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The white matter of the brain undergoes a range of structural changes throughout development; from

conception to birth, in infancy, and onwards through childhood and adolescence. Several studies have

used diffusion magnetic resonance imaging (dMRI) to investigate these changes, but a consensus has

not yet emerged on which white matter tracts undergo changes in the later stages of development, or

what the most important driving factors are behind these changes. In this study of typically developing

8 to 16 year-old children, we use a comprehensive data-driven approach based on principal components

analysis to identify effects of age, gender and brain volume on dMRI parameters, as well as their rel-

ative importance. We also show that secondary components of these parameters predict full-scale IQ,

independently of the age and gender-related effects. This overarching assessment of the common factors

and gender differences in normal white matter tract development will help to advance understanding

of this process in late childhood and adolescence.

Introduction

Late childhood and adolescence are important phases in

the normal development of the brain. While the human

brain reaches 90% of its adult size by the age of five,

structural change to both the grey and white matter—and

hence the neural information processing circuits which

they subserve—continues right up to the onset of adult-

hood (Tau & Peterson, 2010). In particular, myelina-

tion of neuronal axons is reported to be one key process

which continues beyond childhood (Benes et al., 1994;

Yakovlev & Lecours, 1967). However, it is not yet fully

clear which white matter tracts undergo changes in this

phase of development, or what the most important driv-

ing factors are behind these changes.

A number of studies have used diffusion magnetic

resonance imaging (dMRI) to investigate the structural

changes in neural white matter during childhood and

adolescence. This technique provides microstructural

biomarkers including fractional anisotropy (FA), broadly

interpreted as a marker of the structural “integrity” of

white matter; and mean diffusivity (MD), a directionally

averaged measure of the degree of water self-diffusion in

tissue (Basser & Pierpaoli, 1996). In general, FA tends

to increase with age while MD decreases, most likely re-

flecting the ongoing process of myelination, but synap-

togenesis and synaptic pruning also continue well be-

yond infancy and may play a role. However, specific

observations vary due to differing study populations and

methodological details. White matter structures vari-

ously reported to show changes during childhood and

adolescence include the arcuate fasciculi, corpus cal-

losum, corticospinal tracts, inferior longitudinal fasci-

culi and uncinate fasciculi (Ashtari et al., 2007; Barnea-

Goraly et al., 2005; Bonekamp et al., 2007; Eluvathin-

gal et al., 2007; Giorgio et al., 2010; Lebel et al., 2008;

Muetzel et al., 2008; Schmithorst et al., 2002), although

most studies have used whole-brain voxel-based analy-

sis methods to observe these effects. Standard structural

imaging has also been used to demonstrate changes in

white matter density with age (Paus et al., 1999), and

cognitive development has been shown to be linked to

the microstructural changes identified with dMRI (Mab-

bott et al., 2006; Nagy et al., 2004).

There has, however, been little evidence presented

of substantive differences between the genders, despite



findings of sexual dimorphism in the white matter of

human adults and of rodents (Cerghet et al., 2006; Gur

et al., 1999; Kim & Juraska, 1997; Leonard et al., 2008).

The most consistently reported morphological difference

between the sexes in humans is of approximately 8–12%

greater total brain volume in males (Lenroot & Giedd,

2010), but there is also evidence that grey and white mat-

ter volumes vary differently with age between the gen-

ders (De Bellis et al., 2001; Blanton et al., 2004; Cavi-

ness et al., 1996). Schmithorst et al. (2008) presented

an analysis of dMRI data from a group of 5–18 year

olds, indicating some age–gender interactions in FA and

MD, although their analysis was performed over a single

large white matter mask, with the magnitude of the ef-

fect in specific brain regions established using post-hoc

statistical tests. More recently, Asato et al. (2010) found

some age group–gender interactions in radial diffusiv-

ity, another measure derived from dMRI, using three

age groups representing children, adolescents and young

adults. Since these studies looked at different diffusion

measures and represented age differently, replication of

age–gender interaction effects is still lacking, and the ex-

tent of gender differences in white matter development

trajectories remains an open question.

