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ABSTRACT 

 

The Normalized Variable Formulation (NVF) methodology of Leonard [1] provides the proper framework for 

the development and analysis of High-Resolution convection-diffusion schemes, which combine the accuracy 

of Higher-Order schemes, with the stability and boundedness of the first-order upwind scheme.  However, in its 

current form the NVF methodology helps in deriving convective schemes for uniformly or nearly uniformly 

discretized spaces.  To remove this shortcoming, a new Normalized Variable and Sapce Formulation 

methodology is developed (NVSF).  In the newly developed technique, spatial parameters are introduced so as 

to extend the applicability of the NVF methodology to non-uniformly discretized domains.  Furthermore, the 

required conditions for accuracy and boundedness of convective schemes on non-uniform grids are also 

derived.  Several schemes formulated using NVF, are generalized to non-uniform grid using the suggested 

method.  Both formulations are tested on non-uniform grids by solving two problems.  Computational results 

show substantial improvement in accuracy when using the NVSF methodology with third order High-

Resolution schemes. 

 

 



NOMENCLATURE 

 

A Surface area of control volume face. 

a Coefficients of the discretized equation. 

b Source term in the discretized equation. 

F Convective flux coefficient at control volume face. 

f() Functional relationship. 

J Total scalar flux across cell face. 

M Slope in NVD. 

Q Source term integrated over one control volume in the discretized equation. 

RE Residual error. 

S Source term. 

u, v Velocity components in the x- and y- directions. 

φ General dependent variable.. 

Γ Diffusion. 

ρ Density. 

SUPERSCRIPS 

U Upwind formulation. 

D Diffusion contribution. 

C Convection contribution. 

˜ Refers to normalized variable. 

SUBSCRIPTS 

e,w,n,s Refers to control volume faces. 

E,W,N,S Refers to neighbours of P grid point. 

P Main grid point 

f Refers to control volume face. 

U Upstream grid point. 

D Downstream grid point. 

C Central grid point. 

nb Refers to neighbours. 

dc Deferred correction 



 

INTRODUCTION 

Since the development of the first order upwind scheme [2], used for discretizing the convective flux, workers 

have tried to devise schemes of higher order of accuracy.  However, successful in solving the accuracy problem, 

they were faced with more complex issues of numerical stability and physical boundedness.  This, in turn, has 

lead to further studies in an attempt to develop more accurate schemes that give physically plausible results 

(bounded schemes) and which are numerically stable. 

First order schemes (e.g. upwind [3]) are numerically stable but highly diffusive in situations when the flow 

field is oblique to the grid lines in combination with a non-zero gradient of the dependent variable in the 

direction normal to the flow.  The numerical diffusion introduced as a result of first order upwinding is 

desirable for numerical stability but often leads to highly inaccurate results and causes smearing of sharp 

gradients.  To overcome this shortcoming and to increase the accuracy of the predicted results, researchers have 

developed a variety of higher-order schemes such as the QUICK scheme of Leonard [4], the third order scheme 

of Agarwal [5], and the second order upwind scheme of Shyy [6] to cite a few.  The difficulties associated with 

the development of reliable higher-order schemes stem from the conflicting requirements of accuracy, stability, 

and boundedness.  Solutions predicted with the above mentioned schemes are more accurate than the first order 

upwind scheme and more stable than the second order central difference scheme, but tend to provoke 

oscillations in the solution when the local Peclet number is high in combination with steep gradients of the flow 

properties.  

To suppress oscillations associated with higher order schemes many techniques have been advertised and may 

be broadly classified into two groups which will be referred to as the flux blending method and the composite 

flux limiter method in this paper.  Both methods attempt to suppress oscillations in the predicted solutions, 

without affecting the accuracy, but do so in different ways. 

