
Noname manuscript No.
(will be inserted by the editor)

Normative Requirements for Regulatory Compliance: An
Abstract Formal Framework

Mustafa Hashmi · Guido Governatori · Moe
Thandar Wynn

Received: date / Accepted: date

Abstract By definition, regulatory rules (in legal context called norms) intend to
achieve specific behaviour from business processes, and might be relevant to the
whole or part of a business process. They can impose conditions on different aspects
of process models, e.g., control-flow, data and resources etc. Based on the rules
sets, norms can be classified into various classes and sub-classes according to their
effects. This paper presents an abstract framework consisting of a list of norms and a
generic compliance checking approach on the idea of (possible) execution of processes.
The proposed framework is independent of any existing formalism, and provides a
conceptually rich and exhaustive ontology and semantics of norms needed for business
process compliance checking. Apart from the other uses, the proposed framework can
be used to compare different compliance management frameworks (CMFs).

Keywords Norms, Normative Requirements · Norms Compliance · Business Process
Regulatory Compliance · Compliance Frameworks ·

1 Introduction

In today’s highly regulated corporate environment compliance has become an unavoid-
able activity for every enterprise. Compliance, in its broader sense, can be understood
as enterprise’s ability to meeting all the governing regulations enforced on its business
operations. The demand for reporting compliance pressurises enterprises to streamline
their business operations in accordance with the governing regulations. This demand
has become even stronger because of big corporate scandals e.g., Enron, American

Mustafa Hashmi · Guido Governatori
NICTA Queensland, 70-72-Bowen St. Spring Hill, Brisbane Australia
Tel.: +61-7-3069 0065
Email:{mustafa.hashmi,guido.governatori}@nicta.com.au

Moe Thandar Wynn
Queensland University of Technology (QUT), 2-George St. Brisbane Australia
E-mail: m.wynn@qut.edu.au

2 Mustafa Hashmi et al.

Insurance Group etc., which resulted in the emergence of regulatory acts1,2 and quality
standards3. These acts and standards place restrictions and provide guidelines for
enterprises to streamline their processes, and impose severe financial and criminal
penalties otherwise.

Enterprises, public and private alike, are adopting SOA (Service-Oriented Archi-
tecture) based technologies to bring innovations into their business operations; and to
offer their core compentencies as Web Service (WS). Often physically independent,
web services are collections of interrelated services orchestrated to provide a specific
functionality; and web services are designed by combining (possibly) disparate and of-
ten incongruous business processes from different enterprises (Elgammal et al, 2011).
In such a dynamic setting, the ability to trust that one another’s internal processes that
form the core of successful invocation of web services are compliant with regulations
becomes even more crucial.

Business processes provide a high-level view on how business operations can be
performed to achieve a desired outcome. Hence it is particularly important that business
processes operate within the defined boundaries of the regulations (in legal context)
called norms. Aiming to control the behaviour of business processes, norms impose
restrictions on how activities should be carried out, and impose penalties for any
divergent behaviour. Consider, for example, a procurement process of a government
agency which handles the dynamic selection of contractors to place orders, which
is implemented as a web service. Using such a web service, the agency can quickly
place an order, receive and evaluate the quotes from suppliers. This is subject to
certain regulations, as such the procurement web service must be verified whether it is
compliant with the relevant regulations before it can be deployed. Hence, a process
reflecting the behaviour of a web service can be used to verify the effectiveness of the
regulations and policy controls.

Governatori and Sadiq (2009) define business process compliance as the rela-
tionships between the formal specifications of a business process and the formal
specifications of a set of normative constraints, where a process is compliant if the
specifications of the processes do not violated the constraints formalising the norms.
Accordingly, we have to provide (1) a formal model for the representation of business
processes, (2) a formal model for the representation of the norms and, eventually (3)
a bridging mechanism between the two representations (if they are expressed in two
different formalisms).

In the recent years several works addressed the issue of (regulatory) compliance in
the context of of business process management, service computing and cloud comput-
ing domains (see, Becker et al (2012); Fellmann and Zasada (2014) for recent surveys
of existing approaches). The general idea is to determine whether the constraints
(i.e., norms) imposed by some regulatory framework (ranging from statutory acts, to
regulations, to industry standards, to best practices and internal policies) are met by
some systems.

1The US government. Sarbaes-Oxley Act, Public Law 107-204, 116 Stat. 745, 2002.
2Banking Committee on Banking Supervision (SCBS), BASEL-II Accord, 2004.
3ISO-9000: http://www.iso.org/iso/home/standards/management-standards/iso_

9000.htm

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 3

Regardless how good and feasible these approaches may be, to the best of our
knowledge, the majority of the approaches neglect the aspect of whether the method
they propose offers a faithful representation of the norms and it is suitable to reason ap-
propriately with the norm. A non faithful representation of and inappropriate reasoning
with the norm can have significant impact on the effectiveness of an approach.

The aim of this paper is to offer a formal foundational framework to evaluate the
ability of a compliance framework to representing the norms a system has to comply
with.

