0, respectively. Since x̄0 ∼ N

(

µ, σ
2

n0

)

and
(n0−1)s2

0

σ2 ∼ χ2
n0−1

, so s2
0
∼ Gamma

( n0−1

2
, 2σ2

n0−1

)

under the shape-scale parameterization. Then

LJ2(µ, σ2|D0) = c2(σ2)−
n0
2 exp















−
n0(x̄0 − µ)

2 + (n0 − 1)s2
0

2σ2















,

where log c2 = (n0 − 3) log s0 +
n0−1

2
log

(

n0−1

2

)

+ 1
2

log n0 −
1
2

log(2π) − logΓ(
n0−1

2
).

Similar to the Bernoulli case, we can easily derive their joint power priors and the corresponding posteriors denoted

as JPP1 and JPP2. As a result, their log posteriors are differed by −
n0δ

2
log(2π)−δ log(c2). In the numerical experiment
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we use a Beta(1, 1) as the initial prior for δ, and the reference prior π0(µ, σ2) ∝ 1/σ2 (Berger and Bernardo, 1992) as

the initial prior for (µ, σ2).

Figure 1 shows how the posteriors of p and δ change with n0/n and p̂0 − p̂ in data simulated from the Bernoulli

population, in which a Beta(1, 1) is used as the initial prior for both p and δ. Figure 2 shows how the posterior of µ

and δ change with n0/n, µ̂0 − µ̂ (for fixed σ̂2
0

and σ̂2), and σ̂2
0
/σ̂2 (for fixed µ̂0 and µ̂) in the normal population.
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Figure 1: Posterior behavior of p (top) and δ (bottom) for Bernoulli population when n = 20, p̂ = 0.65. Left: p̂0 = 0.5 fixed and n0 varies. Right:

n0 = 40 fixed and p̂0 varies.

From both Figures 1 and 2, we observe, under the normalized power prior, the posterior mean of the parameter

of interest (p in the Bernoulli population and µ in the normal population) are sensitive to the change of compatibility

between D and D0. As the difference between the observed sample average of D0 and D increases, the posterior

mean of both p and µ are getting closer to the parameter estimate based on D0 at the beginning, then going back

to the parameter estimate based on D. For increasing n0/n, the posterior mean are getting closer to the parameter

estimate based on D0. Both of the posterior mean and mode of δ respond to the compatibility between D0 and D as

expected. In addition, when the two samples are not perfectly homogeneous, the posterior mode of δ can still attain

1. This is reasonable because the historical population is subjectively believed to have similarity with the current

population with a modest amount of heterogeneous. These findings imply that the power parameter δ responds to data

in a sensible way in the normalized power prior approach.

When using the joint power prior approach, we observe that the posteriors of the parameters p, µ and δ behave

differently with different forms of the likelihoods. Despite a violation of the likelihood principle, the joint power prior

might provide moderate adaptive borrowing under certain form of the likelihood. The degree of the adaptive borrowing

is less than using the normalized power prior. Under another likelihood form in our illustration, the posteriors suggest

almost no borrowing, regardless of how compatible these two samples are.

5. Behavior of the Square Root of Mean Square Error under the Normalized Power Prior

We now investigate the influence of borrowing historical data in parameter estimation using the square root of the

mean square error (rMSE) as the criteria. Several different approaches are compared, including the full borrowing
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Figure 2: Posterior behavior of µ (top) and δ (bottom) for normal population when n = 20, x̄ = 0.5, σ̂2 = 1. Left: x̄0 = 1 and σ̂2
0
= 0.8 fixed, n0

varies. Middle: n0 = 40 and σ̂2
0
= 0.8 fixed, x̄0 varies. Right: n0 = 40 and x̄0 = 1 fixed, σ̂2

0
varies.

(pooling), no borrowing, normalized power prior, and joint power prior. Two different likelihood forms are used for

D0 in the joint power priors, with the same notation as in Section 4. The rMSE obtained by the Monte Carlo method,

defined as

√

1
m

m
∑

i=1

(θ̂
(i)
− θ)2, is used for comparison, where m is the number of Monte Carlo samples, θ is the true

parameter and θ̂
(i)

is the estimate in the ith sample. We choose m = 5000 in all experiments.

5.1. Bernoulli Population

We first compute the rMSE of estimated p in independent Bernoulli trials, where p is the probability of success

in the current population. Suppose the current data comes from a binomial(n, p) distribution and the historical data

comes from a binomial(n0, p0) distribution, with both p and p0 unknown. The posterior mean of p is used as the

estimate. In the simulation experiment we choose n = 30, p = 0.2 or 0.5, and n0 = 15, 30 or 60. We use the Beta(1, 1)

as the initial prior for both p and δ.

Based on the results in Figure 3, the normalized power prior approach yields the rMSE comparable to the full

borrowing when the divergence between the current and the historical population is small or mild. As |p−p0| increases

from 0, both the posterior mean and the mode of δ will decrease on average. The rMSE of the posterior mean of p

will increase with |p − p0| when p0 is near p. As the |p0 − p| further increases, the posterior mean and mode of δ will

automatically drop toward 0 (Figure 5), so the rMSE will then decrease and eventually drop to the level comparable to

no borrowing. Also, when |p− p0| is small, the rMSE will decrease as n0 increase, which implies when the divergence

between the current and the historical populations is mild, incorporating more historical data would result in better

estimates using the normalized power prior. However, when |p − p0| is large, the rMSE will increase with n0 in

most scenarios. All plots from Figures 3 and 5 indicate that the normalized power prior approach provides adaptive

borrowing.