Recent work has also demonstrated that there is

a substantial link between dMRI-based microstructural

parameters measured from different tracts, going well

beyond an interhemispheric correspondence in bilat-

eral structures (Wahl et al., 2010). Westlye et al.

(2010) have demonstrated substantial correlations be-

tween tracts across the life span; and a common factor

of white matter integrity—based on measurements from

a set of eight major tracts—has been shown to predict

information processing speed across a group of healthy

older people of very similar age (Penke et al., 2010).

These studies strongly suggest that there is a significant

global component to the variance in these parameters,

which collectively has clear functional relevance.

Evidence for a link between dMRI-based biomark-

ers and general intelligence, in some localised regions of

white matter, was presented by Schmithorst et al. (2005).

In addition, Tamnes et al. (2010) showed somewhat dif-

ferent patterns of relationship between verbal and per-

formance ability measures, and microstructure param-

eters. Both of these previous studies used voxelwise

analysis methods which make no allowance for the com-

monality between tracts; but nevertheless, differences in

intelligence between individuals are significant because

of their association with variation in life outcomes, in-

cluding occupational attainment and health (Deary et al.,

2010). Neuroimaging is important in offering the oppor-

tunity to investigate their structural predictors.

In this work we take a tract-based approach to

analysing microstructural development, using a recently

developed, automated method to segment the white mat-

ter structures of interest (Clayden et al., 2009b). Unlike

most previous studies, we do not isolate one or two re-

gressors of interest, but rather use data-driven principal

components analysis to identify common factors, and

then link these components to age, gender, brain vol-

ume and intelligence measures in a robust and structured

prospective analysis. This approach allows us to identify

groups of tracts which “vary together” and analyse them

as a set, thereby dramatically improving data efficiency

relative to voxel-by-voxel or tract-by-tract approaches.

We find substantial evidence for differences in the rates

of change of dMRI parameters between the sexes. Vari-

ance in FA and MD across the group is found to be driven

primarily by age-related changes, but the total volume

of the brain is also found to relate to these measures.

Moreover, factors in FA and MD which are secondary to

the age effect independently predict intelligence. Taken

together, this comprehensive analysis helps to advance

understanding of the key factors in white matter devel-

opment during late childhood and adolescence.

Methods

The participants for this study were 59 healthy chil-

dren (34 female), with ages ranging from 8 to 16 yr

(mean 11.5 yr, standard deviation 2.1 yr; boys’ mean

10.9 yr, girls’ mean 11.9 yr). These children were re-

cruited by advertising in local schools, or through rela-

tionships to children being scanned as part of a clinical

study. A parent of each participant answered a stan-

dardised questionnaire, the Child Behaviour Checklist

(http://www.aseba.org), to identify and exclude children

with a potential behavioural or psychiatric problem. Any

contraindication to MRI was also grounds for exclusion.

The study was approved by the local ethics committee,

and informed consent was obtained from both partici-

pants and parents.

Each participant underwent a dMRI protocol on a

Siemens Avanto 1.5 T clinical system (Siemens Health-

care, Erlangen, Germany), using a self-shielding gradi-

ent set with maximum gradient strength of 40 mT m−1,

and standard “birdcage” quadrature head coil. Echo-

planar diffusion weighted images were acquired for

an isotropic set of 20 noncollinear directions, using a

weighting factor of b = 1000 s mm−2, along with a T2-

weighted (b = 0) volume. This protocol was repeated

three times in a single scan session, and the data merged

together without averaging. 45 contiguous axial slices

of width 2.5 mm were imaged, using a field of view of

240 × 240 mm and 96 × 96 voxel acquisition matrix, for

a final image resolution of 2.5×2.5×2.5 mm. Echo time

was 89 ms and repetition time was 6300 ms. In addition,

a T1-weighted 3D FLASH structural image was acquired

using 176 contiguous sagittal slices, a 256 × 224 mm

field of view and 1 × 1 × 1 mm image resolution. Echo

time in this case was 4.9 ms, and repetition time was

11 ms. Overall scan time for these sequences was ap-

proximately 19 minutes.
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All 59 T1-weighted structural images were used for