In the flux blending method either an anti-diffusive flux is added to a first order upwind scheme such that the 

resulting scheme is capable of resolving sharp gradients without oscillations (under/over shoots) or some kind 

of diffusive agencies are introduced into an unbounded higher order scheme to damp oscillations.  The Flux 

Corrected Transport (FCT) method of Zalesak [7] is an example of the first type, and the Filtering Remedy And 

Methodology (FRAM) of Chapman [8], the flux blending method of Peric [9], and the method of Zu and 

Leschziner [10] are examples of the second type.  The determination of the blending factor is critical to the 

successful application of such method.  Furthermore, because of their multistep nature, flux-blending techniques 

tend to be very expensive computationally and are often unable to provide the desired "optimum blend" 

between accuracy  and boundedness.  Although flux-blending methods are much more accurate than the first 

order upwind scheme, they still generate some diffusion when attempting to simulate sharp gradients. 

In the composite flux limiter approach, the numerical flux at the interface of the computational cell is modified 

by employing a flux limiter that enforces a boundedness criterion.  The family of schemes based on the Total 

Variational Diminishing flux limiters (TVD) [11] used in aerodynamic simulations for capturing shock waves 

are examples of this approach.  Leonard [12] has recently generalized the formulation of the high resolution 
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flux-limiter schemes using what is called the Normalized Variable Formulation (NVF).  The NVF methodology 

has provided a good framework for the development of HR schemes that combine simplicity of implementation 

with high accuracy and boundedness, and since its introduction in 1981 [13] has attracted many workers (Zhu 

and Rodi [14], Gaskell and Lau [15], Zhu [16], Lin and Chieng [17], and Darwish [18]). 

A literature survey reveals that all composite high-resolution schemes based on the NVF methodology have 

been formulated on the assumption of a uniform grid in each coordinate direction.  This has greatly hindered its 

application for problems involving distorted or non-Cartesian grids.  One objective of the paper is to extend this 

formulation, in the context of the finite volume method, into situations where the grid, in any coordinate 

direction, is non-uniform.  As will be shown later, this amounts to normalizing the space coordinates, and hence 

the acronym NVSF (Normalized Variable and Space Formulation) has been coined for the extended NVF 

methodology.  A second objective of the paper is to compare, in terms of accuracy, the results of some test 

problems obtained using both the NVF and NVSF formulations.  

DISCRETIZATION OF THE TRANSPORT EQUATION 

The equation expressing the conservation principle for a general specific property φ for a two-dimensional, 

steady state situation can be written in the following form, 

∇.( )ρvφ  = �.( )Γ�φ  + S(1)  

where Γ is the diffusion coefficient and S is the source term.  If J denotes the total flux i.e., 

J = ρvφ - Γ∇φ (2) 

then equation (1) is transformed to 

∇.J = S . (3) 

Adopting the control volume approach and using Cartesian coordinates, the discretized flux-conservation 

equation is obtained by integrating equation (3) over the control volume surrounding point P (Fig. 1), and for 

the total flux term transforming the volume integral to a surface integral using the divergence theorem.  Its final 

form is given by 

Je - Jw + Jn - Js  = SP , (4) 

where Jf  represents the total convective-diffusive flux of φ across cell face f (f=e, w, n, or s), and SP  is the 

average source term over the control volume surrounding point P.  By denoting the convective and diffusive 

contributions to the total flux by Jf
C  and Jf

D  respectively, the total convective-diffusive flux Jf  may be 

expressed as: 

Jf  = Jf
C  + Jf

D . (5) 

The diffusive flux is discretized using a second order central difference scheme.  For a cartesian coordinate 

system the diffusion flux Je
D  for the east face e, is given by: 

Je
D  = = Γe  Ae ⎝

⎛
⎠
⎞∂φ

∂x  
e
  = Γe  Ae 

φE- φP
∆x   (6) 
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The fluxes along the west, north and south faces are found in a similar manner. 