For the joint power prior approaches, the prior with the likelihood expressed as the product of independent

Bernoulli densities is similar to no borrowing while using the prior based on a binomial likelihood tends to pro-
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Figure 3: Square root of the MSE of p̂ when n = 30. Top: p = 0.5; Bottom: p = 0.2. Left: n0 = 15; Middle: n0 = 30; Right: n0 = 60.

vide some adaptive borrowing, with less information incorporated than using the normalized power prior. This is

consistent with what we observed regarding their posteriors in Section 4.

5.2. Normal Population

We also investigate the rMSE of estimated µ in a normal population with unknown variance. Suppose that the

current and historical samples are from normal N(µ, σ2) and N(µ0, σ
2
0
) populations respectively, with both mean and

variance unknown. Furthermore, the population mean µ is the parameter of interest, and the posterior mean is used as

the estimate of µ.

It can be shown that the marginal posterior distribution of δ only depends on n0, n0/n, σ0/σ, and (µ0 − µ)/σ, and

so does the rMSE. Therefore we design two simulation settings, with n = 30, µ = 0, σ = 1, and n0 = 15, 30 or 60

under both settings. In the first experiment we fix σ0 = 1, the heterogeneity is reflected by varying µ0 and therefore

(µ0 − µ)/σ. In the second experiment, we fix µ0 = 0.2 so (µ0 − µ)/σ is fixed at 0.2. We change σ0 at various levels

resulting in changes in σ0/σ.

Figures 4 and 5 display the results. The trend of the rMSE in the normalized power prior is generally consistent

with the findings in a Bernoulli population. For the joint power prior approaches, the one with the likelihood based on

the original data is similar to no borrowing. The one based on the product of densities using sufficient statistics tends

to provide some adaptive borrowing, while less information is incorporated than using the normalized power prior.

We conclude that the normalized power prior can also provide adaptive borrowing under the normal population.

6. Applications

6.1. Water-Quality Assessment

In this example, we use measurements of pH to evaluate impairment of four sites in Virginia individually. pH

data collected over a two-year or three-year period are treated as the current data, while pH data collected over the

previous nine years represents one single historical data. Of interest is the determination of whether the pH values at a
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Figure 4: Square root of the MSE of µ̂ when n = 30, µ = 0, σ = 1. Top: σ0 = 1. Bottom: µ0 = 0.2. Left: n0 = 15; Middle: n0 = 30; Right:

n0 = 60.
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Figure 5: Average value of the posterior mean for δ in simulated data with n = n0 = 30. Left: Bernoulli population with p = 0.5; Middle: Normal

population with µ = 0 and σ = σ0 = 1; Right: Normal population with µ = 0, µ0 = 0.2 and σ = 1.

site indicate that the site violates a (lower) standard of 6.0 more than 10% of the time. For each site, larger sample size

is associated with the historical data and smaller with the current data. We apply the normalized power prior approach,

a traditional Bayesian approach for current data only using the reference prior, and the joint power prior approaches.

Assume that the measurements of water quality follow a normal distribution, and for ease of comparison, the normal

model with a simple mean is considered. Since the data is used as an illustration to implement the normalized power

prior, other factors, such as spatial and temporal features, are not considered. The current data and historical data are
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plotted side by side for each site in Figure 6. A violation is evaluated using a Bayesian test of

H0 : L ≥ 6.0 (no impairment),

H1 : L < 6.0 (impairment),

where L is the lower 10th percentile of the distribution for pH.
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Figure 6: pH data collected at four stations. For each site, historical data are on the left (circle) and current data on the

right (diamond).

Table 1: Model fitting results in evaluating site impairment with historical data available. In the table n and n0 are sample sizes, mean (s.d.) refers

to sample mean (sample standard deviation), and s.d. of L is the posterior standard deviation of L.

Site Current Historical Posterior probability of H0

data data (s.d. of L)

n mean n0 mean Reference Normalized Joint power prior

(s.d.) (s.d.) prior power prior (1) (2) (3)

A 16 6.91 62 7.05 0.177 0.488 0.385 0.201 0.997

(0.90) (0.47) (0.34) (0.26) (0.31) (0.32) (0.09)

B 12 6.78 31 6.73 0.069 0.047 0.051 0.070 0.033

(1.03) (0.71) (0.47) (0.26) (0.30) (0.45) (0.17)

C 24 6.43 84 6.95 0.001 0.004 0.003 0.002 0.592

(0.88) (0.49) (0.26) (0.24) (0.25) (0.25) (0.08)

D 21 7.87 75 7.88 0.865 0.986 0.959 0.886 1.000

(1.11) (0.67) (0.36) (0.25) (0.30) (0.35) (0.11)

Table 1 summarizes the current and the historical data, and the test results using the reference prior analysis

(without incorporating historical data), the normalized power prior, and the joint power prior analyses (with reference
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prior as the initial prior for (µ, σ2), i.e, a = 1 in Section 2.3.3). Similar to Sections 4 and 5, results from the joint

power priors are calculated using different likelihood functions: (1) joint density of sufficient statistics; (2) product

of n0 independent normal densities; (3) product of n0 independent normal densities multiply by an arbitrary large

constant (2π)n0/2 exp(200).