The structure and properties of norms have been extensively studied in the fields
of Law and Legal Reasoning, Artificial Intelligence, and Deontic Logic (see, Sartor
(2005) for a comprehensive treatment with a formal and legal theory perspective).
In this paper, we concentrate on an aspect that, so far, has been left implicit or was
captured in a procedural way by research on business process compliance, namely the
description of the meaning of norms, or more precisely, of the effects of norms, in
terms of business processes.

Since norms prescribe the conditions under which they are applicable and the
effects when they are applied, a norm may be applicable for a certain period of
time i.e., the duration when a norm enters into force and until when it is terminated.
Hence no matter which process aspects a norm may be applicable to, norms can be
classified according to their temporal aspect of validity and obligations arising from
the violations of other norms. In this paper, we study the normative component of
business process compliance and proposed an abstract formal framework comprising
a classification of norms and formal semantics. In the classification, we examines
various types of norms that can be imposed on different aspects of business processes
in terms of temporal validity of a norms; and effects of violations on norms. Also,
we examine how these norms can be modeled in a formal way. Our intention is not
to propose yet another compliance checking framework but provide a conceptually
rich foundation for the norms for legal component of the compliance problem. For
this purpose, we provide formal semantics in terms of states determining the temporal
validity, what constitutes a violation, effects of violations on other norms a process
driven SOA system may be subject to, and the possible ways in which a business
process can be executed.

The contribution of the paper is threefold:

Classification Model: The first contribution is a classification model for normative
requirements. The classification has been obtained in a systematic and exhaustive
way and provides a rich ontology of the various obligations modalities.

Formal Semantics: The second contribution is a formal semantics for norms (obliga-
tions) in terms of validity of a norm, what constitutes a violation of a norm and
effects of the violations. The provided semantics are modelled independent of any
specific formalism; and provide the basis for compliance checking approach.

Conceptual Evaluations: The last contribution is a conceptual evaluation of business
process compliance frameworks using the classification model for normative
requirements presented in Section 3. In the conceptual evaluation, we examined
whether or not the existing frameworks provide support for all types of normative
requirements proposed in our classification model.

4 Mustafa Hashmi et al.

The rest of the paper is organised as follows: next we provide formal foundations
of business processes and workflow-nets (hereafter WF-nets) followed by a discus-
sion (Section 3) on various types of normative requirements together with concrete
examples from real-life legal documents. Then a complaint handling process as case
study (Section 4) is discussed after which an illustration of the approach on how
the compliance checking of the business processes can be carried out together with
an evaluation based on the set of normative requirements is given (Section 5). A
conceptual evaluation (Section 6) of the selected compliance management frameworks
evaluated based upon an evaluation criteria highlights the major shortcomings of
existing frameworks, and some previous studies (Section 7) have been discussed. In
the last Section we give closing remarks and some pointers for future work.

2 Formal Foundations of Business Processes

As we have discussed in the previous section business process compliance require a
formal model of the relevant business processes and a formal model of the relevant
norms. In this section, we provide formal definitions of processes annotated with
compliance requirements. In Section 3 we complete the picture by providing a formal
model of norms based on the notions to be defined in this section. This would provide
both the model of norms and the bridge between the formalisation of processes and
that of norms. The final aim is to show the evolution of system or the environment in
which a system operates, and check that the resulting states (and intermediate states)
are compatible with the norms. In this section we show how to start from the notion
of business process model to describe the sequences of states corresponding to the
execution of the process. In the next section we use sequences of states to provide the
semantics of different classes of norms, and to provide the defintions of what it means
to comply with a norm, and to violate a norm.

Compliance is related to the behaviour of a process, that is, whether it is possible to
correctly execute a business process. Compliance is not only about the the actions (i.e.,
tasks) undertaken during the execution of a process but also about their artefacts, and
how the actions change the environment in which a process is situated. To capture this,
we adopt the idea proposed by Sadiq et al (2007) and enrich processes by means of
semantic annotations, where an annotation is a formula in a formal language encoding
an effect of a task. Conversely business processes only provide an abstract view that
how the activities are performed, what activities (tasks) do in the process remains
unclear in particular what effects are produced by a task at a particular state (or between
states) when executed. Since business processes can be modeled by means of transition
systems using various modeling languages, we adopt Petri-net based workflow-nets as
a transition system to generate different states (traces) and subsequently semantically
annotate these states with relevant information to know the state of affairs of the
process execution.

In this paper, we make use of workflow-nets (WF-nets) as defined by van der Aalst
(2000), a subclass of Petri nets (Murata, 1989), to represent a business process. The
Definitions 1–4 are necessary to formally define a WF-Net and its behaviour. For other
representations of a business process one can directly start from Definition 5 and the

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 5

rest of the definitions in this section can be easily modified for other representations
of a business process.

Definition 1 (Petri net) A Petri net is a tuple PN = (P,T,F) where P is the set of
places, T is the set of transitions, P∩T = /0 and F ⊆ (P×T)∪ (T ×P) is the flow
relation.