The discretization of the convective flux however, requires a special attention and is the subject of the various 

schemes developed.  The mathematical representation of the convective flux is 

Jf
C   = ( )ρv.A

f
  φf  = Ff   φf   (7) 

where Af   is the surface of cell face f, and Ff   is the mass flow rate across cell face f.  The value of the 

dependent variable φf   is not known and should be estimated, using an interpolation procedure, from the values 

at the main neighbouring grid points.  Therefore, the accuracy, stability, and boundedness of the solution 

depends on the procedure used.  In general, φ f   can be explicitly formulated in terms of its neighbouring node 

values by a functional relationship of the form: 

φf   = f(φnb ) (8) 

where the subscript nb designates neighbouring grid points.  Combining equations (3) through (8), the 

discretized flux-conservation equation becomes: 

{ }Je
D + Fe[ ]f(φnb) e

  - { }Jw
D + Fw[ ]f(φnb) w

  + { }Jn
D + Fn[ ]f(φnb) n

  - { }Js
D + Fs[ ]f(φnb) s

  = SP  (9) 

With higher order schemes, the evaluation of φf  may involve a large number of neighbouring grid points. 

Therefore, in order to simplify the solution of the resulting system of algebraic equations a compacting 

procedure is usually used.  The deferred correction procedure, of Rubin and Khosla  [19], adopted in this work 

is based on replacing the convective flux at the control volume face by an equivalent flux given by: 

Jf
C  = Ff  φf   = Ff  φf

U  - Ff (φf
U - φf )  (10) 

where the superscript U denotes values obtained using the first order upwind scheme, and φ f  represents cell 

face value computed using a high resolution scheme.  By combining equations (9) and (10) the conservation 

equation is transformed to,  

{ }Je
D + Fe φe

U   - { }Jw
D + Fw φw

U   + { }Jn
D + Fn φn

U   - { }Js
D + Fs φs

U   = 

 SP  + [ ]Fe (φe
U - φe )  - Fw (φw

U - φw) + Fn (φn
U - φn)  - Fs (φs

U - φs)    (11) 

With the above treatment, each discretized equation contains five unknowns (in 2-D) and the matrix of 

coefficients of the resulting system of equations is pentadiagonal  and always diagonally dominant since it is 

formed using the first order upwind scheme.  Upon expanding equation (11) in terms of nodal values, the final 

form of the discretized equation is given as:  

aP  φP  = aE  φE  + aW  φW  + aN  φN  + aS  φS  + bP  + bdc  (12) 

where aP  , aE , aW , aN , and aS  are the convection-diffusion coefficients obtained from a first order upwind 

discretization, bP  is the original source term contribution, and bdc  is the contribution due to the adopted 

deferred correction procedure.  In calculating source terms, the latest available values of the dependent variable 

are used.  
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NORMALIZED VARIABLE FORMULATION  ON NON-UNIFORM GRID 

Many of the simple and composite high resolution convective schemes are reformulated, in this section, on non-

uniform grid using the NVSF methodology.  The normalized variables needed in the derivations are first 

defined followed by the derived expressions of some simple unbounded higher order schemes.  Then, the 

required conditions for accuracy, numerical stability, and physical boundedness are discussed.  Finally, the 

functional relationships of several composite high resolution schemes are presented. 

NORMALIZED VARIABLES 

The derivations are pertinent to second and third order convective schemes involving the use of three 

neighbouring grid points (2 upstream and 1 downstream) surrounding the control volume face f.  As shown in 

Fig. 2, the upstream, central, and downstream grid points designated by U, C, and D, are located at distances xU 

, xC , and xD  from the origin, respectively.  The values of the dependent variable at these nodes are designated 

by φU , φC  and φD .  Moreover, the value of the dependent variable at the control volume face located at a 

distance xf  from the origin is expressed by φ f  .  Since a normalized variable and space formulation is sought, 

the following normalized variables are defined: 

φ~ = 
φ - φU

φD- φU
x~ =  

x - xU
xD- xU

  (13) 

The use of the above normalized parameters simplifies the functional representation of simple and composite 

high resolution schemes and helps defining the stability and boundedness conditions that they should satisfy.  In 

addition, the normalized functional relationship of any scheme may be plotted on a Normalized Variable 

Diagram (NVD) which, as will be seen, is an effective tool in assessing the accuracy, boundedness, and relative 

diffusivity of convective schemes.  In general, the value of φf  is represented by the following parametric 

relation 

φf  = f(φU  , φC  , φD  , xU  , xC  , xf  , xD ) (14) 

which, upon normalizing, is simplified to  

φ~f  = f(φ~C  , x~C  , x~f  ) (15) 

By comparing equations (14) and (15) it is clear that, one of the normalization benefits is a reducion in the 

number of parameters involved in the functional relationship.  This is due to the normalized values of φU , φD , 

xU  and  xD  being equal to 0, 1, 0, and 1 respectively. 