The posterior probability of H0 is calculated based on the posterior of L = µ + Φ−1(0.1)σ, where Φ−1(·) is the

quantile function of a standard normal distribution. If the 0.05 significance level is used, the Bayesian test using the

reference prior and the current data would only indicate site C as impaired. Here we use the posterior probability of

H0 as equivalent to the p-value (Berger, 2013). Using historical data does lead to different conclusions for site B. The

test using normalized power prior results in significance for both sites B & C. The test using joint power prior with

likelihood (1) results in significance for site C, and the posterior probability of H0 for site B is very close to 0.05. In

the case of site B, there are around 10% of historical observations below 6.0. Hence our prior opinion of the site is

suggestive of impairment. Less information is therefore required to declare impairment relative to a reference prior

and the result is a smaller p-value. However, if one uses the likelihood function in case (2) of the joint power prior

method, the test result is similar to no borrowing. Furthermore, if we use an arbitrary constant as in case (3) of the

joint power prior, results will be completely different. The standard deviations of L will become very small, and it is

similar to a full borrowing; see Figure 7. We will conclude site B impaired, but site C not, due to the strong influence

of the historical data.

Hence, this example shows that the inference results are sensitive to the likelihood form in employing the joint

power prior. On the other hand, normalized power prior provides adaptive borrowing in all scenarios. It is more

reasonable to conclude that both site B and site C are impaired.

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0
δ

D
e

n
si

ty

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0
δ

D
e

n
si

ty

0

3

6

9

12

0.0 0.2 0.4 0.6 0.8 1.0
δ

D
e

n
si

ty

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
δ

D
e

n
si

ty

NPP JPP1 JPP2 JPP3

Figure 7: Marginal posterior density plot for δ using different priors. JPP 1 to 3 refer to the joint power priors with different likelihood forms as

described in the example.

6.2. Noninferiority Trial in Vaccine Development

In a vaccine clinical trial, it is commonly required to demonstrate that the new vaccine does not interfere with other

routine recommended vaccines concomitantly. In addition to the phase 3 efficacy and safety trials, a noninferiority trial

is commonly designed to demonstrate that the effect (in this example, the response rate) of a routine recommended

vaccine (vaccine A) can be preserved when concomitantly used with the experimental vaccine (vaccine B). If the

differences in the response rate of vaccine A when concomitantly used with vaccine B and the response rate of using

vaccine A alone is within a certain prespecified margin, then we may conclude that they do not interfere each other.

The prespecified positive margin dm, known as the noninferiority margin, reflects the maximum acceptable extent of

clinical noninferiority in an experimental treatment.

A simple frequentist approach of conducting such noninferiority test is to calculate the 95% confidence interval of

pt − pc, where pt and pc are the response rates for test and control groups respectively. Given a positive noninferiority

margin dm, we conclude that the experimental treatment is not inferior to the control if the lower bound of the 95%

confidence interval is greater than −dm. When a Bayesian approach is applied, the 95% confidence interval can be

replaced by the 95% credible interval (CI) based on the highest posterior density (Gamalo et al., 2011).

However, a problem with either the frequentist or the Bayesian approach using noninformative priors is, when the

sample size is too small, the confidence interval or the credible interval will become too wide. Therefore inferiority
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could be inappropriately concluded. For this reason, historical evidence, especially historical data for the control

group, can be incorporated. Examples of Bayesian noninferiority trials design based on power prior can be found in

Lin et al. (2016) and Li et al. (2018).

We illustrate the use of normalized power prior approach to adaptively borrow data from historical controls in the

development of RotaTeq, a live pentavalent rotavirus vaccine. A study was designed to investigate the concomitant use

of RotaTeq and some routine pediatric vaccines between 2001-2005 (Liu, 2018). Specifically, the test was conducted

to evaluate the anti-polyribosylribitol phosphate response (a measure of vaccination against invasive disease caused by

Haemophilus influenzae type b) to COMVAX (a combination vaccine for Haemophilus influenzae type b and hepatitis

B), in concomitant use with RotaTeq. Since our goal is to assess whether the experimental vaccine RotaTeq will affect

the response rate of the routine recommended COMVAX or not, the endpoint is the response rate of COMVAX. The

per-protocol population included 558 subjects from the test group (COMVAX+RotaTeq) and 592 from the control

group (COMVAX+placebo).

Since COMVAX was used for a few years, data from historical trials with similar features can be incorporated.

Table 2 provides a summary of the available datasets (Liu, 2018). We pool the four historical data sets, and applying

(1) non-informative Bayesian analysis with Jeffrey’s prior; (2) joint power prior with the likelihood written as the

product of Bernoulli densities, denoted as JPP1; (3) joint power prior with likelihood written as the binomial density,

denoted as JPP2; (4) normalized power prior. Results are summarized in Table 3.

Table 2: Summary of historical and current studies.