A Petri net is a collection of two types of nodes: places and transitions. Arcs connect
one type of node to the other. For a node x ∈ (P∪T), •x denotes the set of inputs to
x and x• denotes the set of outputs of x. The state of a Petri net is represented by a
marking that describes the number of tokens in each place of a net.

A workflow-net (WF-net) is defined as a subclass of Petri net with the following
structural restrictions (van der Aalst, 1998): there is exactly one source place and
exactly one end place and every node in the graph is on a direct path from the source
place to the end place.

Definition 2 (WF-net) Given a Petri net N = (P,T,F), the net N is a WF-net if and
only if:

1. there is one source place i ∈ P such that •i = /0.
2. there is one sink place o ∈ P such that o•= /0.
3. every node x ∈ P∪T is on a path from i to o.

Definition 3 (Enabling and Firing Rules of a WF-net) Given a WF-net N=(P,T,F),
a transition t ∈ T and a marking M of N, t is enabled at M, denoted as M[t〉, if and
only if, there is at least one token each in all p ∈ •t. If M[t〉 holds and transition t is
fired, a new marking M′ of N is reached, which removes a token from each p ∈ •t and
puts a token in each p ∈ t•. This is denoted as M t→M′.

Definition 4 (Occurrence Sequence) Given a WF-net N = (P,T,F) and markings
M,M1, . . . ,Mn of N, if M

t1→M1
t2→ ··· tn→Mn holds then σ = 〈t1, t2, . . . , tn〉 is an occur-

rence sequence leading from M to Mn.

The initial marking of a WF-net is i, where there is one token in the source place i,
and the end marking of a WF-net is o. A trace in a WF-net represents an occurrence
sequence from the initial marking i to the end marking o.

Definition 5 (Labeled WF-net) A labelled WF-net N =(P,T,F, l) is a WF-net (P,T,F)
with some labelling function l ∈ T 9UA, where UA is some universe of activity labels.
Let σv = 〈a1,a2, . . . ,an〉 ∈UA

∗ be a sequence of activities and M,M′ be two markings
of N. M[σv .M′ if and only if there is a sequence σ ∈ T ∗ such that M[σ〉M′ and
l(σ) = σv.

With this definition we only have the visible and labelled transitions in the net. For a set
of traces of a WF-net T+(N), T+ = {σΘ |i[σΘ 〉o} is the set of all visible traces in the
net, where Θ = {σ1,σ2, . . . ,σn} is a set of all occurrence sequences. The idea behind
the notion of a labelled WF-net is that a trace of visible transitions corresponds to a
possible execution sequence of the process, where the visible transitions correspond to
the tasks executed by the process. One may, however, argue that there might some other

6 Mustafa Hashmi et al.

(invisible) traces that may still affect the compliance checking of a business process
model. However, invisible traces may consist of tasks representing invisible actions.
These invisible actions are used for routing purposes only and may not represent any
task from a business point of view (Gambini et al, 2011; Wen et al, 2010). In contrast,
we use visible traces because tasks in a trace represent some activity and may have
significance from a business perspective. Also, some literals representing obligations
might be associated to the tasks of a trace. Hence for compliance checking, we limit
our attention to visible traces only.

Next, we look at how a WF-net can be annotated with compliance requirements.
We begin with the definition of the language.

Definition 6 (Literal) Let A be the set of all atomic propositions. The set of literals
is L= {a,¬a|a ∈ A}.

In the rest of the paper we concentrate on consistent set of literals, where a consistent
set of literals can be understood as either a (partial) interpretation (i.e., an assignment
of truth value) or equivalently a (partial) description of a state.

Definition 7 (Consistent Set) A set of literals L is consistent if and only if L does
not contain any pair of literals l,¬l.

The next step is to enable a process to have states attached to the tasks depending on
which trace they appear in.

Definition 8 (Annotation) Let N be a WF-net and T+ be the set of visible traces of
N. An annotation Ann is a function Ann : T+×N 7→ 2L such that for every t ∈ T+

and every n ∈ N, Ann(t,n) is a consistent set of literals.

The idea of the above definition is that Ann(t,n) returns the state obtained after the
execution of the n-th task (visible transition) in the (visible) trace t.

Definition 9 (Annotated WF-net) An annotated WF-net is a pair (N,Ann), where
N = (P,T,F, l) is a labelled WF-net, and Ann is an annotation function.

Next, we illustrate the concepts behind the definitions presented in this section
with a small example. As stated earlier, a process can be represented using any
process modelling language (e.g., Business Process Modelling Notation (BPMN),
Event Process Chains (EPC) etc.). Such a process model can be transformed into
a Petri net/WF-net by making use of translation rules as shown in Dijkman et al
(2008); Ouyang et al (2006, 2009). Figure (1b) shows a simple BPMN process (with
AND/XOR splits and joins) and its corresponding WF-net. Now, consider the abstract
BPMN model in Figure (1a) as an emergency evacuation process with compliance
requirements. Let’s assume that Task A is ‘sound alarm’, task B is ‘alert people’,
task C is ‘inform fire services’, task D is ‘contain fire’ and task E is ‘evacuate place’.
Assuming that semantic annotations are written in some language, we consider the
annotations consisting of two propositions: p meaning ‘the alarm has sounded’ and q

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 7

Sound
Alarm

Alert
People

Inform
Fire

Serivces

Contain
Fire

Evacuate
Place

Start

A

B

C

D

E End

(a) BPMN Model

Source

A

B

C

D

E

Sink

(b) WF-Net

Fig. 1 Tranformation of the BPMN Model into an equivalent WF-Net

meaning ‘a small fire to contain’. Four possible traces of this process are as follows:

t1 : 〈A,B,C,D,E〉,
t2 : 〈A,C,B,D,E〉,
t3 : 〈A,C,B,E〉,
t4 : 〈A,B,C,E〉.