NVSF OF SIMPLE UNBOUNDED HIGHER ORDER SCHEMES ON NON-UNIFORM GRID 

In the following, the QUICK scheme [4], the first and second order upwind schemes [2,6], the Central 

Difference scheme, and Fromm's method [20] (in its steady state limit) are reformulated using NVSF 

methodology on non-uniform grid. 
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QUICK scheme 

In the third order QUICK scheme, a parabolic profile is used to describe the variation of the dependent variable 

over the interval [xU , xD ] (Fig. 3).  Mathematically,  

φ = a x2 + bx + c (16) 

subject to: 

φ = φU for x = xU   (17) 

φ = φC for x = xC   (18) 

φ = φD for x = xD   (19) 

Upon applying the conditions given by equations (17)-(19) and normalizing, the NVSF form of QUICK is 

φ~f  = 
x~f (x

~
f - x

~
C )

1-  x~C 
  + 

x~f (x
~

f -1)

x~C (x~C - 1)
  φ~C  (20) 

For later use, equation (20) is rewritten in the following form 

φ~f  = x~f   + 
x~f (x

~
f -1)

x~C (x~C - 1)
 (φ~C - x~C )  (21) 

The derivations of other simple unbounded schemes follow the same procedure.  However, for compactness of 

presentation, only their final forms are given next. 

First order upwinding 

φ~f  = φ~C  (22) 

Second order upwinding 

φ~f  = 
x~f 

x~C 
  φ~C  (23) 

central difference 

φ~f   = 
x~f - x

~
C 

1 - x~C 
  + 

x~f - 1

x~C - 1
  φ~C  (24) 

Fromm's method 

φ~f  = φ~C  + (x~f  - x
~

C ) (25) 

ACCURACY AND BOUNDEDNESS REQUIREMENTS 

The convection boundedness criterion for implicit steady state flow calculation as formulated by Gaskell and 

Lau [15] is applicable here.  This criterion, based on the normalized variable analysis, states that for a scheme to 

have the boundedness property its functional relationship should be continous and bounded from below by φ~f  = 
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φ~C  and from above by unity, should pass through the point (0,0) and (1,1) in the monotonic range 0< φ~C  <1, 

and for φ~C  < 0 or φ~C  >1 the functional relationship f(φ~C  ) should equal φ~C .  Mathematically these conditions 

are  

⎩
⎪
⎨
⎪
⎧f(φ~C) is continuous

f(φ~C) = 0 for φ~C = 0

f(φ~C) = 1 for φ~C=1

f(φ~C)<1 and f(φ~C)>φ~C for 0<φ~C<1

f(φ~C) = φ~C for φ~C<0 and φ~C>1

  (26) 

The above conditions may also be described geometrically on a normalized variable diagram as shown in Fig. 4.  

In Fig. 5, the linear relations given by equations (21)-(26) are also plotted on a normalized variable diagram 

(NVD).  From this plot, it may easily be seen that, the only scheme fully satisfying the boundedness criterion 

(Eq. 26) is the first order upwind scheme [2].  Therefore, with the exception of this scheme, other schemes may 

in general give physically unrealistic results.  Furthermore, schemes that have an NVD plot close to the first 

order upwind NVD plot tend to be highly diffusive, while schemes whose NVD plots are near the first order 

downwind NVD plot (the line φ~f  =1)  tend to be highly compressive. 

