Normalized solutions of nonlinear Schrödinger equations

Thomas Bartsch
Sébastien de Valeriola

Abstract

We consider the problem $$
\left\{\begin{array}{l} -\Delta u-g(u)=\lambda u \\ u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} u^{2}=1, \lambda \in \mathbb{R} \end{array}\right.
$$ in dimension $N \geq 2$. Here g is a superlinear, subcritical, possibly nonhomogeneous, odd nonlinearity. We deal with the case where the associated functional is not bounded below on the L^{2}-unit sphere, and we show the existence of infinitely many solutions.

MSC 2010: Primary: 35J60; Secondary: 35P30, 58E05
Key words: nonlinear eigenvalue problem, nonlinear Schrödinger equation, normalized solutions, radial solutions

1 Introduction

In this note we consider the nonlinear eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta u-g(u)=\lambda u \tag{1.1}\\
u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} u^{2}=1, \lambda \in \mathbb{R}
\end{array}\right.
$$

in dimension $N \geq 2$. The nonlinearity $g: \mathbb{R} \rightarrow \mathbb{R}$ is superlinear, subcritical, and possibly nonhomogeneous. A model nonlinearity is

$$
\begin{equation*}
g(u)=\left(\sum_{i=1}^{k}|u|^{p_{i}-2}\right) u, \quad 2<p_{1}<\ldots<p_{k}<2^{*} \tag{1.2}
\end{equation*}
$$

where $2^{*}=2 N /(N-2)$ if $N \geq 3$ and ∞ if $N=2$, the critical Sobolev exponent.

This problem possesses many physical motivations, e. g. it appears in models for Bose-Einstein condensation (see [9]). Looking for standing wave solutions $\Psi(t, x)=$ $e^{i m t} u(x)$ of the dimensionless nonlinear Schrödinger equation

$$
i \Psi_{t}-\Delta_{x} \Psi=f(|\Psi|) \Psi
$$

one is lead to problem (1.1) with $g(u)=f(|u|) u$. As in these physical frameworks Ψ is a wave function, it seems natural to search for normalized solutions, i. e. solutions of the equation satisfying $\int_{\mathbb{R}^{N}} u^{2}=1$.

If g is homogeneous ($k=1$ in (1.2)) then one can use the classical results from [3,4], for instance, to solve $-\Delta u+u=g(u)$, and then rescale u in order to obtain normalized solutions of (1.1). This does not work for a general nonlinearity, it fails already in the case $k \geq 2$ in (1.2). If g is not homogeneous and does not grow too fast (for g as in (1.2) this means all $p_{i}<2+\frac{4}{N}$) then one can minimize the associated functional

$$
\begin{equation*}
J(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\int_{\mathbb{R}^{N}} G(u), \quad \text { with } G(t)=\int_{0}^{t} g(s) d s \tag{1.3}
\end{equation*}
$$

on the L^{2}-unit sphere $S=\left\{u \in H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} u^{2}=1\right\}$ to obtain a solution. Here $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$ denotes the space of radial H^{1}-functions. The parameter λ appears as Lagrange multiplier. Rather general conditions on g which allow minimization, even in a nonradial setting, can be found in [7] and the references therein. If g is odd, as in the case $g(u)=$ $f(|u|) u$ appearing in applications, and if g does not grow too fast then one can obtain infinitely many solutions using classical min-max arguments based on the Krasnoselski genus.

However for fast growing g, J is not bounded below on S, hence minimization doesn't work. Moreover, the genus of the sublevel sets $J^{c}=\{u \in S: J(u) \leq c\}$ is always infinite, so the Krasnoselski genus arguments do not apply. In [8], Jeanjean was able to treat nonhomogeneous, fast growing nonlinearities and showed the existence of one solution of (1.1) using a mountain pass structure for J on S. The object of this short note is to prove that for the same class of nonlinearities considered in [8], (1.1) actually has infinitely many solutions.

In order to state our result we recall the assumptions on the function g made in [8]:
$\left(H_{1}\right) g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and odd,
(H_{2}) there exists $\alpha, \beta \in \mathbb{R}$ satisfying

$$
2+\frac{4}{N}<\alpha \leq \beta<2^{*}
$$

such that

$$
0<\alpha G(s) \leq g(s) s \leq \beta G(s)
$$

The condition $G>0$ in $\left(H_{2}\right)$ is not stated in [8] but used implicitely.
Theorem 1.1. If assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold, then problem (1.1) possesses an unbounded sequence of pairs of radial solutions $\left(\lambda_{n}, \pm u_{n}\right)$.