After the execution of task A, we have the state ‘alarm has sounded’ which can be
represented as

Ann(t1,1) = Ann(t2,1) = Ann(t3,1) = Ann(t4,1) = {p}

for all traces. After executing the next two tasks B and C, also common to all traces, it
is possible to have different annotations for these traces. For example, in traces t1 and
t2, we reach

Ann(t1,3) = Ann(t2,3) = {p,q}.
In contrast, we reach the following state for t3 and t4,

Ann(t3,2) = Ann(t4,3) = {p,¬q}.

In t1 and t2, we check whether the fire is small enough that it can be contained (task
D) before evacuating (task E); otherwise we directly evacuate (task E) in t3 and t4. It
can be seen that the information we have after the execution of tasks B and C varies
depending on the trace being examined. For example from trace t1 we know that the fire
is small enough and it is possible to contain the fire represented as Ann(t1,4) = {p,q}.

8 Mustafa Hashmi et al.

In contrast, trace t3 informs us that it is not possible to contain the fire thus we have to
evacuate, i.e., Ann(t3,4) = {p,¬q}.

Note that different states can be obtained from different traces although the same
tasks were being executed and the same end state can be reached from different traces.
However, each visible trace uniquely determines the sequence of states obtained by
executing the trace. Thus, in what follows whenever clear from the context, we use the
term trace to refer to a sequence of tasks, and the corresponding sequence of states.

Remark 1 It is not the scope of this paper to describe how the sequences of states
corresponding of the execution of a process are obtained. The task of specifying how
the annotation function Ann is implemented is left to specific compliance applications.
However, one can use the update semantics approach described in Ghose and Koliadis
(2007) or by using the Event-Calculus (EC) to model the inertia of effects from a task
to the next one as demonstrated in Goedertier and Vanthienen (2006) or by using the
I-propagation approach for logical state representation described in Governatori et al
(2008); Hoffmann et al (2012).

For example, if we take the process in Figure 1a and Event-Calculus tasks can
be represented by events, and propositions by fluents. Accordingly, the effect that p
(‘the alarm has sounded’) holds after the execution of task A (‘to sound alarm’) can
be represented by the domain specific axiom initiates(p,A,T), meaning the event A
initiates the fluent p at time T . The same correlation can be modelled by the formula
A→ XGp, where X and G are the next and always operators of Linear Temporal Logic.

3 Normative Requirements

The scope of norms is to regulate the behaviour of their subjects and to define what is
legal and what is illegal. Norms typically describe the conditions under which they are
applicable and the normative effects they produce when applied. Gordon et al (2009)
provide a comprehensive list of normative effects. From a compliance perspective, the
normative effects of importance are the deontic effects. The basic deontic effects are:
obligation, prohibition and permission.4

Let us start by considering the basic definitions for such concepts:5

Obligation: A situation, an act, or a course of action(s) to which a bearer is legally
bound, and if it is not achieved or performed results in a violation.

Prohibition: A situation, an act, or a course of action(s) which a bearer should avoid,
and if it is achieved results in a violation.

Permission: Something is permitted if the obligation or the prohibition to the contrary
does not hold.

Figure 2 illustrates the classification of the three basic deontic effects and the rela-
tionship between such effects and the notions of compensation and violation. The

4There are other deontic effects, but these can be derived from the basic ones, see (Sartor, 2005).
5Here we consider the definition of such concepts given by the OASIS LegalRuleML working

group. The OASIS LegalRuleML glossary is available at http://www.oasis-open.org/apps/org/
workgroup/legalruleml/download.php/48435/Glossary.doc.

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 9

classification has been obtained by considering the validity of obligations (or prohibi-
tions), and the effects of violations on them. Such considerations include whether a
violation can be compensated for and whether an obligation persists after being vio-
lated. Obligations and prohibitions are constraints that limit the behaviour of processes.

violated oblig
may/may

not perdure

OBLIGATION/
PROHIBITION

Non-persistent Punctual

Persistent

Maintenance

Achievement

Non-preemptive

Preemptive

PERDURANCE

Non-perdurant

Perdurant

COMPENSATION

Non-compensable

Compensable

Violation

is type of

Normative
Requirements

PERMISSION

is type of

is type of
can be
violated

may/may not
compensated

no oblig/prohib
holds

cannot be
violated

can be
violated

Fig. 2 Normative Requirements: Classes and Relationship

The difference between obligations and prohibitions and other types of constraints is
that they can be violated. On the other hand, permissions are constraints that cannot
result in a violation and thus, permissions do not play a direct role in compliance.
Instead, they can be used to determine that there are no obligations or prohibitions to
the contrary, or to derive other deontic effects. Governatori (2014) gives a normative
scenario where some deontic effects enter in force depending whether a permission is
in force or not.