Concerning accuracy, Leonard [21] has developed the conditions that a scheme, derived on a uniforn grid using 

the NVF methodology, should satisfy in order to be second or third order accurate.  According to his 

formulation, the necessary and sufficient condition for a scheme to be second order is for its functional 

relationship to pass through the point Q (0.5,0.75).  If in addition it passes through Q with a slope of 0.75 then 

the scheme is third order.  For the case of non-uniform grid (NVSF) these conditions can be derived by noting 

that all second and third order schemes described above may be represented using the following functional 

relationship: 

φ~f  = x~f  + M (φ~C  - x~C ) (27) 

where M is the slope of the linear function.  Knowing that the QUICK scheme is third order accurate and 

comparing equations (20) and (26), the necessary and sufficient condition for a scheme formulated on non-

uniform grid to be second order accurate is for its normalized function to pass through the point Q(x~C  , x~f  ) 

(Fig. 5), and to be third order accurate its slope at Q must be equal to  

M =  
x~f (x

~
f -1)

x~C (x~C - 1)
  (28) 

The same results may be obtained from a Taylor series expansion around the control volume face f. 

Having developed the required conditions for accuracy and boundedness, the shortcomings of the simple 

unbounded higher order schemes are eliminated through the use of composite schemes satisfying all above 

requirements.  These schemes, developed for uniform grid, are extended next to non-uniform grid using the 

NVSF methodology. 

 



The Normalized Variable and Space Formulation  9 

NVSF OF COMPOSITE HIGH-RESOLUTION SCHEMES ON NON-UNIFORM GRID 

In this section, the MINMOD [11] ( or SOUCOUP [14]), OSHER [22], MUSCL [23], CLAM [24], SMART 

[15] and STOIC [18] schemes are reformulated on non-uniform grid.  Since these schemes are extensively 

discussed in the literature, it is deemed unnecessary to elaborate on them here.  Furthermore, due to the lengthy 

algebraic manipulations needed, only the final form of their functional relationships are presented. 

MINMOD or SOUCOUP 

φ~f  = 
x~f

x~C

  φ~C  
0 < φ~C  < x~C  

φ~f  = 
x~C- x~f

x~C- 1
  + 

x~f - 1

x~C- 1
  φ~C  

x~C  < φ~C  < 1                                                (29) 

φ~f   = φ~C  elsewhere 

OSHER 

φ~f  = 
x~f

x~C

  φ~C  0< φ~C  < 
x~C

x~f

  

φ~f   = 1 x~C

x~f

  < φ~C  < 1                                               (30) 

φ~f   = φ~C  elsewhere 

MUSCL 

φ~f  = 
2x~f - x

~
C

x~C

  φ~C  0< φ~C  < 
x~C

2x~f

  

φ~f  = x~f  - x
~

C  + φ~C  x~C

2x~f

  < φ~C < 1 + x~C  - x~f  (31) 

φ~f  = 1 1 + x~C  - x~f < φ~C  < 1 

φ~f   = φ~C  elsewhere 

CLAM  

φ~f  = 
x~C

2 - x~f

x~C (x~C - 1)
  φ~C  + 

x~f - x
~

C

x~C (x~C - 1)
  φ~C

2  
0 < φ~C  < 1 

φ~f   = φ~C  elsewhere                 (32) 

SMART 

φ~f  = - 
x~f (1 - 3x~C + 2x~f)

x~C (x~C - 1)
  φ~C  0 < φ~C  < 

x~C
3   

φ~f   = 
x~f (x

~
f - x

~
C)

 1 - x~C

  + 
x~f (x

~
f - 1) 

x~C (x~C - 1)
  φ~C  

x~C
3   < φ~C  < 

x~C

x~f

 (1 + x~f - x
~

C)  
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φ~f   = 1 x~C

 x~f

 (1 + x~f - x
~

C)  < φ~C  < 1                 (33) 

φ~f   = φ~C  elsewhere 

STOIC

φ~f   = - 
x~f (1 - 3x~C + 2x~f )

 x~C (x~C - 1)
  φ~C  0 < φ~C  < 

( )x~ C - x~f  x~C

x~ C+x~f + 2x~2
f   - 4 x~fx

~
C

  

φ~f   = 
x~C - x~f

x~C - 1
  + 

x~f  - 1

x~C - 1
  φ~C  

( )x~ C - x~f  x~C

x~ C+x~f + 2x~2
f  - 4 x~fx

~
C

  <  φ~C  < x~C  

φ~f   = 
x~f (x

~
f - x

~
C)

 1 - x~C

  + 
x~f (x

~
f - 1) 

x~C (x~C - 1)
  φ~C  x~C < φ~C  < 

x~C

x~f

 (1 + x~f - x
~

C)  (34) 

φ~f   = 1 x~C

 x~f

 (1 + x~f - x
~

C)  < φ~C  < 1  

φ~f   = φ~C , elsewhere 

 

RESULTS AND DISCUSSION 

The performance of the various composite HR convective schemes formulated using both NVF and NVSF 

methodologies is examined in this section by solving two typical problems. 