Study Study Years N Responders Response Rate

Historical Studies Study 1 1992-1993 576 417 72.4%

Study 2 1993-1995 111 90 81.1%

Study 3 1993-1995 62 49 79.9%

Study 4 1997-2000 487 376 77.2%

Current Study Control 2001-2005 592 426 72.0%

Test 2001-2005 558 415 74.4%

Since the normalized power prior incorporates the most information from the control group of the historical

studies, its 95% CI of pt − pc is the shortest. On the other hand, using the joint power prior with the product of

Bernoulli densities as the likelihood results in almost no borrowing, while using a binomial density as the likelihood

will slightly improves the borrowing. Since the average response rate in historical controls are slightly larger than that

of the current control, the estimated response rate of the control group is the largest under the normalized power prior.

This will result in a more conservative decision making when concluding noninferiority. Under a commonly used

noninferiority margin dm = 5%, we can conclude noninferiority under all approaches, but in very rare cases, when a

smaller margin is chosen, say dm = 3%, the noninferiority might be questionable when considering more historical

information with a normalized power prior.

The posterior distribution of δ is skewed, therefore the posterior mean is not close to the posterior mode of δ.

In the normalized power prior approach, the posterior mean of δ is 0.482, indicating that on average, approximately

1236× 48.2% subjects are borrowed from the historical data. On the other hand, if one considers the power prior with

a fixed δ for ease of interpretation, the posterior mode and posterior mean of δ can serve as the guided values, since

they provide some useful information regarding the data compatibility. For example, considering a fixed δ = 0.95 in

practice might be anti-conservative, while a fixed δ = 0.05 might be too conservative from the prior-data conflict point

of view.

6.3. Diagnostic Test Evaluation

The U.S. Food and Drug Administration (FDA) has released a guidance1 for the use of Bayesian methods in

medical device clinical trials. This guidance specifies that the power prior could be one of the methodologies to

1the complete version of the guidance can be freely downloaded at: https://www.fda.gov/media/71512/download [Accessed 03 June 2019].
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Table 3: Summary of study results.

Prior p̂c (%) 95% CI for pt − pc (%) δ̄ Mode of δ

Jeffrey’s Prior 71.92 (−2.61, 7.58) - -

JPP1 71.93 (−2.89, 7.31) 0.001 0

JPP2 72.68 (−3.26, 6.59) 0.166 0

NPP 73.50 (−3.76, 5.54) 0.482 0.181

borrow strength from other studies. In this example, the proposed normalized power prior is applied to evaluate

the diagnostic test for spontaneous preterm delivery (SPD). The binary diagnostic test may result in one of the four

possible outcomes: true positive (Cell 1), false positive (Cell 2), false negative (Cell 3) and true negative (Cell 4);

see Table 4. Let θ = (θ1, θ2, θ3, θ4) denote the cell probabilities and let n = (n1, n2, n3, n4) denote the corresponding

number of subjects in Table 4. The sensitivity η and specificity λ of a test can be expressed in terms of the cell

probabilities θ as

η ≡ Pr(T+ | D+) ≡
θ1

θ1 + θ3
, and λ ≡ Pr(T− | D−) ≡

θ4

θ2 + θ4
,

respectively, where D stands for disease status and T stands for test status.

Table 4: Possible outcomes of a binary diagnostic test.

Disease status

Yes No

Test positive Cell 1 (TP) Cell 2 (FP)

Test negative Cell 3 (FN) Cell 4 (TN)

A simple frequentist approach to evaluate such binary test is to compute the 95% confidence intervals of η and

λ, denoted by (ηL, ηU) and (λL, λU). Then we compare the lower bounds ηL and λL to the value of 50% which is the

sensitivity and specificity of a random test. We may conclude that the diagnostic test outweighs a random test on the

diseased group if ηL is greater than 50%. Similarly, the diagnostic test outweighs a random test on non-diseased group

if λL is greater than 50%.

In practice, however, the diseased group’s data are difficult to collect leading to a relatively small n1 + n3. As a

result, the confidence interval of η tends to be too wide to make any conclusions. For the purpose of this agreement,

the sequential Bayesian updating and the power prior can be used to incorporate the historical/external information.

A diagnostic test based on a medical device (PartoSure Test-P160052) was developed to aid in rapidly assess the

risk of spontaneous preterm delivery within 7 days from the time of diagnosis in pre-pregnant women with signs and

symptoms2. Table 5 lists the dataset of 686 subjects from the US study and the dataset of 511 subjects from the

European study. The test was approved by FDA based on the US study, so the European study is regarded as the

external information in this example. The joint power prior (with the full multinomial likelihood), the normalized

power prior, no borrowing and full borrowing are applied, with Jeffrey’s prior Dir(0.5, 0.5, 0.5, 0.5) as the initial prior

for θ. Table 6 summarizes the results. It is found that the posterior mean under the power prior is always between the

posterior mean of no borrowing and full borrowing. Also, the result of using joint power prior is close to the one of no

borrowing since only 4.4% of the external information is incorporated on average. Using the normalized power prior

will on average increase the involved external information to 21.6%, making its result closer to the full borrowing. In

practice, the posterior mean of δ (e.g, 4.4% and 21.6%) could be important to clinicians because it not only reflects the

information amount that is borrowed, but also indicates the average sample size (e.g., 511 × 4.4% and 511 × 21.6%)

2the dataset used in this example is freely available at: https://www.accessdata.fda.gov/cdrh docs/pdf16/P160052C.pdf [Accessed 03 June

2019].
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that is incorporated. The joint power prior suggests very little borrowing while the normalized power prior suggests a

moderate level of borrowing. In general, these two data sets are compatible since they have similar sensitivity (50%

and 50%) and specificity (96% and 98%). The value obtained by the normalized power prior is more persuasive and

reflects the data compatibility.