Legal reasoning and legal theory typically assume a strong relationship between
obligations and prohibitions: the prohibition of A is the obligation of ¬A (the opposite
of A), and then if A is obligatory, then ¬A is forbidden (Sartor, 2005). In this paper we
will subscribe to this position, given that our focus here is not on how to determine
what is prescribed by a set of norms and how to derive it. Accordingly, we can restrict
our analysis to the notion of an obligation.

10 Mustafa Hashmi et al.

Compliance means to identify whether a process violates a set of obligations or
not. Thus, the first step is to determine whether and when an obligation is in force.
Hence, an important aspect of the study of obligations is to understand the lifespan of
an obligation and its implications on the activities carried out in a process. As we have
alluded to above, norms give the conditions of applicability of obligations. The next
question is how long does an obligation hold for. A norm can specify that an obligation
is in force at a particular time point only, or more often, a norm indicates when an
obligation comes in force. An obligation is considered to remain in force until it is
terminated or removed. Accordingly, in the first case we will speak of non-persistent
obligations and persistent obligations in the second.

If a persistent obligation needs to be obeyed for the whole duration within the
interval in which it is in force, it is categorised as a maintenance obligation. If
achieving the content of the obligation at least once is enough to fulfil it, then it is
considered an achievement obligation. For an achievement obligation, another aspect
to consider is whether the obligation could be fulfilled even before the obligation is
actually in force. If this is allowed, then we have a preemptive obligation, otherwise
the obligation is a non-preemptive obligation. In contrast, a non-persistent obligation
needs to be obeyed for the instance it is in force, and categorised as a punctual
obligation. For punctual obligations the obligation contents are immediately achieved
otherwise a violation is triggered.

An obligation of any type can be violated. A violation does not always imply the
consequent termination of or impossibility to continue a business process. Certain
violations can be compensated for, and processes with compensated violations are
still compliant Governatori and Sadiq (2009). For example, contracts typically contain
compensatory clauses specifying penalties and other sanctions triggered by breaches
of contract clauses (Governatori, 2005). However, not all violations are compensable,
and uncompensated violations mean that a process is not compliant. The effects of a
violation on the obligation that has been violated also need to be considered. If the
obligation persists after being violated, it is considered a perdurant obligation, if it
does not, then we have a non-perdurant obligation.

Next, formal definitions for these notions are provided together with examples
taken from Acts and other legally binding documents.

3.1 Modelling Obligations

In this section we provide the formal definitions underpinning the notion of compliance.
In particular we formally define the different types of obligations depicted in Figure 2
in relation to traces of business processes. In this way the definitions given below
provide semantics of the normative requirements in terms of business processes.

Definition 10 (Obligation in force) Given a WF-net N, let T+ be the set of visible
traces of N. We define a function l : T+×N 7→ 2L.

The function l associates to each task in a trace a set of literals, where these literals
represent the obligations in force for that combination of task and trace. These are
among the obligations that the process has to fulfil to comply with a given normative

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 11

framework. For example, l(t,3) = {p,q} specifies that p and q are obligatory in the
third task of trace t.

In the rest of the section we are going to give definitions specifying when a process
has to fulfil the various obligations (depending on their type) to be deemed compliant.

Remark 2 Similar to Remark 1 we are not interested in the mechanisms that establish
which obligations are in force and when. This is the scope of specific compliance
applications or implementations.

Definition 11 (Punctual Obligation) Given a WF-net N and a visible trace t ∈ T+,
an obligation o is a punctual obligation in t if and only if

∃n ∈ N : o /∈ Force(t,n−1), o /∈ Force(t,n+1),o ∈ Force(t,n).

The obligation o is in force at n in t. A punctual obligation o in force at n in t is
violated if and only if o /∈ Ann(t,n).

1
t

n−1

n

n+1 z

o ∈ Force(t,n)

o /∈ Ann(t,n)
violation of o

Diagram 3.1 Punctual Obligation

Diagram 3.1 illustrates the nature of a punctual obligation.
A punctual obligation o (represented as a literal) is in force on one task n in a trace

t, i.e., o ∈ Force(t,n). Notice it might be the case that there are multiple instances
in which the obligation is force. The obligation is violated if what the obligation
prescribed is not achieved in or by the task when the obligation enters into force where
this is represented by the literal not being in the set of literals associated to the task in
the trace, i.e., o /∈ Ann(t,n) as shown in the diagram.

Definition 12 (Persistent Obligation) Given a WF-net N and a visible trace t ∈ T+,
an obligation o is a persistent obligation in t if and only if

∃n,m∈N : n<m,o /∈Force(t,n−1),o /∈Force(m+1),∀k : n≤ k≤m,o∈Force(t,k)

The obligation o is in force between n and m.

