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Abstract

We consider the problem{
−∆u− g(u) = λu,

u ∈ H1(RN ),
∫
RN u

2 = 1, λ ∈ R,

in dimension N ≥ 2. Here g is a superlinear, subcritical, possibly nonhomoge-
neous, odd nonlinearity. We deal with the case where the associated functional is not
bounded below on the L2-unit sphere, and we show the existence of infinitely many
solutions.
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1 Introduction
In this note we consider the nonlinear eigenvalue problem

(1.1)

{
−∆u− g(u) = λu,

u ∈ H1(RN),
∫
RN u

2 = 1, λ ∈ R,

in dimension N ≥ 2. The nonlinearity g : R→ R is superlinear, subcritical, and possibly
nonhomogeneous. A model nonlinearity is

(1.2) g(u) =

(
k∑
i=1

|u|pi−2

)
u, 2 < p1 < . . . < pk < 2∗,

where 2∗ = 2N/(N − 2) if N ≥ 3 and∞ if N = 2, the critical Sobolev exponent.
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This problem possesses many physical motivations, e. g. it appears in models for
Bose-Einstein condensation (see [9]). Looking for standing wave solutions Ψ(t, x) =
eimtu(x) of the dimensionless nonlinear Schrödinger equation

iΨt −∆xΨ = f(|Ψ|)Ψ

one is lead to problem (1.1) with g(u) = f(|u|)u. As in these physical frameworks Ψ is
a wave function, it seems natural to search for normalized solutions, i. e. solutions of the
equation satisfying

∫
RN u

2 = 1.
If g is homogeneous (k = 1 in (1.2)) then one can use the classical results from [3,4],

for instance, to solve −∆u + u = g(u), and then rescale u in order to obtain normalized
solutions of (1.1). This does not work for a general nonlinearity, it fails already in the
case k ≥ 2 in (1.2). If g is not homogeneous and does not grow too fast (for g as in (1.2)
this means all pi < 2 + 4

N
) then one can minimize the associated functional

(1.3) J(u) =
1

2

∫
RN

|∇u|2 −
∫
RN

G(u), with G(t) =

∫ t

0

g(s) ds,

on the L2-unit sphere S = {u ∈ H1
rad(RN) :

∫
RN u

2 = 1} to obtain a solution. Here
H1

rad(RN) denotes the space of radialH1-functions. The parameter λ appears as Lagrange
multiplier. Rather general conditions on g which allow minimization, even in a nonradial
setting, can be found in [7] and the references therein. If g is odd, as in the case g(u) =
f(|u|)u appearing in applications, and if g does not grow too fast then one can obtain
infinitely many solutions using classical min-max arguments based on the Krasnoselski
genus.

However for fast growing g, J is not bounded below on S, hence minimization doesn’t
work. Moreover, the genus of the sublevel sets J c = {u ∈ S : J(u) ≤ c} is always
infinite, so the Krasnoselski genus arguments do not apply. In [8], Jeanjean was able
to treat nonhomogeneous, fast growing nonlinearities and showed the existence of one
solution of (1.1) using a mountain pass structure for J on S. The object of this short note
is to prove that for the same class of nonlinearities considered in [8], (1.1) actually has
infinitely many solutions.

In order to state our result we recall the assumptions on the function g made in [8]:

(H1) g : R→ R is continuous and odd,

(H2) there exists α, β ∈ R satisfying

2 +
4

N
< α ≤ β < 2∗

such that
0 < αG(s) ≤ g(s)s ≤ βG(s).
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The condition G > 0 in (H2) is not stated in [8] but used implicitely.

Theorem 1.1. If assumptions (H1) and (H2) hold, then problem (1.1) possesses an un-
bounded sequence of pairs of radial solutions (λn,±un).

The proof is based on variational methods applied to the functional J constrained to S.
We shall present a new linking geometry for constrained functionals which is motivated by
the fountain theorem [2, Theorem 2.5]; see also [10, Section 3]. The classical symmetric
mountain pass theorem applies to functionals on Banach spaces, not on spheres. Another
difficulty due to the constraint is that J |S does not satisfy the Palais-Smale condition
although the embedding H1

rad(RN) ↪→ Lp(RN) of the space of radial H1-functions into
the Lp-spaces is compact for 2 < p < 2∗. In fact, there exist bounded Palais-Smale
sequences for J |S converging weakly to 0, and there may exist unbounded Palais-Smale
sequences.

2 Proof of Theorem 1.1
In order to recover some compacity, we will work in E = H1

rad(RN), provided with the
standard scalar product and norm: ‖u‖2 = |∇u|22 + |u|22. Here and in the sequel we
write |u|p to denote the Lp-norm. As we look for normalized solutions, we consider the
functional J constrained to the L2-unit sphere in E:

JS : S = {u ∈ E : |u|2 = 1} → R, u 7→ 1

2

∫
RN

|∇u|2 −
∫
RN

G(u).