Table 5: 2×2 performance tables with the US study and the European study.

US study Disease status European study Disease status

Yes No Total Yes No Total

Test positive 3 11 14 Test positive 9 20 29

Test negative 3 669 672 Test negative 9 473 482

Total 6 680 686 Total 18 493 511

Table 6: Summary of study results.

Prior 100η̂ 95% CI for η (%) 100λ̂ 95% CI for λ (%) δ̄ Mode of δ

Fixed δ = 0 50.04 (16.67, 82.80) 98.31 (97.32, 99.22) - -

Fixed δ = 1 49.85 (31.40, 68.70) 97.32 (96.38, 98.17) - -

JPP 49.98 (18.94, 83.05) 98.24 (97.27, 99.18) 0.044 0

NPP 49.88 (21.60, 78.84) 98.02 (96.93, 99.00) 0.216 0.085

7. Summary and Discussion

As a general class of the informative priors for Bayesian inference, the power prior provides a framework to

incorporate data from alternative sources, whose influence on statistical inference can be adjusted according to its

availability and its discrepancy between the current data. It is semi-automatic, in the sense that it takes the form of

raising the likelihood function based on the historical data to a fractional power regardless of the specific form of

heterogeneity. As a consequence of using more data, the power prior has advantages in terms of the estimation with

small sample sizes. When we do not have enough knowledge to model such heterogeneity and cannot specify a fixed

power parameter in advance, a power prior with a random δ is especially attractive in practice.

In this article we provide a framework of using the normalized power prior approach, in which the degree of

borrowing is dynamically adjusted through the prior-data conflict. The subjective information about the difference in

two populations can be incorporated by adjusting the hyperparameters in the prior for δ, and the discrepancy between

the two samples is automatically taken into account through a random δ. Theoretical justification is provided based on

the weighted KL divergence. The controlling role of the power parameter in the normalized power prior is adjusted

automatically based on the congruence between the historical and the current samples and their sample sizes; this is

shown using both the analytical and numerical results. On the other hand, we revisit some undesirable properties of

using the joint power prior for a random δ; this is shown by theoretical justifications and graphical examples. Efficient

algorithms for posterior sampling using the normalized power prior are also discussed and implemented.

We acknowledge when δ is considered random and estimated with a Bayesian approach, the normalized power

prior is more appropriate. The violation of likelihood principle under the joint power prior was discussed in Duan et al.

(2006) and Neuenschwander et al. (2009). However, a comprehensive study on the joint power prior and the normal-

ized power prior is not available in literature. As a result, the joint power priors with random δ were still used

afterwards, for example, Zhao et al. (2014), Gamalo et al. (2014), Lin et al. (2016), and Zhang et al. (2019). This

might partially due to the fact that the undesirable behavior of the joint power priors were not fully studied and rec-

ognized. Although under certain likelihood forms, the joint power priors would provide limited adaptive borrowing,

its mechanism is unclear. We conclude that the joint power prior is not recommended with a random δ.
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On the other hand, the power prior with δ fixed is widely used in both clinical trial design and observational studies.

It can be viewed as a special case of the normalized power prior with initial prior of δ coming from a degenerate

distribution. We conjecture that a similar sensitivity analysis used in a power prior with δ fixed (Ibrahim et al., 2015)

might be carried out to search for the initial prior of δ in the normalized power prior context. Since the normalized

power prior generalizes the power prior with δ fixed, most inferential results in power prior with δ fixed could be

easily adopted. Further studies will be carried out elsewhere.
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Appendix A. Proofs and Theorems

Proof of Identity (2.10):

Taking derivative of log
∫

Θ
L(θ|D0)δπ0(θ)dθ with respect to δ we have:

d

dδ
log

∫

Θ

L(θ|D0)δπ0(θ)dθ =
1

∫

Θ
L(θ|D0)δπ0(θ)dθ

d

dδ

∫

Θ

L(θ|D0)δπ0(θ)dθ

=
1

∫

Θ
L(θ|D0)δπ0(θ)dθ

∫

Θ

L(θ|D0)δ log[L(θ|D0)]π0(θ)dθ

=

∫

Θ

L(θ|D0)δπ0(θ)
∫

Θ
L(θ|D0)δπ0(θ)dθ

log[L(θ|D0)]dθ

= Eπ(θ|D0,δ){log[L(θ|D0)]}.

So the equation (2.10) can be obtained by integrating with respect to δ.