the brain and white matter volume analysis. However,

six dMRI data sets were removed due to significant mo-

tion artefacts in the diffusion-weighted images, leaving

a set of 53 participants (30 female) for tractography.

In addition to brain imaging, full-scale IQ values

were obtained for each participant using the Wechsler In-

telligence Scale for Children, fourth UK edition (WISC-

IV UK).

Image processing

DICOM format image files obtained from the scanner

were converted to NIfTI-1 format using the TractoR soft-

ware package (http://www.tractor-mri.org.uk; Clayden

et al., 2011). Diffusion data were preprocessed to cor-

rect for eddy-current induced distortions using tools in

the FSL package (http://www.fmrib.ox.ac.uk/fsl). The

brain was segmented using FSL’s brain extraction tool

(Smith, 2002), and diffusion tensors were calculated us-

ing least-squares fitting.

Probabilistic neighbourhood tractography (PNT), as

implemented in TractoR, was applied to segment the ar-

cuate fasciculi, anterior thalamic radiations (ATRs), cin-

gulum bundles, corticospinal tracts (CSTs), inferior lon-

gitudinal fasciculi (ILFs), uncinate fasciculi, and corpus

callosum genu and splenium (forceps minor and ma-

jor) in each participant. This method uses a statistical

model of tract shape, and a set of reference tracts based

on a published white matter atlas, to automatically and

robustly segment tracts of interest in the native image

space of each participant (Clayden et al., 2009b; Muñoz

Maniega et al., 2008). It also provides a natural index

of the “goodness” of the segmentation in each partici-

pant, which is independent of all diffusion parameters.

FSL BEDPOSTX/ProbTrack, with up to two fibre di-

rections modelled per voxel, was used as the underly-

ing tractography algorithm (Behrens et al., 2007). False

positive streamlines were removed using an automated

pruning algorithm, based on the same tract shape mod-

elling approach, as described previously (Clayden et al.,

2009a). Mean FA and MD within the final segmenta-

tions, weighted by visitation count after pruning, were

then calculated. No threshold on visitation count was

applied.

The brain was also segmented from the T1-weighted

structural images using FSL’s brain extraction tool. The

brain extraction was repeated iteratively to improve ro-

bustness, and the total brain volume was calculated from

the final segmentation (Fagiolo et al., 2008). FSL FAST

was then applied to perform gross tissue classification

into grey matter, white matter and cerebrospinal fluid

(Zhang et al., 2001). A conservative threshold of 99%

classification confidence was applied and the total vol-

ume of segmented white matter was recovered.

Statistical analysis

Due to occasional failures of the tractography algorithm,

not every tract could be satisfactorily segmented in ev-

ery participant. Failures were detected by performing a

standard outlier detection on the “goodness-of-fit” mea-

sure provided by PNT. Specifically, data for a participant

were ignored for a particular tract if the goodness-of-fit

score was more than 1.5 times the interquartile range be-

low the first quartile for that tract. No more than five

data sets were ignored for any tract in this way.

To identify relationships between FA and MD mea-

surements across tracts, principal components analysis

(PCA) was performed on each measure separately us-

ing the Nonlinear Iterative PArtial Least Squares (NI-

PALS) approach (Wold, 1966), as implemented in the

“pcaMethods” package for R, version 1.30.0 (Stacklies

et al., 2007). We used this iterative technique because it

can handle the missing values excluded due to poor seg-

mentation, and therefore makes full use of the available

data. PCA transforms the data into a set of “loadings”,

or levels of contribution from each tract, and “scores”

for each principal component in each subject (Bratchell,

1989). A small number of major principal components

can often be used as a set of summary variables which

capture most of the variability in the data set. Scores for

major principal components were further analysed for

relationships to age, gender and total brain volume using

ANCOVA. The value of the FA and MD principal com-

ponent scores as linear predictors of full-scale IQ was

investigated using ANCOVA and additional F-tests.