Observe that∇JS(u) = ∇J(u)− λuu for some λu ∈ R.
The main theorem’s proof will follow from several lemmas. We fix a strictly increas-

ing sequence of finite-dimensional linear subspaces Vn ⊂ E such that
⋃
n Vn is dense in

E.

Lemma 2.1. For 2 < p < 2∗ there holds:

µn(p) = inf
u∈V ⊥n−1

∫
RN (|∇u|2 + u2)(∫

RN |u|p
)2/p

= inf
u∈V ⊥n−1

‖u‖2

|u|2p
→∞ as n→∞.

Proof. Arguing by contradiction, suppose there exists a sequence (un) ⊂ E such that
un ∈ V ⊥n−1, |un|p = 1 and ‖un‖ → c < ∞. Then there exists u ∈ E with un ⇀ u in E
and un → u in Lp up to a subsequence. Let v ∈ E and (vn) ⊂ E such that vn ∈ Vn−1 and
vn → v in V . We have, in E,

|〈un, v〉| ≤ |〈un, v − vn〉|+ |〈un, vn〉| ≤ ‖un‖‖v − vn‖ → 0

so that un ⇀ 0 = u, while |u|p = 1, a contradiction.
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We introduce now the constant

K = max
x>0

|G(x)|
|x|α + |x|β

,

which is well defined thanks to assumption (H2). For n ∈ N we define

ρn =
M

β/(2(β−2))
n

L1/(β−2)
,

where

Mn =
(
µn(α)−α/2 + µn(β)−β/2

)−2/β
and L = 3K max

x>0

(1 + x2)β/2

1 + xβ
.

We also define
Bn =

{
u ∈ V ⊥n−1 ∩ S : |∇u|2 = ρn

}
.

Then we have:

Lemma 2.2. inf
u∈Bn

J(u)→∞ as n→∞.

Proof. For any u ∈ Bn, we deduce, using the preceding lemma with p = α and p = β,

J(u) =
1

2

∫
RN

|∇u|2 −
∫
RN

G(u) ≥ 1

2

∫
RN

|∇u|2 −K
∫
RN

|u|α −K
∫
RN

|u|β

≥ 1

2

∫
RN

|∇u|2 − K

µn(α)α/2

(∫
RN

|∇u|2 + 1

)α/2
− K

µn(β)β/2

(∫
RN

|∇u|2 + 1

)β/2
≥ 1

2

∫
RN

|∇u|2 − K

M
β/2
n

(∫
RN

|∇u|2 + 1

)β/2
≥ 1

2

∫
RN

|∇u|2 − L

3M
β/2
n

((∫
RN

|∇u|2
)β/2

+ 1

)

=
1

2
ρ2
n −

L

3M
β/2
n

ρβn + o(1) =

(
1

2
− 1

3

)
ρ2
n + o(1)→∞.

Let Pn−1 : E → Vn−1 be the orthogonal projection, and set

hn : S → Vn−1 × R+, u 7→ (Pn−1u, |∇u|2) .
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Then clearly Bn = h−1
n (0, ρn). With π : Vn−1 × R+ → R+ denoting the projection we

define

Γn =
{
γ : [0, 1]× (S ∩ Vn)→ S | γ is continuous, odd in u and such that

∀u : π ◦ hn ◦ γ(0, u) < ρn/2, π ◦ hn ◦ γ(1, u) > 2ρn

}
.

It is easy to see that Γn 6= ∅. To describe a particular element γ ∈ Γn, let

m : R× E → E, m(s, u) = s ∗ u,

be the action of the group R on E defined by

(s ∗ u)(x) = esN/2u(esx) ∀s ∈ R, u ∈ E, x ∈ RN .

Observe that s ∗ u ∈ S if u ∈ S. The map γ(t, u) = (2snt− sn) ∗ u lies in Γn for sn > 0
large.

We now need the following linking property.

Lemma 2.3. For every γ ∈ Γn, there exists (t, u) ∈ [0, 1]× (S ∩ Vn) such that γ(t, u) ∈
Bn.

For the proof of this lemma we need to recall some properties of the cohomological
index for spaces with an action of the group G = {−1, 1}. This index goes back to [5]
and has been used in a variational setting in [6]. It associates to a G-space X an element
i(X) ∈ N0 ∪ {∞}. We only need the following properties.

(I1) If G acts on Sn−1 via multiplication then i(Sn−1) = n.

(I2) If there exists an equivariant map X → Y then i(X) ≤ i(Y ).