Proof of Theorem 2.1: To prove the Theorem 2.1, we first state two simple identities of linear algebra and multivariate

integral without proof. For positive-definite k × k matrices A and B, and k × 1 vectors x, y, and z,

(x − y)′A(x − y) + (x − z)′B(x − z) = (y − z)′B(A + B)−1 A(y − z)

+
[

x − (A + B)−1(Ay + Bz)
]′

(A + B)
[

x − (A + B)−1(Ay + Bz)
]

. (A.1)

On the other hand, for A being a positive-definite k × k matrix, x and x0 k × 1 vectors, with positive constants t, a and

b where a > k
2
+ 1,

∫ ∞

0

∫

Rk

1

ta
exp

{

−
b + (x − x0)′A(x − x0)

2t

}

dxdt

= (2π)
k
2 Γ

(

a −
k

2
− 1

)

|A|−
1
2

(

b

2

)−(a− k
2
−1)
. (A.2)

For the current data D, the likelihood function of (β, σ2) using (2.15) can be written as

L(β, σ2|D) ∝
1

(σ2)
n
2

exp

{

−
1

2σ2

[

S + (β − β̂)′X′X(β − β̂)
]

}

,

where S is defined in Section 2.3.3. Accordingly, adding subscript 0 to data and all other quantities except for the

parameters (β, σ2) would give similar form to L(β, σ2|D0).
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(a) To obtain the normalized power prior, we need to find the normalization factor

C(δ) ∝

∫ ∞

0

∫

Rk

π0(β, σ2)L(β, σ2|D0)δdβdσ2

∝

∫ ∞

0

∫

Rk

1

(σ2)
δn0+bk

2
+a

exp

{

−
1

2σ2

[

δ {S 0 + bH0(δ)} + Q(δ, β)
]

}

dβdσ2

∝ 1/M0(δ),

where H0(δ), M0(δ) and Q(δ, β) are defined in Theorem 2.1 (a). Note that, using (A.1), the second line follows

from completing the squares

(β − µ0)′bR(β − µ0) + (β − β̂0)′δX′0X0(β − β̂0) = Q(δ, β) + δbH0(δ),

while to finish the third line we use the identity in (A.2). Multiplying π0(δ)π0(β, σ2)L(β, σ2|D0)δ by C(δ)−1

above yields the result (a).

(b) Since

Q(δ, β) + (β − β̂)′X′X(β − β̂) = H(δ) + Q∗(δ, β),

where H(δ) is defined in Theorem 2.1 (b), and

Q∗(δ, β) = (β − µ∗)′(bR + δX′0X0 + X′X)(β − µ∗),

where µ∗ = (bR + δX′
0
X0 + X′X)−1[(bR + δX′

0
X0)β∗ + X′Xβ̂], using the normalized power prior in (a), the

posterior π(β, σ2, δ|D0,D) is of the form

π(β, σ2, δ|D0,D) ∝
π0(δ)M0(δ)

(σ2)
n+δn0+bk

2
+a

exp

{

−
δ [S 0 + bH0(δ)] + S + H(δ) + Q∗(δ,β)

2σ2

}

.

Marginalizing (β, σ2) out, we obtain

π(δ|D0,D) ∝ π0(δ)M0(δ)Γ(ν∗)|bR + δX′0X0 + X′X|−
1
2

×

{

δ [S 0 + bH0(δ)] + S + H(δ)

2

}−ν∗

,

where ν∗ =
n+δn0+(b−1)k

2
+ a − 1. Plugging in M0(δ) we get (b).

(c) Integrating σ2 out from the joint posterior, we have

π(β, δ|D0,D) ∝ π0(δ)M0(δ)Γ

(

ν∗ +
k

2

) {

δ [S 0 + bH0(δ)] + S + H(δ) + Q∗(δ, β)

2

}−
(

ν∗+ k
2

)

,

where ν∗ and Q∗(δ, β) are defined above in the proof of part (b). The conditional distribution of β given (δ,D0,D)

satisfies

π(β|δ,D0,D) ∝ {δ [S 0 + bH0(δ)] + S + H(δ) + Q∗(δ, β)}−(ν
∗+ k

2 )

∝

{

1 +
1

ν

[

(β − µ∗)′ν(bR + δX′
0
X0 + X′X)(β − µ∗)

δ {S 0 + bH0(δ)} + S + H(δ)

]}− ν+k
2

,

where ν = (b− 1)k+ δn0 + n+ 2a− 2. This is the kernel of a multivariate Student t-distribution with parameters

specified in Theorem 2.1 (c).

(d) Using Gaussian integral we can marginalize β out from the joint posterior, then

π(σ2, δ|D0,D) ∝
π0(δ)M0(δ)

(σ2)ν
∗+1

exp

{

−
δ [S 0 + bH0(δ)] + S + H(δ)

2σ2

}

|bR + δX′0X0 + X′X|−
1
2 ,

where ν∗ is defined in the proof of part (b). Conditional on (δ,D0,D), π(σ2|δ,D0,D) is an inverse-gamma kernel

with parameters specified in Theorem 2.1 (d).
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Proof of Theorem 3.1:

The quantity Lg in (3.2) can be written as

Lg = Eπ0(δ) {(1 − δ)K(g, π0) + δK(g, π1)}

= Eπ0(δ)

[
∫

Θ

g(θ|δ) log

{

g(θ|δ)1−δ

π0(θ)1−δ
·

g(θ|δ)δ

π1(θ)δ

}

dθ

]

= Eπ0(δ)

[
∫

Θ

g(θ|δ) log

{

g(θ|δ)

Q(D0)δπ0(θ)L(θ|D0)δ

}

dθ

]

= Eπ0(δ) {K[g(θ|δ), π∗(θ|δ,D0)]} − Eπ0(δ)

[

log

{

Qδ(D0)

Q1(D0, δ)

}]

, (A.3)

where

π∗(θ|δ,D0) =
L(θ|D0)δπ0(θ)

∫

Θ
L(θ|D0)δπ0(θ)dθ

, (A.4)

Q(D0) is defined in (3.1), and Q1(D0, δ)
−1 is the denominator in (A.4). The second term of (A.3) in the last line is not

related to g, and the inside KL divergence in the first term is clearly minimized when g(θ|δ) = π∗(θ|δ,D0).