Total brain and white matter volumes were sepa-

rately tested for age and gender effects using ANCOVA.

All statistical analysis was performed with R (R De-

velopment Core Team, 2010). Graphical representations

of our results were created using the “ggplot2” R pack-

age, version 0.8.7 (Wickham, 2009).

Results

Group overlay maps of the tracts of interest are shown

in Fig. 1. We note that tract segmentation consistency is

high between participants using probabilistic neighbour-

hood tractography, with very few false positive path-

ways. There was no need to apply an arbitrary threshold

to the streamline visitation maps.

The results of our tract and tissue volume analyses

are laid out below.

Brain and white matter volumes

The mean (± standard deviation) total brain volume

across the data set was 1465 ± 89 ml for girls, and

1582 ± 145 ml for boys. The average brain volume is

therefore 8% higher in boys. Mean white matter volume

was 404 ± 35 ml for girls and 437 ± 53 ml for boys, or
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Figure 1: Group maps

of the right-sided tracts

of interest, plus forceps

minor and major, after

segmentation using PNT.

The colour scale indi-

cates the proportion of

subjects whose segmen-

tations overlap with each

voxel in MNI standard

space.

27.5 ± 1.3% and 27.6 ± 1.1% of total brain volume re-

spectively.

Accordingly, we found that total brain volume in

our data set was strongly dependent on gender (F1,53 =

14.55, P < 0.001). Linear and quadratic main effect

terms in age were also statistically significant, as were

their interactions with gender (all P < 0.05).

While white matter volume was very strongly pre-

dicted by total brain volume (F1,51 = 391.48, P ≪

0.001), there was also a significant main effect of age

on white matter volume after brain volume was taken

into account (F1,51 = 8.83, P < 0.01), as well as an

age–gender interaction (F1,51 = 5.73, P < 0.05) and an

age–brain volume interaction (F1,51 = 6.10, P < 0.05).

There was no evidence for a nonlinear age effect in this

case, so these terms were not included in the statistical

model.

The latter age–gender interaction indicates that white

matter volume increases more slowly with age in boys

than in girls, once the general effect of whole brain

growth is taken into account. For illustration, the rela-

tionship between age and the proportion of white mat-

ter in the brain is shown for each gender in Supplemen-

tary Fig. 1, but given the very strong correlation between

brain and white matter volumes, only a small amount of

the variance in white matter volume is unexplained by

brain volume, and so this proportion is expected to be

rather noisy.

Tract diffusion characteristics

Scatter plots of FA and MD for each tract are shown in

Figs 2 and 3, respectively, along with least-squares re-

gression lines for each gender. Several major charac-

teristics of the data are immediately obvious from these

plots. There is clearly some difference in the diffusion

parameters between tracts. On the whole, FA tends to

increase or stay level with age, while MD decreases or

stays level. The greatest variance in both FA and MD

values is found in the corpus callosum splenium—in the

case of MD, so much so that it was necessary to plot

the data on their own scale. For MD, there is a consis-

tent tendency for the trend line for boys to begin above

that for girls at young ages, and then later to cross it.

This suggests that changes in MD with age are gender-

specific.