Calculations are performed on an 18x18 highly non-uniform grid in order to demonstrate the virtues of the 

NVSF methodology.  In both tests, computational results were considered converged when the residual error 

(RE) defined as: 

RE = ∑⎪⎪
⎪

⎪⎪
⎪aP φP - 

⎝⎜
⎛

⎠⎟
⎞∑

nb

anbφnb + bP +  bdc    (35) 

became smaller than 0.075%. 

TRANSPORT OF A STEP PROFILE IN AN OBLIQUE UNIFORM VELOCITY FIELD 

The physical situation under consideration along with the mesh network generated are shown in Fig. 6.  This 

problem has been used by many researchers in studying artificial diffusion which inherently plagues many 

numerical schemes and particularly so at high Peclet numbers and for velocity fields that are oblique to the grid 

system.  The governing conservation equation of the problem is 

∂(uφ)
∂x   + 

∂(vφ)
∂y   = 0 (36) 

where φ is the depedent variable and u and v are the Cartesian components of the uniform velocity vector V, 

which, in this problem is taken to be at an angle of 45 degrees with respect to the horizontal.  From Eq. (36), it 
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is clear that the diffusion coefficient is set to zero.  Thus, φ is transported purely by convection and the exact 

solution to the problem is φ = 1 above the 45 degrees line and φ = 0 below it (Fig. 6). 

Before elaborating on the computational results, it should be pointed out that the results generated by the NVSF 

methodology are the exact ones in terms of the scheme used.  The NVF results obtained on non-uniform grids, 

contain approximations due to the formulation of the scheme with the assumption of a uniform grid.  However , 

in some instances, this approximation may cause false compression and be in favour of the overall solution.  

This occurs whenever the functional relationship of the HR scheme using NVSF is closer to the line φ~f  = 

φ~ C (which is the functional relationship of the first order upwind scheme)  than the one obtained using NVF 

resulting in a more diffusive profile for NVSF.  But, it should be remembered that, mathematically, NVSF gives 

the exact formulation. 

With this in mind, the computational φ values along the vertical centerline of the domain are shown for several 

HR schemes in Figs. 7(a-e).  Their functional relationships are respectively displayed in the NVD's depicted in 

Figs. 8(a-e).  Specific attention to each profile is not required and rather attention may be focused on results for 

a typical composite second order scheme (e.g. OSHER [22], Figs. 7(c) and 8(c)) and a typical composite third 

order scheme (e.g. STOIC [18], Figs. 7(e) and 8(e)).  It is easily seen that the second order schemes have not 

improved in performance and, depending on the scheme, there may be slight deterioration in accuracy.  This 

may be explained by referring to the NVD plot of the OSHER scheme(Fig. 8(c)).  As shown in Fig. 8(c), Q(x~C 

,x~f  ) is closer to the line φ~f  = φ~C  than the point (0.5,0.75).  Therefore, the NVSF results of this scheme are 

expected to be more diffusive, as obtained.  If attention is directed to Fig. 7(a) (MINMOD [11]), the φ profile is 

seen to have deteriorated slightly in the lower portion and ameliorated slightly in the upper part.  Again this is 

easily explained by inspection of the NVD plot (Fig. 8(a)).  In the lower part, the NVSF profile is more 

diffusive and in the upper part is more compressive than the NVF profile.  In general, the formulation of the 

second order composite schemes gives very diffusive profiles whether using NVF or NVSF methodologies and 

this is why improvement is not very pronounced.  The third order methods (STOIC [18], SMART [15]) show 

excellent improvements (Figs. 7(d) and 7(e)).  As seen in their NVD plots (Figs. 8(d) and 8(e)), their profiles 

are becoming less diffusive due to the aforesaid reasons.  This will always be the case independent of the grid 

network used.  The virtues of the NVSF methodology, as shown by the above example, are substantial for third 

order schemes.  Furthermore, as depicted in Fig. 7(f) where the profiles obtained by the various schemes using 

NVSF are plotted, second order composite schemes do not provide the required accuracy and are still relatively 

very diffusive.   