Proof of Theorem 4.1:

Applying the property of the KL divergence between two distributions,

K( f1, f2) =

∫

f1(x) log
f1(x)

f2(x)
dx ≥ 0,

with equality held if and only if f1(x) = f2(x), we conclude that

n

n0

h1(D0,D, δ) =

∫

Θ

log L(θ|D){π(θ|D0,D, δ) − π(θ|D0, δ)}dθ

=

∫

Θ

log

{

π(θ|D0,D, δ)

π(θ|D0, δ)
M(D0,D|δ)

}

{π(θ|D0,D, δ) − π(θ|D0, δ)}dθ

=

∫

Θ

log
π(θ|D0,D, δ)

π(θ|D0, δ)
π(θ|D0,D, δ)dθ +

∫

Θ

log
π(θ|D0, δ)

π(θ|D0,D, δ)
π(θ|D0, δ)dθ ≥ 0, (A.5)

with equality held if and only if π(θ|D0,D, δ) = π(θ|D0, δ). In (A.5), M(D0,D|δ) is a marginal density that does not

depend on θ and hence its related term is 0 since both π(θ|D0,D, δ) and π(θ|D0, δ) are proper.

In order to show that the marginal posterior mode of δ is 1, it is sufficient to show that the derivative of π(δ|D0,D)

in (2.5) is non-negative. Using certain algebra similar to the proof of identity (2.10), we obtain

d

dδ
π(δ|D0,D) =

d

dδ
{log π0(δ)}π(δ|D0,D) +

π(δ|D0,D)

∫

Θ

log L(θ|D0){π(θ|D0,D, δ) − π(θ|D0, δ)}dθ. (A.6)

Since we are dealing with the exponential family with the form (2.11) and (2.13), considering the likelihood ratio

we have

log L(θ|D0) = log h(D0) + n0{T (D0)′w(θ) + τ(θ)}

= log h(D0) −
n0

n
log h(D) +

n0

n
log L(θ|D) + n0{T (D0) − T (D)}′w(θ). (A.7)

Combining (A.5) and (A.7) into (A.6), we prove Theorem 4.1 by showing the condition (4.1).

Proof of Theorem 4.2:
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Suppose that k is an arbitrary positive constant. We take the likelihood function of the form L(θ|x) = k f (x|θ), then

L(θ|D) = kn f (D|θ) and L(θ|D0) = kn0 f (D0|θ). For the original joint power prior, the marginal posterior distribution of

δ can be rewritten as

π(δ|D0,D) ∝ π0(δ)

∫

Θ

L(θ|D)L(θ|D0)δπ0(θ)dθ

∝ π0(δ)

∫

Θ

f (D|θ)[kn0 f (D0|θ)]
δπ0(θ)dθ. (A.8)

To prove that the marginal posterior mode of δ is 0, it is sufficient to show that the derivative of π(δ|D0,D) with respect

to δ is non-positive for any δ ∈ [0, 1].

The derivative contains two parts. The first part is the derivative on π0(δ). If π0(δ) is non-increasing as described

in the theorem, this part is non-positive. The second part is the derivative in the integral part in (A.8). An equivalent

condition to guarantee this part non-positive is

∫

Θ

f (D|θ)
d[kn0 f (D0|θ)]

δ

dδ
π0(θ)dθ ≤ 0

⇐⇒ kn0δ

∫

Θ

π0(θ) f (D|θ) f (D0|θ)
δ{n0 log k + log f (D0|θ)}dθ ≤ 0

⇐⇒

∫

Θ
π0(θ) f (D|θ) f (D0|θ)

δ log f (D0|θ)dθ
∫

Θ
π0(θ) f (D|θ) f (D0|θ)δdθ

≤ n0 log
1

k
, (A.9)

assuming that the derivative and integral are interchangeable.

If we take

k0 = exp

{

−
1

n0

max
0≤δ≤1

∫

Θ
π0(θ) f (D|θ) f (D0|θ)

δ log f (D0|θ)dθ
∫

Θ
π0(θ) f (D|θ) f (D0|θ)δdθ

}

> 0,

then the sufficient condition in (A.9) for the marginal posterior mode of δ being 0 is met for any δ.

Appendix B. MCMC Sampling Scheme

Appendix B.1. Algorithm for Posterior Sampling

Here we describe an algorithm in detail that is applicable in models when π(δ|θ,D0,D) is free of any numerical

integration, and the full conditional for each θi is readily available.

Let θ = (θ1, . . . , θk) denote the parameters of interest in the model, and θ−i is θ with the ith element removed. The

initial prior π0(θ) can be chosen so that the full conditional posterior of each θi, the π(θi|θ−i, δ,D0,D), can be sampled

directly using the Gibbs sampler (Gelman et al., 2013). However, neither the full conditional posterior π(δ|θ,D0,D)

nor the marginal posterior π(δ|D0,D) is readily available. Given that π(δ|D0,D) is known up to a normalizing con-

stant, the Metropolis-Hastings algorithm (Chib and Greenberg, 1995) is implemented. Here we illustrate the use of

a random-walk Metropolis-Hastings algorithm with Gaussian proposals for ϑ = logit(δ), which converges well em-

pirically. Let q(· | δold) denotes the proposal distribution for δ in the current iteration, given its value in the previous

iteration is δold. The algorithm proceeds as follows:

Step 0: Choose the initial values for the parameters θ(0) and δ(0), set the tuning constant as c, and iteration index l = 0.