The evidence for different rates of change of the

diffusion parameters between the two genders is high-

lighted in Fig. 4, which plots the estimated slopes for

each tract–hemisphere–gender combination, along with

their 95% confidence intervals. Notice that, to within

these confidence bounds, the slopes fitted to data from

girls do not differ from zero, with the marginal excep-

tions of the left arcuate and left ILF for FA. On the other

hand, FA slopes are greater than zero for boys in bilateral

ATRs, right cingulum and left CST; and MD slopes are

less than zero in bilateral arcuate fasciculi, left ATR, bi-

lateral cingula, bilateral CSTs, and marginally for right

ILF and bilateral uncinate fasciculi. Tract-by-tract anal-

ysis using t-tests shows a significant difference between

the sexes in left CST FA (t45.9 = 2.80, P < 0.01) and

MD (t42.3 = −2.82, P < 0.01); and in right ILF MD

(t42.5 = −2.33, P < 0.05). However, it is clear from

the raw data in Figs 2 and 3, as well as the fit informa-

tion in Fig. 4, that there is a far more consistent trend

in the slopes than these isolated significant values sug-

gest. We will therefore focus below on using our princi-

pal components instead, thereby consolidating common

information across tracts. Fits including quadratic terms

in age were investigated, but there was no support for

curvature in the data.

Principal components analysis

The scree plot in Fig. 5 shows the results of our PCA. For

MD there is a clearly dominant first principal component

(PC) which encapsulates 44% of the variance, indicating

a significant degree of shared variability across the set

of tracts of interest. In the case of FA the picture is less

clear. The first PC covers just 23% of the variance, and
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Figure 2: Scatter plots of age against FA for all tracts of interest. Linear regression lines and associated standard errors are

shown for each gender.
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Figure 3: Scatter plots of age against MD for all tracts of interest. Linear regression lines and associated standard errors are

shown for each gender. The splenium subplot uses a different y-axis to the others due to its much greater variability across

individuals.
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Figure 4: Estimated lin-

ear slope coefficients and

their 95% confidence in-

tervals for each tract–

hemisphere–gender com-

bination.

there are three components with more than 10%. These

results reflect the lesser degree of similarity in data pat-

terns seen across tracts in FA, as opposed to MD, in Figs

2 and 3. Jointly, components with more than 10% of the

variance amount to 56% in MD and 48% in FA.

The contributions of the 14 tracts to each of the major

principal components, or loadings, are shown in Fig. 6.

We observe that all tracts show positive loadings on the

first PC in both FA and MD—with the negligible excep-

tion of the genu in FA, whose loading is just barely neg-

ative. The second PC in FA is positively loaded for the

arcuate fasciculi, cingula and left ILF, but negatively for

all other tracts. The third PC in FA and the second in MD

are loaded similarly to one another, and very strongly for

the corpus callosum splenium.

Table 1 shows the results of our ANCOVA, based

on the PCA scores for all components with more than

10% of the variance. F-values and P-values for age, gen-

der and brain volume main effects, and age interactions,

are shown for each component. Since white matter vol-

ume is very strongly correlated with total brain volume

we did not include it as a separate term in the model.

We observe that both FA and MD show significant main

effects of age and brain volume, as well as a signif-

icant age–gender interaction, but for FA these effects

are split across the two biggest components, whereas

for MD they all appear in the first. Gender–brain vol-

ume and three-way interaction terms were included in

each model, but in no case were these effects signifi-

cant. Scores are plotted against age in Supplementary

Fig. 2, and differences in slope between the genders may

be directly observed in FA PC2 and MD PC1. We inves-

tigated the smaller components in each case, but found

no evidence that they would add anything to our under-

standing or interpretation of the data.

Prediction of IQ

The mean (± standard deviation) full-scale IQ amongst

participants for whom all MRI data were available was

113 ± 11 (range 88–137).

ANCOVA including terms for all three major com-

ponents in FA showed that only the third component

predicted full-scale IQ (F1,49 = 8.36, P < 0.01). Like-

wise, the second principal component in MD predicted

IQ (F1,50 = 4.60, P < 0.05), whilst the first did not.