The proof is based on variational methods applied to the functional J constrained to S. We shall present a new linking geometry for constrained functionals which is motivated by the fountain theorem [2, Theorem 2.5]; see also [10, Section 3]. The classical symmetric mountain pass theorem applies to functionals on Banach spaces, not on spheres. Another difficulty due to the constraint is that $\left.J\right|_{S}$ does not satisfy the Palais-Smale condition although the embedding $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ of the space of radial H^{1}-functions into the L^{p}-spaces is compact for $2<p<2^{*}$. In fact, there exist bounded Palais-Smale sequences for $\left.J\right|_{S}$ converging weakly to 0 , and there may exist unbounded Palais-Smale sequences.

2 Proof of Theorem 1.1

In order to recover some compacity, we will work in $E=H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$, provided with the standard scalar product and norm: $\|u\|^{2}=|\nabla u|_{2}^{2}+|u|_{2}^{2}$. Here and in the sequel we write $|u|_{p}$ to denote the L^{p}-norm. As we look for normalized solutions, we consider the functional J constrained to the L^{2}-unit sphere in E :

$$
J_{S}: S=\left\{u \in E:|u|_{2}=1\right\} \rightarrow \mathbb{R}, \quad u \mapsto \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\int_{\mathbb{R}^{N}} G(u) .
$$

Observe that $\nabla J_{S}(u)=\nabla J(u)-\lambda_{u} u$ for some $\lambda_{u} \in \mathbb{R}$.
The main theorem's proof will follow from several lemmas. We fix a strictly increasing sequence of finite-dimensional linear subspaces $V_{n} \subset E$ such that $\bigcup_{n} V_{n}$ is dense in E.

Lemma 2.1. For $2<p<2^{*}$ there holds:

$$
\mu_{n}(p)=\inf _{u \in V_{n-1}^{L}} \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right)}{\left(\int_{\mathbb{R}^{N}}|u|^{p}\right)^{2 / p}}=\inf _{u \in V_{n-1}^{\perp}} \frac{\|u\|^{2}}{|u|_{p}^{2}} \rightarrow \infty \quad \text { as } n \rightarrow \infty .
$$

Proof. Arguing by contradiction, suppose there exists a sequence $\left(u_{n}\right) \subset E$ such that $u_{n} \in V_{n-1}^{\perp},\left|u_{n}\right|_{p}=1$ and $\left\|u_{n}\right\| \rightarrow c<\infty$. Then there exists $u \in E$ with $u_{n} \rightharpoonup u$ in E and $u_{n} \rightarrow u$ in L^{p} up to a subsequence. Let $v \in E$ and $\left(v_{n}\right) \subset E$ such that $v_{n} \in V_{n-1}$ and $v_{n} \rightarrow v$ in V. We have, in E,

$$
\left|\left\langle u_{n}, v\right\rangle\right| \leq\left|\left\langle u_{n}, v-v_{n}\right\rangle\right|+\left|\left\langle u_{n}, v_{n}\right\rangle\right| \leq\left\|u_{n}\right\|\left\|v-v_{n}\right\| \rightarrow 0
$$

so that $u_{n} \rightharpoonup 0=u$, while $|u|_{p}=1$, a contradiction.

We introduce now the constant

$$
K=\max _{x>0} \frac{|G(x)|}{|x|^{\alpha}+|x|^{\beta}},
$$

which is well defined thanks to assumption $\left(H_{2}\right)$. For $n \in \mathbb{N}$ we define

$$
\rho_{n}=\frac{M_{n}^{\beta /(2(\beta-2))}}{L^{1 /(\beta-2)}},
$$

where

$$
M_{n}=\left(\mu_{n}(\alpha)^{-\alpha / 2}+\mu_{n}(\beta)^{-\beta / 2}\right)^{-2 / \beta} \quad \text { and } \quad L=3 K \max _{x>0} \frac{\left(1+x^{2}\right)^{\beta / 2}}{1+x^{\beta}}
$$

We also define

$$
B_{n}=\left\{u \in V_{n-1}^{\perp} \cap S:|\nabla u|_{2}=\rho_{n}\right\} .
$$

