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Abstract

Word embedding has been found to be high-

ly powerful to translate words from one lan-

guage to another by a simple linear transfor-

m. However, we found some inconsistence

among the objective functions of the embed-

ding and the transform learning, as well as

the distance measurement. This paper propos-

es a solution which normalizes the word vec-

tors on a hypersphere and constrains the lin-

ear transform as an orthogonal transform. The

experimental results confirmed that the pro-

posed solution can offer better performance

on a word similarity task and an English-to-

Spanish word translation task.

1 Introduction

Word embedding has been extensively studied in re-

cent years (Bengio et al., 2003; Turian et al., 2010;

Collobert et al., 2011; Huang et al., 2012). Fol-

lowing the idea that the meaning of a word can be

determined by ‘the company it keeps’ (Baroni and

Zamparelli, 2010), i.e., the words that it co-occurs

with, word embedding projects discrete words to a

low-dimensional and continuous vector space where

co-occurred words are located close to each other.

Compared to conventional discrete representations

(e.g., the one-hot encoding), word embedding pro-

vides more robust representations for words, partic-

ulary for those that infrequently appear in the train-

ing data. More importantly, the embedding encodes

syntactic and semantic content implicitly, so that re-

lations among words can be simply computed as

the distances among their embeddings, or word vec-

tors. A well-known efficient word embedding ap-

proach was recently proposed by (Mikolov et al.,

2013a), where two log-linear models (CBOW and

skip-gram) are proposed to learn the neighboring re-

lation of words in context. A following work pro-

posed by the same authors introduces some modifi-

cations that largely improve the efficiency of model

training (Mikolov et al., 2013c).

An interesting property of word vectors learned

by the log-linear model is that the relations among

relevant words seem linear and can be computed by

simple vector addition and substraction (Mikolov et

al., 2013d). For example, the following relation ap-

proximately holds in the word vector space: Paris -

France + Rome = Italy. In (Mikolov et al., 2013b),

the linear relation is extended to the bilingual sce-

nario, where a linear transform is learned to project

semantically identical words from one language to

another. The authors reported a high accuracy on a

bilingual word translation task.

Although promising, we argue that both the word

embedding and the linear transform are ill-posed,

due to the inconsistence among the objective func-

tion used to learn the word vectors (maximum like-

lihood based on inner product), the distance mea-

surement for word vectors (cosine distance), and the

objective function used to learn the linear transform

(mean square error). This inconsistence may lead to
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suboptimal estimation for both word vectors and the

bilingual transform, as we will see shortly.

This paper solves the inconsistence by normaliz-

ing the word vectors. Specifically, we enforce the

word vectors to be in a unit length during the learn-

ing of the embedding. By this constraint, all the

word vectors are located on a hypersphere and so the

inner product falls back to the cosine distance. This

hence solves the inconsistence between the embed-

ding and the distance measurement. To respect the

normalization constraint on word vectors, the linear

transform in the bilingual projection has to be con-

strained as an orthogonal transform. Finally, the co-

sine distance is used when we train the orthogonal

transform, in order to achieve full consistence.

2 Related work

This work largely follows the methodology and ex-

perimental settings of (Mikolov et al., 2013b), while

we normalize the embedding and use an orthogonal

transform to conduct bilingual translation.

Multilingual learning can be categorized in-

to projection-based approaches and regularization-

based approaches. In the projection-based ap-

proaches, the embedding is performed for each lan-

guage individually with monolingual data, and then

one or several projections are learned using multi-

lingual data to represent the relation between lan-

guages. Our method in this paper and the linear

projection method in (Mikolov et al., 2013b) both

belong to this category. Another interesting work

proposed by (Faruqui and Dyer, 2014) learns linear

transforms that project word vectors of all languages

to a common low-dimensional space, where the cor-

relation of the multilingual word pairs is maximized

with the canonical correlation analysis (CCA).

The regularization-based approaches involve the

multilingual constraint in the objective function for

learning the embedding. For example, (Zou et al.,

2013) adds an extra term that reflects the distances

of some pairs of semantically related words from

different languages into the objective funtion. A

similar approach is proposed in (Klementiev et al.,

2012), which casts multilingual learning as a multi-

task learning and encodes the multilingual informa-

tion in the interaction matrix.

All the above methods rely on a multilingual lex-

icon or a word/pharse alignment, usually from a

machine translation (MT) system. (Blunsom et al.,

2014) proposed a novel approach based on a join-

t optimization method for word alignments and the

embedding. A simplified version of this approach is

proposed in (Hermann and Blunsom, 2014), where

a sentence is represented by the mean vector of the

words involved. Multilingual learning is then re-

duced to maximizing the overall distance of the par-

allel sentences in the training corpus, with the dis-

tance computed upon the sentence vectors.