To demonstrate that the major components capture

the important variability in FA and MD with regard to

predicting IQ, we compared the models containing just

these components to ones including all principal com-

ponents. No significant improvement in the explained

variance was observed for either FA (F11,38 = 0.33,

P = 0.97) or MD (F12,38 = 1.20, P = 0.32).

Discussion

In this study we have used a thorough, data-driven anal-

ysis approach to make the following major contribu-

tions. Firstly, we have confirmed previous reports of

general FA increases and MD decreases with age over

the range of our data set (Figs 2 and 3). Secondly, we

have observed—almost invariably across the 14 tracts

studied—faster rates of decrease in MD in boys relative

to girls (Figs 4 and 6; Supplementary Fig. 2; Table 1). It

appears likely that the rates of change for girls are essen-

tially zero for most or all of the tracts we have examined.

There is some evidence for a comparable age–gender in-

teraction in FA, but it is more tract-specific (Fig. 6; Table

1). Thirdly, total brain volume has been shown to depend

on gender and (nonlinearly) on age. Total white matter

volume depends on brain volume, unsurprisingly, but it
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Figure 5: Scree plot showing the proportion of the variance attributed to each factor in our PCA, performed separately for FA

and MD.

Figure 6: Colour-coded loading table for each principal component (PC) with greater than 10% of the variance. Greater loadings

indicate greater contribution of the tract to the relevant PC.
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Age Gender TBV Age × Gender Age × TBV

F1,45 P F1,45 P F1,45 P F1,45 P F1,45 P

FA PC1 7.291 0.010 1.122 0.295 0.103 0.749 0.012 0.915 0.652 0.423

FA PC2 0.706 0.405 0.017 0.898 5.006 0.030 5.050 0.030 2.918 0.095

FA PC3 0.012 0.915 0.147 0.703 0.117 0.734 0.146 0.704 <0.001 0.996

MD PC1 17.245 <0.001 0.060 0.807 17.557 <0.001 5.666 0.022 1.351 0.251

MD PC2 0.392 0.535 0.245 0.623 0.026 0.872 0.303 0.585 0.124 0.726

Table 1: Major ANCOVA results for each principal component (PC) with greater than 10% of the variance. F-values and

P-values are given for the effects of age, gender and total brain volume (TBV), along with first-level interactions involving age.

Significant values (P < 0.05) are shown in bold.

also changes with age, with some difference in the trajec-

tory between the sexes. Fourthly, using principal compo-

nents analysis we have reported that a significant amount

of variance in FA and (particularly) MD is shared be-

tween tracts, and the largest principal component in both

cases correlates with age (Fig. 5; Table 1). There are also

significant effects of brain volume on FA and MD prin-

cipal components, perhaps reflecting a different packing

of axons and myelin in larger brains. Finally, we have

demonstrated that principal components in FA and MD

without links to age or gender independently predict in-

telligence. Significantly, all of these observations have

been made using a structured, prospective analysis on a

single data set, by identifying a set of major factors in

each parameter, thereby taking shared variance into ac-

count and maximising data efficiency.

The age–gender interaction for MD was observed to

be highly consistent across tracts. By inspection of Fig.

3, it seems that the gender difference in slope may be

driven primarily by the younger end of the age group,

where boys generally have higher MD than girls. In-

deed, we found that restricting the analysis to just the

41 subjects (21 female) with age less than 13 yr had

very little effect on the pattern of estimated slopes in

Fig. 4, apart from broadening the confidence intervals

slightly as would be expected with fewer observations

(data not shown). It is plausible that the two slopes

would be much more similar beyond the upper limit of

our age range, but we found no support for curvature

in the trajectories within the range studied here. Like-

wise, it might be hypothesised that the decline in MD

observed specifically in boys would be observed in girls

too, but at a younger age, reflecting the tendency for ear-

lier development in females. However, fully testing this

hypothesis would require significantly more data to be

acquired from younger children and is therefore left to

future work. For FA the picture is more mixed (see Fig.