Then we have:
Lemma 2.2. $\inf _{u \in B_{n}} J(u) \rightarrow \infty$ as $n \rightarrow \infty$.
Proof. For any $u \in B_{n}$, we deduce, using the preceding lemma with $p=\alpha$ and $p=\beta$,

$$
\begin{aligned}
J(u)= & \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\int_{\mathbb{R}^{N}} G(u) \geq \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-K \int_{\mathbb{R}^{N}}|u|^{\alpha}-K \int_{\mathbb{R}^{N}}|u|^{\beta} \\
\geq & \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\frac{K}{\mu_{n}(\alpha)^{\alpha / 2}}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}+1\right)^{\alpha / 2} \\
& \quad-\frac{K}{\mu_{n}(\beta)^{\beta / 2}}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}+1\right)^{\beta / 2} \\
\geq & \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\frac{K}{M_{n}^{\beta / 2}}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}+1\right)^{\beta / 2} \\
\geq & \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\frac{L}{3 M_{n}^{\beta / 2}}\left(\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{\beta / 2}+1\right) \\
= & \frac{1}{2} \rho_{n}^{2}-\frac{L}{3 M_{n}^{\beta / 2}} \rho_{n}^{\beta}+o(1)=\left(\frac{1}{2}-\frac{1}{3}\right) \rho_{n}^{2}+o(1) \rightarrow \infty .
\end{aligned}
$$

Let $P_{n-1}: E \rightarrow V_{n-1}$ be the orthogonal projection, and set

$$
h_{n}: S \rightarrow V_{n-1} \times \mathbb{R}^{+}, \quad u \mapsto\left(P_{n-1} u,|\nabla u|_{2}\right) .
$$

Then clearly $B_{n}=h_{n}^{-1}\left(0, \rho_{n}\right)$. With $\pi: V_{n-1} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$denoting the projection we define

$$
\begin{aligned}
& \Gamma_{n}=\left\{\gamma:[0,1] \times\left(S \cap V_{n}\right)\right. \rightarrow S \mid \gamma \text { is continuous, odd in } u \text { and such that } \\
&\left.\forall u: \pi \circ h_{n} \circ \gamma(0, u)<\rho_{n} / 2, \pi \circ h_{n} \circ \gamma(1, u)>2 \rho_{n}\right\} .
\end{aligned}
$$

It is easy to see that $\Gamma_{n} \neq \emptyset$. To describe a particular element $\gamma \in \Gamma_{n}$, let

$$
m: \mathbb{R} \times E \rightarrow E, \quad m(s, u)=s * u
$$

be the action of the group \mathbb{R} on E defined by

$$
(s * u)(x)=e^{s N / 2} u\left(e^{s} x\right) \quad \forall s \in \mathbb{R}, u \in E, x \in \mathbb{R}^{N}
$$

Observe that $s * u \in S$ if $u \in S$. The map $\gamma(t, u)=\left(2 s_{n} t-s_{n}\right) * u$ lies in Γ_{n} for $s_{n}>0$ large.

We now need the following linking property.
Lemma 2.3. For every $\gamma \in \Gamma_{n}$, there exists $(t, u) \in[0,1] \times\left(S \cap V_{n}\right)$ such that $\gamma(t, u) \in$ B_{n}.

For the proof of this lemma we need to recall some properties of the cohomological index for spaces with an action of the group $G=\{-1,1\}$. This index goes back to [5] and has been used in a variational setting in [6]. It associates to a G-space X an element $i(X) \in \mathbb{N}_{0} \cup\{\infty\}$. We only need the following properties.
$\left(I_{1}\right)$ If G acts on \mathbb{S}^{n-1} via multiplication then $i\left(\mathbb{S}^{n-1}\right)=n$.
(I_{2}) If there exists an equivariant map $X \rightarrow Y$ then $i(X) \leq i(Y)$.
(I_{3}) Let $X=X_{0} \cup X_{1}$ be metrisable and $X_{0}, X_{1} \subset X$ be closed G-invariant subspaces. Let Y be a G-space and consider a continuous map $\phi:[0,1] \times Y \rightarrow X$ such that each $\phi_{t}=\phi(t, \cdot): Y \rightarrow X$ is equivariant. If $\phi_{0}(Y) \subset X_{0}$ and $\phi_{1}(Y) \subset X_{1}$ then

$$
i\left(\operatorname{Im}(\phi) \cap X_{0} \cap X_{1}\right) \geq i(Y)
$$

Properties (I_{1}) and (I_{2}) are standard and hold also for the Krasnoselskii genus. Property $\left(I_{3}\right)$ has been proven in [1, Corollary 4.11, Remark 4.12]. We can now prove Lemma 2.3.