A persistent obligation is an obligation in force in an interval (a contiguous set) of
tasks in a process. Diagram 3.2 depicts the definition where a persistent obligation o is
in force between n and m at k− th task.

A persistent obligation can be further classified as achievement and maintenance
obligations. The violation conditions for a persistent obligation can be derived from
the violation conditions of these subclasses.

12 Mustafa Hashmi et al.

t
1 n−1

o /∈ Force(t,n−1)

n m m+1

o /∈ Force(t,m+1)

z

o ∈ Force(t,k)

k

Diagram 3.2 Persistent Obligation

Definition 13 (Achievement Obligation) Given a WF-net N and a visible trace t ∈
T+, an obligation o is an achievement obligation in t if and only if ∃n,m ∈ N,n < m
such that o is a persistent obligation in force between n and m.

An achievement obligation o in force between n and m in t is violated if and only
if

(a) o is pre-emptive and ∀k : k ≤ m, o /∈ Ann(t,k);
(b) o is non-preemptive and ∀k : n≤ k ≤ m, o /∈ Ann(t,k).

An achievement obligation is in force in a contiguous set of tasks in a trace. The
violation depends on whether we have a preemptive or a non-preemptive obligation.
For a preemptive obligation o we have a violation if no state before the last task in
which o is in force has o in its annotations.

Diagram 3.3 depicts the definition of a preemptive obligation in force at task k in
a set of contiguous tasks between n and m, where m is the task when the obligation
enters in force, and m is the deadline by when the obligation has to be discharged.
The obligation o is violated if o does not in the annotations associated to all tasks
preceding m. Notice that a preemptive obligation can be complied with even before
the obligation is in force. Thus, one might ask why owe bother with the task when the
obligation enters in force. The reasons is that having (or not having) an obligation at a
particular time could be the trigger of other deontic effects.

t
1 n−1

o /∈ Force(t,n−1)

n m m+1

o /∈ Force(m+1)

z

o ∈ Force(t,k)

o /∈ Ann(t,k) violation of o

k

Diagram 3.3 Preemptive Obligation

For a non-preemptive obligation, the set of states one has to consider for determin-
ing whether the obligation has been violated is limited to those defined by the interval
in which the obligation is force, see the pictorial representation of the non-preemptive
case in Diagram 3.4.

Example 1 Australian Telecommunications Consumers Protection Code 2012 (TCPC
2012). Article 8.2.1.
A Supplier must take the following actions to enable this outcome:

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 13

t
1 n−1

o /∈ Force(t,n−1)

n m m+1

o /∈ Force(t,m+1)

z

o ∈ Force(t,k)

o /∈ Ann(t,k) violation of o

k

Diagram 3.4 Non-Preemptive Obligation

(a) Demonstrate fairness, courtesy, objectivity and efficiency: Suppliers must
demonstrate, fairness and courtesy, objectivity, and efficiency by:
(i) Acknowledging a Complaint:

A. immediately where the Complaint is made in person or by telephone;
B. within 2 Working Days of receipt where the Complaint is made by email;

. . . .

The obligation to acknowledge a compliant made in person or by phone (8.2.1.a.i.A)
is a punctual obligation, since it has to be done ‘immediately’ while receiving it (thus
it can be one of the activities done in the task ‘receive complaint’). 8.2.1.a.i.B on the
other hand is an achievement obligation since the clause gives a deadline to achieve
it. In addition it is a non-preemptive obligation. It is not possible to acknowledge a
complaint before having it.

Next we give the examples illustrating the cases of preemptive obligations.

Example 2 Anti-Money Laundering and Counter-Terrorism Financing Act 2006.
Clause 54 (Timing of reports about physical currency movements).

(1) A report under Section 53 must be given:
(a) if the movement of the physical currency is to be effected by a person bringing

the physical currency into Australia with the person—at the time worked out
under subsection (2); or

[. . .]
(d) in any other case—at any time before the movement of the physical currency

takes place.

Clause (d) in this example describes that the preemptive obligation enters into force
when a financial transanction happens, and the clause explicitly requires the report to
be submitted to the relevant authority before the actual transaction (phyiscal movement
of the currency) occurs. Notice that in some situations it might be the case that the
transaction never occurres.

Example 3 Australian National Consumer Credit Protection Act 2009. Schedule 1,
Part 2, Section 20: Copy of contract for debtor.

(1) If a contract document is to be signed by the debtor and returned to the credit
provider, the credit provider must give the debtor a copy to keep.

(2) A credit provider must, not later than 14 days after a credit contract is made, give
a copy of the contract in the form in which it was made to the debtor.

14 Mustafa Hashmi et al.

(3) Subsection (2) does not apply if the credit provider has previously given the debtor
a copy of the contract document to keep.

While clause (3) in this example prescribes preemptive obligation in the sense that it
requires that a copy of the contract document is given to debtor but the obligation is
fulfilled if the creditor provided a copy of the contract document earlier under clauses
(2) of the section.