2). In general, boys have a more positive rate of change

with age, but the overall effect is less coherent—a view

which was borne out by the PCA, as discussed below.

The finding of firm age–gender interactions in dMRI

parameters is not unprecedented, as Schmithorst et al.

(2008) have previously reported similar findings. Di-

rectly comparing the results of the two studies is not

easy due to their very different image analysis and sta-

tistical methodologies, as well as the broader age range

of the earlier study, but the message of difference in

the rates of change of microstructural development be-

tween the sexes is common to both. Nevertheless, our

approach has the advantage of using only planned statis-

tics based on a structured linear model, rather than rely-

ing on post-hoc analysis to determine the magnitudes of

the effects. We have also employed a well-tested and ob-

jective method for segmenting tracts of interest, whose

reproducibility has been previously demonstrated (Clay-

den et al., 2009b).

Tanner staging was not performed for this study: in-

stead, we have concentrated on relating imaging metrics

to chronological age, since many developmental land-

marks are still very much defined in these terms. (Age

also has the advantages of being absolute and quantita-

tive.) Nevertheless, linking pubertal status to these met-

rics would be an interesting approach for future work,

and would shed light on the extent to which the white

matter development trajectories observed depend on the

relative onset ages for adolescence in the two sexes.

Although some previous studies have described

lateralisation effects in developing white matter (e.g.

Bonekamp et al., 2007; Eluvathingal et al., 2007), we

found no strong evidence for interhemispheric differ-

ences in the development process. Fig. 4 shows some

minor differences between left and right slopes, but the

effect is much less marked than the contrast between the

sexes.

Total brain volume was found to be an average of

8% higher in boys than girls, in agreement with previous

findings (Lenroot & Giedd, 2010). It was found to de-

pend nonlinearly on age, with some gender difference in

trajectory, but the changes over this age range are fairly

slight since the brain is very close to its adult size at the

lower extreme of the range, with the early phase of rapid

growth being already complete (Groeschel et al., 2010).

Total white matter volume was observed to increase very

slightly with age, and more rapidly in girls than boys,

after taking total brain volume into account (see Supple-

mentary Fig. 1).
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Our principal components analysis is a major novel

component of this study, and provides advantages in

terms of data consolidation, multiple testing and the iso-

lation of “layered” independent effects. The effect of

this approach is to identify groups of tracts which “vary

together” across subjects, calculate a weighted average

FA or MD value for each group—where the loadings

represent the weights—and perform subsequent statis-

tical analysis on these averages. This approach is effi-

cient with data and reduces measurement error by av-

eraging, while still allowing us, through the loadings,

to identify which gender and age effects apply to which

tracts. Whilst the combination of PCA loadings and fac-

tor scores is a slightly unconventional way of present-

ing this kind of data, it is a robust approach whose re-

sults are extremely informative if correctly interpreted

(Bratchell, 1989). PCA has been used for discrimination

analysis and data dimensionality reduction in a few pre-

vious diffusion MRI studies (Caprihan et al., 2008; Lin

et al., 2006; Robinson et al., 2010; Teipel et al., 2007),

but as far as we are aware, only one previous study has

used this powerful method for studying FA and MD data

from a set of white matter tracts (Penke et al., 2010).

The largest principal component, or factor, which en-

capsulates 44% of the total variance in MD and 23% in

FA, is linked to age (see Supplementary Fig. 2 and Ta-

ble 1). The loadings show that this factor relates to all

tracts except splenium for MD; and all except right un-

cinate, genu and splenium for FA (Fig. 6). For MD, this

component also showed a significant relationship to to-

tal brain volume, and a significant age–gender interac-

tion effect. Since this component is loaded for almost

every tract, we conclude that the difference in MD slope

between the genders is essentially ubiquitous across the

tracts we have studied. Supplementary Fig. 2 confirms

that the slope is more negative for males than for fe-

males. The effect of brain volume—which cannot be

simply due to the difference between genders, because

gender appeared as a separate term in our model—may

reflect different packing of axons and myelin in different

sized brains.