Step 1: The Metropolis-Hastings step. Simulate ϑ∗ ∼ N(ϑ(l), c) and U ∼ unif(0, 1). Compute δ∗ = logit−1(ϑ∗) and the

acceptance probability α = min{1, t}. After applying a change of variable, we have

t =
π(δ∗ | D0,D)q(δ(l) | δ∗)

π(δ(l) | D0,D)q(δ∗ | δ(l))
=
π(δ∗ | D0,D)δ∗(1 − δ∗)

π(δ(l) | D0,D)δ(l)(1 − δ(l))
.

Then set δ(l+1) = δ∗, if U < α. Otherwise, set δ(l+1) = δ(l).

24



Step 2: The Gibbs sampling step. For i = 1, . . . , k, independently sample θ
(l+1)

i
from its full conditional posterior

π(θi|θ
(l)

−i
, δ(l+1),D0,D).

Step 3: Increase l by 1, and repeat steps 1 and 2 until the states have reached the equilibrium distribution of the Markov

chain.

Since δ ∈ [0, 1], an independent proposal from a beta distribution might also provide good convergence. In such

cases, the proposal distribution q(·) will be the same beta distribution evaluated at δ(l) and δ∗ in the nominator and

denominator respectively.

Appendix B.2. Algorithm to Compute the Scale Factor

Here we describe an algorithm in detail when the scale factor in the denominator, C(δ) =
∫

Θ
L(θ|D0)δπ0(θ)dθ

needs to be calculated numerically. From identity (2.10), log C(δ) =
∫ δ

0
Eπ(θ|D0,δ

∗){log[L(θ|D0)]}dδ∗, so we only need

to calculate the one-dimensional integral.

MCMC samples from π(θ|D0, δ) with fixed δ can be easily drawn, since the target density is expressed explicitly

up to a normalizing constant. A fast implementation with RStan (Carpenter et al., 2017) and parallel programming

is applicable, by including the fixed δ in the target statement. We develop the following algorithm to calculate the

scale factor log C(δ) up to a true constant. It is an adaptive version of the path sampling based on the results in

Van Rosmalen et al. (2018).

Step 0: Choose a set of n − 1 different numbers as knots between 0 and 1, and another knot at 1, with n sufficiently

large. Sort them in ascending order (δ1, . . . , δn−1, 1). Let ∆1 = δ1, ∆i = δi − δi−1 (1 < i ≤ n), and ∆n = 1 − δn−1.

Choose M, the number of MCMC samples in a run when sampling from π(θ|D0, δ). Initialize l = 1.

Step 1: Generate M samples from π(θ|D0, δl) using an appropriate MCMC algorithm. Denote the sample as (θ
(1)

l
, θ

(2)

l
, . . . , θ

(M)

l
).

Step 2: Calculate h(δl) =
∑M

j=1 log L(θ
( j)

l
|D0)/M.

Step 3: Calculate log C(δl) ≈
∑l

k=1 ∆kh(δk).

Step 4: Increase l by 1. If l ≤ n then repeat Steps 1 to 3.

The output is a vector of n values, (log C(δ1), . . . , log C(δn−1), log C(1)), for selected knots.

Finally, for δ that is not on the knots, it is efficient to linearly interpolate log C(δ) based on its nearest two values

on the knots (Van Rosmalen et al., 2018). The interpolation can be done quite fast at every iteration when sampling

from the posterior π(θ, δ|D0,D) using a normalized power prior, so the algorithm similar to the one described in

Appendix B.1 can be applied. Compared to the joint power prior, the extra computational cost is to calculate log C(δ)

on the selected knots, with the capability of parallel computation. Both of the algorithms in Appendix B.1 and

Appendix B.2 are implemented in R package NPP.

25


	1 Introduction
	2 A Normalized Power Prior Approach
	2.1 The Normalized Power Prior
	2.2 Computational Considerations in the Normalized Power Prior 
	2.3 Normalized Power Prior Approach for Exponential Family
	2.3.1 Bernoulli Population
	2.3.2 Multinomial Population
	2.3.3 Normal Linear Model and Normal Population


	3 Optimality Properties of the Normalized Power Prior
	4 Posterior Behavior of the Normalized Power Prior 
	4.1 Results on the Marginal Posterior Mode of the Power Parameter
	4.2  Posteriors of Model Parameters

	5 Behavior of the Square Root of Mean Square Error under the Normalized Power Prior
	5.1 Bernoulli Population
	5.2 Normal Population

	6 Applications
	6.1 Water-Quality Assessment
	6.2 Noninferiority Trial in Vaccine Development 
	6.3 Diagnostic Test Evaluation

	7 Summary and Discussion
	Appendix  A Proofs and Theorems
	Appendix  B MCMC Sampling Scheme
	Appendix  B.1 Algorithm for Posterior Sampling
	Appendix  B.2 Algorithm to Compute the Scale Factor