Proof. We fix $\gamma \in \Gamma_{n}$, and consider the map

$$
\phi=h_{n} \circ \gamma:[0,1] \times\left(S \cap V_{n}\right) \rightarrow V_{n-1} \times \mathbb{R}^{+}=: X .
$$

Since

$$
\phi_{0}\left(S \cap V_{n}\right) \subset V_{n-1} \times\left(0, \rho_{n}\right]=: X_{0}
$$

and

$$
\phi_{1}\left(S \cap V_{n}\right) \subset V_{n-1} \times\left[\rho_{n}, \infty\right)=: X_{1},
$$

it follows from $\left(I_{1}\right)-\left(I_{3}\right)$ that

$$
i\left(\operatorname{Im}(\phi) \cap X_{0} \cap X_{1}\right) \geq i\left(S \cap V_{n}\right)=\operatorname{dim} V_{n}
$$

If there would not exist $(t, u) \in[0,1] \times\left(S \cap V_{n}\right)$ with $\gamma(t, u) \in B_{n}$, then

$$
\operatorname{Im}(\phi) \cap X_{0} \cap X_{1} \subset\left(V_{n-1} \backslash\{0\}\right) \times\left\{\rho_{0}\right\}
$$

Now $\left(I_{1}\right),\left(I_{2}\right)$ imply that

$$
i\left(\operatorname{Im}(\phi) \cap X_{0} \cap X_{1}\right) \leq i\left(\left(V_{n-1} \backslash\{0\}\right) \times\left\{\rho_{0}\right\}\right)=\operatorname{dim} V_{n-1},
$$

contradicting $\operatorname{dim} V_{n-1}<\operatorname{dim} V_{n}$.
It follows from Lemma 2.3 that

$$
\begin{equation*}
c_{n}=\inf _{\gamma \in \Gamma_{n}} \max _{\substack{t \in[0,1] \\ u \in S \cap V_{n}}} J(\gamma(t, u)) \geq \inf _{u \in B_{n}} J(u) \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

We will show that c_{n} is a critical value of J, which finishes the proof of Theorem 1.1. We fix n from now on.

Lemma 2.4. There exists a Palais-Smale sequence $\left(u_{k}\right)_{k}$ for J_{S} at the level c_{n} satisfying

$$
\begin{equation*}
\left|\nabla u_{k}\right|_{2}^{2}+N \int_{\mathbb{R}^{N}} G\left(u_{k}\right)-\frac{N}{2} \int_{\mathbb{R}^{N}} g\left(u_{k}\right) u_{k} \rightarrow 0 . \tag{2.2}
\end{equation*}
$$

For the proof we recall the stretched functional from [8]:

$$
\tilde{J}: \mathbb{R} \times E \rightarrow \mathbb{R}, \quad(s, u) \mapsto J(s * u)
$$

Now we define

$$
\begin{aligned}
& \tilde{\Gamma}_{n}=\left\{\tilde{\gamma}:[0,1] \times\left(S \cap V_{n}\right) \rightarrow \mathbb{R} \times S \mid \tilde{\gamma} \text { is continuous, odd in } u,\right. \\
& \\
& \text { and such that } \left.m \circ \tilde{\gamma} \in \Gamma_{n}\right\},
\end{aligned}
$$

where $m(s, u)=s * u$, and

$$
\tilde{c}_{n}=\inf _{\tilde{\gamma} \in \tilde{\Gamma}_{n}} \max _{\substack{t \in[0,1] \\ u \in S \cap V_{n}}} \tilde{J}(\tilde{\gamma}(t, u)) .
$$

Lemma 2.5. We have $\tilde{c}_{n}=c_{n}$.
Proof. The maps

$$
\Phi: \Gamma_{n} \rightarrow \tilde{\Gamma}_{n}, \quad \gamma \mapsto[(0, \gamma):(t, u) \mapsto(0, \gamma(t, u))]
$$

and

$$
\Psi: \tilde{\Gamma}_{n} \rightarrow \Gamma_{n}, \quad \tilde{\gamma} \mapsto[m \circ \gamma:(t, u) \mapsto m(\tilde{\gamma}(t, u))],
$$

satisfy

$$
\tilde{J}(\Phi(\gamma)(t, u))=J(\gamma(t, u)), \quad \text { and } \quad J(\Psi(\tilde{\gamma})(t, u))=\tilde{J}(\tilde{\gamma}(t, u)) .
$$