The second PC in FA, rather than the first, showed

the age–gender interaction that indicates differing mat-

uration trajectories between the sexes. The loadings on

this factor were less consistent, being positive only for

the association fibres of the cingulum bundles, arcuate

fasciculi and left ILF. Note, however, that these are ex-

actly the tracts where a less positive slope was observed

for boys relative to girls (see Fig. 4); with all other tracts

showing the opposite effect, and having a correspond-

ingly negative loading on this factor. It is therefore

clear that the age–gender interaction is less consistent

across the brain for FA than it is for MD. This may be

partly because FA is intrinsically noisier, being based on

differences rather than a simple mean (Basser & Pier-

paoli, 1996), but likely also reflects different develop-

ment paths for these association tracts.

The third PC in FA and second PC in MD indepen-

dently predict general intelligence, as measured by full-

scale IQ derived from the WISC-IV UK. Given their

analogy in this sense, it is not surprising that their load-

ing patterns are similar, with both having heavy positive

loading on the corpus callosum, particularly the sple-

nium. Notable positive loadings are also observed in

the left-sided inferior longitudinal and arcuate fasciculi.

This is a powerful finding, suggesting that microstruc-

tural integrity has a role in between-individual variability

in childhood intelligence. Since these components are

not linked to age or gender, the impact of white matter

integrity on IQ seems to be independent of the broader

influence of those factors. Furthermore, other work has

suggested that childhood IQ is linked with both IQ and

white matter integrity in old age (Deary et al., 2006),

so these effects may have significant long-term conse-

quences. We note that while one previous study looking

at microstructural predictors of IQ found little evidence

of a link with MD (Schmithorst et al., 2005), statistical

power and multiple comparison correction issues may

have contributed to that negative finding. The mean IQ

in our data set is slightly above the population average,

but the range nevertheless covers more than three times

the population standard deviation of 15. A recent adult

twin study has demonstrated that genetic factors can me-

diate links between white matter integrity and intelli-

gence (Chiang et al., 2009), and investigation of genetic

influences in childhood would be a very constructive av-

enue for further work.

In this context, where tract characteristics are highly

correlated, PCA is an extremely data-efficient approach

to the analysis. A retrospective power calculation indi-

cates that in the ATRs, for example—which show a clear

difference between genders in Figs 2 and 4, and are sub-

stantially loaded on FA PC2—approximately 101 sub-

jects (for the left ATR) or 107 (for the right) would be re-

quired of each gender in order to find a significant effect

at P < 0.05 with 80% power in an individual tract anal-

ysis, assuming that our results are representative. This

would be a data set almost four times the size of the cur-

rent one, which would require a great deal of extra re-

source to acquire. By contrast, PCA allows us to observe

significant effects using our relatively modest group size.

Conclusions

Taken together, our results represent a substantial body

of evidence for microstructural changes during normal

development, and their effect on general intelligence. As

with all such studies, our findings are dependent on the

specific age range of our participants, but we have seen

that over this range of 8–16 yr, the development trajec-

tories of white matter tracts differ significantly between

the sexes, both in terms of the total volume of white mat-

ter and its diffusion characteristics. Whilst age has been
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shown to be the biggest driver behind the latter, overall

brain volume is also an important determining factor in

FA and MD values. There is also a significant factor in

both FA and MD that predicts IQ and which, given its

secondary nature, would not be clear without the PCA-

based approach taken here. Finally, we demonstrated ev-

idence that a set of association tracts develop differently

to the other white matter structures we studied. These

findings will inform future imaging studies of normal de-

velopment, and further understanding of the biophysical

changes taking place in white matter as children grow

into adults.
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Supplementary Figure 1: Scatter plot of age against white matter volume, expressed as a percentage of total brain volume.
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10% of the variance. Linear regression lines and associated standard errors are shown for each gender.