TRANSPORT OF A SEMI-ELLIPTIC PROFILE IN AN OBLIQUE UNIFORM VELOCITY FIELD 

A schematic of the physical situation under consideration along with the grid system used are depicted in Fig. 8.  

The governing conservation equation and the variables of the problem are the same as in the previous one.  The 

velocity field is again set at 45 degrees to the horizontal in order to simulate a flow for which false diffusion is 

maximum.  The numerical results using both NVF and NVSF formulations are shown in Fig. 9.  The trend of 

results is similar to that of the previous problem with substantial improvements obtained with the third order 

STOIC and SMART schemes and nearly no improvement obtained with the second order  composite schemes.  
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The various profiles obtained using NVSF are displayed in Fig. 9(f).  From this Fig. and Fig. 7(f) it can be 

inferred once more that the second order composite schemes are very diffusive as compared to the third order 

ones. Since, the use of the NVSF methodology along with the deferred correction procedure permits easy 

implementation of these third order composite schemes in existing CFD codes, it is recommended that these 

schemes be used in CFD applications. Furthermore, the increase in computational cost with the employment of 

third order NVSF schemes is outweighed by the improvement in accuracy obtained and the need to use a 

smaller number of grid points for a desired level of accuracy. 

CONCLUSION 

A new Normalized Variable and Space Formulation methodology (NVSF) for the development and analysis of 

High-Resolution convection-diffusion schemes is presented.  The method is an extension of the NVF 

methodology of Leonard [1] into non-uniformly discretized domains.  The required conditions for boundedness 

and accuracy of HR schemes when using the newly developed technique were discussed.  The method can 

easily be implemented in existing CFD computer codes.  Several second and third order HR schemes 

formulated using NVF were generalized using NVSF.  The technique was applied to two test problems using 

several generalized second and third order composite convection schemes.  While improvements with second 

order schemes were mild, the accuracy of third order schemes (SMART, STOIC) improved substantially with 

NVSF. 
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FIGURE CAPTIONS 

Fig. 1 Typical grid point cluster and control volume. 

Fig. 2 Interpolation points used in calculating φf . 

Fig. 3 Original and normalized variables and profiles. 

Fig. 4 Convective Boundedness Criterion (CBC). 

Fig. 5 Normalized Variable Diagram (NVD) for several linear schemes formulated using NVSF. 

Fig. 6 Physical domain and grid network used for the transport of a step profile problem. 

Fig. 7 φ profiles for the transport of a step profile problem along the vertical centerline of the domain for  

 various HR schemes using NVF and NVSF methodologies. 

Fig. 8 NVD plots for various HR schemes using NVF and NVSF methodologies. 

Fig. 9 Physical domain and grid network used for the transport of an elliptic profile problem. 

Fig. 10 φ profiles for the transport of a semi-elliptic profile problem along a vertical line (x = 0.25) of the 

 domain for various HR schemes using NVF and NVSF methodologies. 
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Fig. 1:  Typical grid point cluster and control volume. 
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Fig. 3:  Original and normalized variables and profiles. 
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Fig. 4: Convective Boundedness Criterion (CBC). 
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Fig. 5: Normalized Variable Diagram (NVD) for several linear schemes formulated using NVSF. 
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Fig. 6: Physical domain and grid network used for the transport of a step profile problem. 
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Fig. 8: NVD plots for various HR schemes using NVF and NVSF methodologies. 
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Fig. 9: Physical domain and grid network used for the transport of an elliptic profile problem. 
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Fig. 10: φ profiles for the transport of a semi-elliptic profile problem along a vertical line (x = 0.25) of 
the domain for various HR schemes using NVF and NVSF methodologies. 
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