The lemma is an immediate consequence.
Proof of Lemma 2.4. By Ekeland's variational principle there exists a Palais-Smale sequence $\left(s_{k}, u_{k}\right)_{k}$ for $\left.\tilde{J}\right|_{\mathbb{R} \times S}$ at the level c_{n}. From $\tilde{J}(s, u)=\tilde{J}(0, s * u)$ we deduce that $\left(0, s_{k} * u_{k}\right)_{k}$ is also a Palais-Smale sequence for $\left.\tilde{J}\right|_{\mathbb{R} \times S}$ at the level c_{n}. Thus we may assume that $s_{k}=0$. This implies, firstly, that $\left(u_{k}\right)_{k}$ is a Palais-Smale sequence for J_{S} at the level c_{n}, and secondly, using $\partial_{s} \tilde{J}\left(0, u_{k}\right) \rightarrow 0$, that (2.2) holds.

Lemma 2.6. If the sequence $\left(u_{k}\right)_{k}$ in S satisfies $J_{S}^{\prime}\left(u_{k}\right) \rightarrow 0, J_{S}\left(u_{k}\right) \rightarrow c>0$, and (2.2), then it is bounded and has a convergent subsequence.

Proof. That $\left(u_{k}\right)_{k}$ is bounded in E, hence $u_{k} \rightharpoonup \bar{u}$ along a subsequence, can be proved as in [8, pp. 1644-1644]. The compactness of the embedding $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ yields $g\left(u_{k}\right) \rightarrow g(\bar{u})$ in E^{*}. From $J_{S}^{\prime}\left(u_{k}\right) \rightarrow 0$ it follows that

$$
\begin{equation*}
-\Delta u_{k}-\lambda_{k} u_{k}-g\left(u_{k}\right) \rightarrow 0 \quad \text { in } E^{*} \tag{2.3}
\end{equation*}
$$

for some sequence $\lambda_{k} \in \mathbb{R}$. Using $J_{S}\left(u_{k}\right) \rightarrow c>0$ and (2.2), we deduce as in [8, Lemma 2.5] that $\lambda_{k} \rightarrow \bar{\lambda}<0$ along a subsequence. Then $-\Delta-\bar{\lambda}$ is invertible and (2.3) implies $u_{k} \rightarrow(-\Delta-\bar{\lambda})^{-1}(g(\bar{u}))$ in E.

Theorem 1.1 follows from (2.1), Lemma 2.4 and Lemma 2.6.

Acknowledgements

The second author would like to warmly thank the members of the Justus-LiebigUniversity Giessen, where this work was done, for their invitation and hospitality.

References

[1] Bartsch, T.: Topological methods for variational problems with symmetries. Lecture Notes in Mathematics, 1560. Springer-Verlag, Berlin 1993.
[2] Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet Problem. Nonlin. Anal. 20 (1993), 1205-1216.
[3] Berestycki, H., and Lions,. P.-L.: Nonlinear scalar field equations, I. Arch. Rat. Mech. Anal. 82 (1983), 313-345.
[4] Berestycki, H., and Lions,. P.-L.: Nonlinear scalar field equations, II. Arch. Rat. Mech. Anal. 82 (1983), 347-375.
[5] Conner, P. E., and Floyd, E. E. : Fixed point free involutions and equivariant maps. II. Trans. Amer. Math. Soc. 105, 222-228.
[6] Fadell, E. R., and Rabinowitz, P. H.: Bifurcation for odd potential operators and an alternative topological index. J. Funct. Anal. 26 (1977), 48-67.
[7] Hajaiej, H., and Stuart, C.: Existence and non-existence of Schwarz symmetric ground states for elliptic eigenvalue problems. Ann. Mat. Pura Appl. 184 (2005), 297-314.
[8] Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlin. Anal. 28 (1997), no. 10, 1633-1659.
[9] Kevrekidis, P. G., Frantzeskakis, d. J., and Carretero-Gonzalez, R. (eds.): Emergent Nonlinear Phenomena in Bose-Einstein Condensation. Springer-Verlag, Berlin 2008.
[10] M. Willem: Minimax Methods. Birkhäuser, Boston 1996.

Address of the authors:

Thomas Bartsch
Mathematisches Institut
Universität Giessen
Arndtstr. 2
35392 Giessen
Germany
Thomas.Bartsch@math.uni-giessen.de

Sébastien de Valeriola
Département de Mathématiques
Bâtiment Marc de Hemptinne
Chemin du Cyclotron 2
1348 Louvain-la-Neuve
Belgium
sebastien.devaleriola@uclouvain.be