3 Normalized word vectors

Taking the skip-gram model, the goal is to predict

the context words with a word in the central position.

Mathematically, the training process maximizes the

following likelihood function with a word sequence

w1, w2...wN :

1

N

N∑

i=1

∑

−C≤j≤C,j 6=0

logP (wi+j |wi) (1)

where C is the length of the context in concern, and

the prediction probability is given by:

P (wi+j |wi) =
exp(cT

wi+j
cwi

)
∑

w exp(cT
wcwi

)
(2)

where w is any word in the vocabulary, and cw de-

notes the vector of word w. Obviously, the word

vectors learned by this way are not constrained and

disperse in the entire M -dimensional space, where

M is the dimension of the word vectors. An in-

consistence with this model is that the distance mea-

surement in the training is the inner product cT
wcw′ ,

however when word vectors are applied, e.g., to esti-

mate word similarities, the metric is often the cosine

distance
cT
wcw′

||cw||||cw′ ||
. A way to solve this consistence

is to use the inner product in applications, however

using the cosine distance is a convention in natural

language processing (NLP) and this measure does
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show better performance than the inner product in

our experiments.

We therefore perform in an opposite way, i.e., en-

forcing the word vectors to be unit in length. The-

oretically, this changes the learning of the embed-

ding to an optimization problem with a quadratic

constraint. Solving this problem by Lagrange multi-

pliers is possible, but here we simply divide a vector

by its l-2 norm whenever the vector is updated. This

does not involve much code change and is efficient

enough.1

The consequence of the normalization is that all

the word vectors are located on a hypersphere, as il-

lustrated in Figure 1. In addition, by the normaliza-

tion, the inner product falls back to the cosine dis-

tance, hence solving the inconsistence between the

embedding learning and the distance measurement.
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Figure 1: The distributions of unnormalized (left)

and normalized (right) word vectors. The red cir-

cles/stars/diamonds represent three words that are em-

bedded in the two vector spaces respectively.

4 Orthogonal transform

The bilingual word translation provided

by (Mikolov et al., 2013b) learns a linear transform

from the source language to the target language by

the linear regression. The objective function is as

follows:

min
W

∑

i

||Wxi − zi||
2 (3)

1For efficiency, this normalization can be conducted every

n mini-batches. The performance is expected to be not much

impacted, given that n is not too large.

where W is the projection matrix to be learned, and

xi and zi are word vectors in the source and target

language respectively. The bilingual pair (xi, zi) in-

dicates that xi and zi are identical in semantic mean-

ing. A high accuracy was reported on a word trans-

lation task, where a word projected to the vector s-

pace of the target language is expected to be as close

as possible to its translation (Mikolov et al., 2013b).

However, we note that the ‘closeness’ of words in

the projection space is measured by the cosine dis-

tance, which is fundamentally different from the Eu-

ler distance in the objective function (3) and hence

causes inconsistence.

We solve this problem by using the cosine dis-

tance in the transform learning, so the optimization

task can be redefined as follows:

max
W

∑

i

(Wxi)
T zi. (4)

Note that the word vectors in both the source and tar-

get vector spaces are normalized, so the inner prod-

uct in (4) is equivalent to the cosine distance. A

problem of this change, however, is that the project-

ed vector Wxi has to be normalized, which is not

guaranteed so far.

To solve the problem, we first consider the case

where the dimensions of the source and target vec-

tor spaces are the same. In this case, the normal-

ization constraint on word vectors can be satisfied

by constraining W as an orthogonal matrix, which

turns the unconstrained problem (4) to a constrained

optimization problem. A general solver such as SQP

can be used to solve the problem. However, we seek

a simple approximation in this work. Firstly, solve

(4) by gradient descendant without considering any

constraint. A simple calculation shows that the gra-

dient is as follows:

▽W =
∑

i

xiy
T
i , (5)

and the update rule is simply given by:

W = W + α▽W (6)
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where α is the learning rate. After the update, W is

orthogonalized by solving the following constrained

quadratic problem:

min
W̄

||W − W̄ || s.t. W̄ T W̄ = I. (7)

One can show that this problem can be solved by

taking the singular value decomposition (SVD) of

W and replacing the singular values to ones.

For the case where the dimensions of the source

and target vector spaces are different, the normaliza-

tion constraint upon the projected vectors is not easy

to satisfy. We choose a pragmatic solution. First, we

extend the low-dimensional vector space by padding

a small tunable constant at the end of the word vec-

tors so that the source and target vector spaces are in

the same dimension. The vectors are then renormal-

ized after the padding to respect the normalization

constraint. Once this is done, the same gradient de-

scendant and orthognalization approaches are ready

to use to learn the orthogonal transform.

5 Experiment

We first present the data profile and configurations

used to learn monolingual word vectors, and then

examine the learning quality on the word similari-

ty task. Finally, a comparative study is reported on

the bilingual word translation task, with Mikolov’s

linear transform and the orthogonal transform pro-

posed in this paper.