Definition 14 (Maintenance Obligation) Given a WF-net N and a visible trace t ∈
T+(N), an obligation o is a maintenance obligation in t if and only if ∃n,m∈N,n < m
such that o is a persistent obligation in force between n and m.

A maintenance obligation o in force between n and m in t is violated if and only if

∃k : n≤ k ≤ m,o ∈ Ann(t,k).

The following Diagram 3.5 illustrates the notion of a maintenance obligation.

t
1 n−1

o /∈ Force(t,n−1)

n k m m+1

o /∈ Force(t,m+1)

z

o ∈ Force(t,k)

o /∈ Ann(t,k)
violation of o

Diagram 3.5 Maintenance Obligation

Similar to an achievement obligation, a maintenance obligation is in force in an
interval. The difference is that the obligation has to be complied with for all tasks in
the interval, otherwise we have a violation. Another difference is that deadlines are not
required to detect the violation of maintenance obligations whereas for achievement
obligation violations are detected at deadlines (Hashmi et al, 2014).

Example 4 TCPC 2012. Article 8.2.1.
A Supplier must take the following actions to enable this outcome:

(v) not taking Credit Management action in relation to a specified disputed amount that
is the subject of an unresolved Complaint in circumstances where the Supplier is
aware that the Complaint has not been Resolved to the satisfaction of the Consumer
and is being investigated by the Supplier, the TIO or a relevant recognised third
party;

In this example, as it is often the case, a maintenance obligation implements a prohibi-
tion. Specifically, it describes the prohibition to initiate a particular type of activity
until either a particular event takes place or a state is reached. As in the above example,
Telcos operators are prohibited to take credit management actions until a resolution of
the complaint to the satisfaction of the customer is reached. The state where a credit
management action does not occur must be maintained for all situations described by
the norm until a resolution occurs.

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 15

The next three definitions are meant to capture the notion of compensation of a
violation (see Diagram 3.6). The idea is that a compensation is a set of penalties or
sanctions imposed on the violator, and fulfilling them makes amends for the violation.
The first step is to define what a compensation is. A compensation is a set of obligations
in force in response to a violation of an obligation (Definitions 15 and 16). Since
the compensations are obligations themselves they can be violated, and they can be
compensable as well, thus we need a recursive definition for the notion of compensated
obligation (Definition 17).6

Definition 15 (Compensation) A compensation is a function Comp : L 7→ 2L.

Definition 16 (Compensable Obligation) Given a WF-net N and a visible trace
t ∈ T+(N), an obligation o is compensable in t if and only if Comp(o) 6= /0 and
∀o′ ∈ Comp(o),∃n ∈ N : o′ ∈ Force(t,n).

Definition 17 (Compensated Obligation) Given a WF-net N and a visible trace
t ∈ T+(N), an obligation o is compensated in t if and only if it is violated and for
every o′ ∈ Comp(o) either:

1. o′ is not violated in t, or
2. o′ is compensated in t.

Diagram 3.6 illustrates the notion of compensation. Assume that o is a compensable
obligation in force in the interval delimited by n and m. Suppose the obligation is
violated at d (say a deadline). The violation of the obligation triggers the entrance in
force of the obligation(s) compensating the violation of o. In the diagram o′ is one
of compensations of o (since it belongs to Comp(o)), and it enters in force after d.
Besides being a compensation of o′ is just another obligation, thus it has the properties
of the class of obligations it belongs to.

1 n−1 n d m m+1 z

o ∈ Force

o′ ∈ Force
o′ ∈Comp(o)

violation of o

Diagram 3.6 Compensation Obligation

For a stricter notion, i.e., a compensated compensation does not amend the viola-
tion the compensation was meant to compensate, we can simply remove the recursive
call, thus removing condition 2 from definition 17.

Compensations can be used for two purposes: to specify alternatives (i.e., less
ideal outcomes) or to capture sanctions and penalties. Examples 5 and 6 illustrate
these two usages respectively.

6Notice that we took the most general definition by not imposing any temporal requirements for the
compensation, thus the compensation could even precede the violation. Consider the natural language
expression: “I apologise in advance for . . . ”.

16 Mustafa Hashmi et al.

Example 5 TCPC 2012. Article 8.1.1.
A Supplier must take the following actions to enable this outcome:

(a) Implement a process: implement, operate and comply with a Complaint handling
process that:
(vii) requires all Complaints to be:

A. Resolved in an objective, efficient and fair manner; and
B. escalated and managed under the Supplier’s internal escalation process if

requested by the Consumer or a former Customer.

Example 6 YAWL Deed of Assignment, Clause 5.2.7

Each Contributor indemnifies and will defend the Foundation against any claim,
liability, loss, damages, cost and expenses suffered or incurred by the Foundation as a
result of any breach of the warranties given by the Contributor under clause 5.1.