(I3) Let X = X0 ∪X1 be metrisable and X0, X1 ⊂ X be closed G-invariant subspaces.
Let Y be a G-space and consider a continuous map φ : [0, 1] × Y → X such that
each φt = φ(t, ·) : Y → X is equivariant. If φ0(Y ) ⊂ X0 and φ1(Y ) ⊂ X1 then

i(Im(φ) ∩X0 ∩X1) ≥ i(Y ).

Properties (I1) and (I2) are standard and hold also for the Krasnoselskii genus. Property
(I3) has been proven in [1, Corollary 4.11, Remark 4.12]. We can now prove Lemma 2.3.

Proof. We fix γ ∈ Γn, and consider the map

φ = hn ◦ γ : [0, 1]× (S ∩ Vn)→ Vn−1 × R+ =: X.
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Since
φ0(S ∩ Vn) ⊂ Vn−1 × (0, ρn] =: X0

and
φ1(S ∩ Vn) ⊂ Vn−1 × [ρn,∞) =: X1,

it follows from (I1) – (I3) that

i(Im(φ) ∩X0 ∩X1) ≥ i(S ∩ Vn) = dimVn.

If there would not exist (t, u) ∈ [0, 1]× (S ∩ Vn) with γ(t, u) ∈ Bn, then

Im(φ) ∩X0 ∩X1 ⊂ (Vn−1 \ {0})× {ρ0}.

Now (I1), (I2) imply that

i(Im(φ) ∩X0 ∩X1) ≤ i((Vn−1 \ {0})× {ρ0}) = dimVn−1,

contradicting dimVn−1 < dimVn.

It follows from Lemma 2.3 that

(2.1) cn = inf
γ∈Γn

max
t∈[0,1]
u∈S∩Vn

J(γ(t, u)) ≥ inf
u∈Bn

J(u)→∞.

We will show that cn is a critical value of J , which finishes the proof of Theorem 1.1. We
fix n from now on.

Lemma 2.4. There exists a Palais-Smale sequence (uk)k for JS at the level cn satisfying

(2.2) |∇uk|22 +N

∫
RN

G(uk)−
N

2

∫
RN

g(uk)uk → 0.

For the proof we recall the stretched functional from [8]:

J̃ : R× E → R, (s, u) 7→ J(s ∗ u).

Now we define

Γ̃n =
{
γ̃ : [0, 1]× (S ∩ Vn)→ R× S | γ̃ is continuous, odd in u,

and such that m ◦ γ̃ ∈ Γn

}
,

where m(s, u) = s ∗ u, and

c̃n = inf
γ̃∈Γ̃n

max
t∈[0,1]
u∈S∩Vn

J̃(γ̃(t, u)).
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Lemma 2.5. We have c̃n = cn.

Proof. The maps

Φ : Γn → Γ̃n, γ 7→ [(0, γ) : (t, u) 7→ (0, γ(t, u))],

and
Ψ : Γ̃n → Γn, γ̃ 7→ [m ◦ γ : (t, u) 7→ m(γ̃(t, u))],

satisfy
J̃(Φ(γ)(t, u)) = J(γ(t, u)), and J(Ψ(γ̃)(t, u)) = J̃(γ̃(t, u)).

The lemma is an immediate consequence.

Proof of Lemma 2.4. By Ekeland’s variational principle there exists a Palais-Smale se-
quence (sk, uk)k for J̃ |R×S at the level cn. From J̃(s, u) = J̃(0, s ∗ u) we deduce that
(0, sk ∗ uk)k is also a Palais-Smale sequence for J̃ |R×S at the level cn. Thus we may as-
sume that sk = 0. This implies, firstly, that (uk)k is a Palais-Smale sequence for JS at the
level cn, and secondly, using ∂sJ̃(0, uk)→ 0, that (2.2) holds. �

Lemma 2.6. If the sequence (uk)k in S satisfies J ′S(uk)→ 0, JS(uk)→ c > 0, and (2.2),
then it is bounded and has a convergent subsequence.

Proof. That (uk)k is bounded in E, hence uk ⇀ ū along a subsequence, can be proved as
in [8, pp. 1644-1644]. The compactness of the embedding H1

rad(RN) ↪→ Lp(RN) yields
g(uk)→ g(ū) in E∗. From J ′S(uk)→ 0 it follows that

(2.3) −∆uk − λkuk − g(uk)→ 0 in E∗

for some sequence λk ∈ R. Using JS(uk) → c > 0 and (2.2), we deduce as in [8,
Lemma 2.5] that λk → λ̄ < 0 along a subsequence. Then −∆− λ̄ is invertible and (2.3)
implies uk → (−∆− λ̄)−1(g(ū)) in E.

Theorem 1.1 follows from (2.1), Lemma 2.4 and Lemma 2.6.
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