5.1 Monolingual word embedding

The monolingual word embedding is conducted

with the data published by the EMNLP 2011 SMT

workshop (WMT11)2. For an easy comparison, we

largely follow Mikolov’s settings in (Mikolov et al.,

2013b) and set English and Spanish as the source

and target language, respectively. The data prepa-

ration involves the following steps. Firstly, the text

was tokenized by the standard scripts provided by

WMT113, and then duplicated sentences were re-

moved. The numerical expressions were tokenized

2http://www.statmt.org/wmt11/
3http://www.statmt.org

as ’NUM’, and special characters (such as !?,:) were

removed.

The word2vector toolkit4 was used to train the

word embedding model. We chose the skip-gram

model and the text window was set to 5. The train-

ing resulted in embedding of 169k English tokens

and 116k Spanish tokens.

5.2 Monolingual word similarity

The first experiment examines the quality of the

learned word vectors in English. We choose the

word similarity task, which tests to what extent the

word similarity computed based on word vectors a-

grees with human judgement. The WordSimilarity-

353 Test Collection5 provided by (Finkelstein et al.,

2002) is used. The dataset involves 154 word pairs

whose similarities are measured by 13 people and

the mean values are used as the human judgement.

In the experiment, the correlation between the co-

sine distances computed based on the word vectors

and the humane-judged similarity is used to measure

the quality of the embedding. The results are shown

in Figure 2, where the dimension of the vector s-

pace varies from 300 to 1000. It can be observed

that the normalized word vectors offer a high corre-

lation with human judgement than the unnormalized

counterparts.
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Figure 2: Results on the word similarity task with the nor-

malized and unnormalized word vectors. A higher corre-

lation indicates better quality.

4https://code.google.com/p/word2vec
5http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/
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5.3 Bilingual word translation

The second experiment focuses on bilingual word

translation. We select 6000 frequent words in En-

glish and employ the online Google’s translation ser-

vice to translate them to Spanish. The resulting 6000

English-Spanish word pairs are used to train and test

the bilingual transform in the way of cross valida-

tion. Specifically, the 6000 pairs are randomly di-

vided into 10 subsets, and at each time, 9 subsets

are used for training and the rest 1 subset for testing.

The average of the results of the 10 tests is reported

as the final result. Note that not all the words trans-

lated by Google are in the vocabulary of the target

language; the vocabulary coverage is 99.5% in our

test.

5.3.1 Results with linear transform

We first reproduce Mikolov’s work with the linear

transform. A number of dimension settings are ex-

perimented with and the results are reported in Ta-

ble 1. The proportions that the correct translations

are in the top 1 and top 5 candidate list are reported

as P@1 and P@5 respectively. As can be seen, the

best dimension setting is 800 for English and 200

for Spanish, and the corresponding P@1 and P@5

are 35.36% and 53.96%, respectively. These results

are comparable with the results reported in (Mikolov

et al., 2013b).

D-EN D-ES P@1 P@5

300 300 30.43% 49.43%

500 500 25.76% 44.29%

700 700 20.69% 39.12%

800 200 35.36% 53.96%

Table 1: Performance on word translation with unnor-

malized embedding and linear transform. ‘D-EN’ and

‘D-ES’ denote the dimensions of the English and Spanish

vector spaces, respectively.

5.3.2 Results with orthogonal transform

The results with the normalized word vectors and

the orthogonal transform are reported in Table 2.

It can be seen that the results with the orthogonal

transform are consistently better than those reported

in Table1 which are based on the linear transform.

This confirms our conjecture that bilingual transla-

tion can be largely improved by the normalized em-

bedding and the accompanied orthogonal transform.

D-EN D-ES P@1 P@5

300 300 38.99% 59.16%

500 500 39.91% 59.82%

700 700 41.04% 59.38%

800 200 40.06% 60.02%

Table 2: Performance on word translation with normal-

ized embedding and orthogonal transform. ‘D-EN’ and

‘D-ES’ denote the dimensions of the English and Span-

ish vector spaces, respectively.

6 Conclusions

We proposed an orthogonal transform based on nor-

malized word vectors for bilingual word translation.

This approach solves the inherent inconsistence in

the original approach based on unnormalized word

vectors and a linear transform. The experimental re-

sults on a monolingual word similarity task and an

English-to-Spanish word translation task show clear

advantage of the proposal. This work, however, is

still preliminary. It is unknown if the normalized

embedding works on other tasks such as relation

prediction, although we expect so. The solution to

the orthogonal transform between vector spaces with

mismatched dimensions is rather ad-hoc. Neverthe-

less, locating word vectors on a hypersphere opens a

door to study the properties of the word embedding

in a space that is yet less known to us.
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