Clause (B) of Example 5 and Example 6 respectively illustrate the case of compen-
sation obligation. Clause (B) of Example 5 prescribes that a complaint should be
escalated or managed under the Supplier’s process if a complaint is not resolved as per
the conditions of clause (A) of the section, allowing the customers to request for the
escalation of their complaints thus compensates the violation of clause (A); in this case
the compensation captures a behaviour the while not ideal it is still acceptable. While
the obligation in Example 6 mandates the Contributes to compensate the Foundation
for (negative) consequences incurred by the Foundations in case the conditions in
clause 5.1 are violated. In this case the compensation imposes a sanction or a penalty.

The final definition is that of a perdurant obligation. The intuition behind it is that
there is a deadline by when the obligation has to be fulfilled. If it is not fulfilled by the
deadline then a violation is raised, but the obligation is still in force. Typically, the
violation of a perdurant obligation triggers a penalty, thus if the perdurant obligation
is not fulfilled in time, then the process has to account for the original obligation as
well as the penalties associated with the violation.

Definition 18 (Perdurant Obligation) Given a WF-net N and a visible trace t ∈
T+(N), an achievement obligation o is a perdurant obligation in t with a deadline d if
and only if o is in force between n and m and n < d < m.

A perdurant obligation o with deadline d in force between n and m is violated in t
if and only

∀ j, j ≤ d,o /∈ Ann(t,d)

Diagram 3.7 illustrates the notion of a perdurant (preemptive achievment) obligation.
The obligation o is a perdurant with a deadline d is in force between n and m. o is not
in Ann(t,x) for all tasks x before d (d included). Thus we have a violation. Despite
this the obligation remains in force till m. This means that the process still has to
achieve o to be compliant (typically, in addition to compensations for the violation of
the obligation).

7http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf, retrieved
on March 28, 2013.

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 17

t
1 n−1

o /∈ Force(t,n−1)

nd m m+1

o /∈ Force(t,m+1)

z

o ∈ Force(t,y)

violation of oo /∈ Ann(t,x)

Diagram 3.7 Perdurant Obligation

Remark 3 Definition 18 only describes the perdurant obligation for preemptive achieve-
ment obligations. Simple adjustments can be made to model a similar notion for
non-preemptive and maintenance obligations.

Consider again Example 1. Clauses TCPC 8.2.1.a.i.A and 8.2.1.a.i.B state what are
the deadlines to acknowledge a complaint, but 8.2.1.a.i prescribes that complaints have
to be acknowledged. Thus, if a complaint is not acknowledged within the prescribed
time then either clause A or B is violated, but the supplier still has the obligation to
acknowledge the complaint. Thus the obligation in clause (i) is a perdurant obligation.

3.2 Business Process Compliance

The set of (visible) traces of a given business process describes the behaviour of the
process insofar as it provides a description of all possible ways in which the process
can be correctly executed. Accordingly, for the purpose of defining what it means for
a process to be compliant, we will consider a process as the set of its (visible) traces.

Intuitively a process is compliant with a given set of norms if it does not violate
the norms. Given that, in general, it is possible to perform a business process in many
different ways, thus we can have two notions of compliance, namely:

A process is (fully) compliant with a normative system if it is impossible to
violate the norms while executing the process.

The intuition about the above condition is that no matter in which way the process is
executed, its execution does not violates the normative system. For the second one,
we consider the case that there is an execution of the process that does not violate the
norms.

A process is (partially) compliant with a normative system if it is possible to
execute the process without violating the norms.

Based on the above intuition we can give the following definitions. We first define
when a trace is compliant, and then extend that notion to cover a process.

Definition 19 (Compliant Trace) Given a WF-net N and a trace t in T+. Let O(t)
be the set of obligations in force in t, i.e., O(t) =

⋃
n∈N Force(t,n).

1. A trace t is strongly compliant if and only if no obligation o ∈ O(t) is violated in t.
2. A trace t is weakly compliant if and only if every violated obligation o ∈ O(t) is

compensated in t.

18 Mustafa Hashmi et al.

Definition 20 (Compliant Process) Let N be a WF-net.

1. N is fully compliant if and only if every trace t ∈ T+ is compliant.
2. N is partially compliant if and only if there exists a compliant trace t ∈ T+.

Notice that a refinement of Definition 20 is possible. Thus we can distinguish between
strongly and weakly compliant processes. This is simply achieved by passing the
strongly/weakly parameter to the traces. For example a process is strongly compliant
if all its visible traces are strongly compliant.

The definitions (Definitions 10–20) given in this section (apart from Definition 20)
can be used across the entire life-cycle of a process: design-time, run-time and log
analysis. As we pointed out in Remarks 1 and 2 the states and obligations in force have
to be determined by compliance applications and implementations. For example, the
annotations associated to a task at run-time or log-analysis will be obtained from the
running instance or extracted from the log and the data sources related to the process,
while at design-time such information can be provided by business analysts or obtained
from the schemas of the databases and data sources linked to the process (Hashmi
et al, 2012).

Definition 20 can be used at design time in what is called compliance-by-design
proposed by Sadiq et al (2007); Governatori and Sadiq (2009), i.e., verifying before
deploying a process that the process complies with given regulations. Clearly, the
definition is not suitable for checking compliance at run-time (also called conformance)
or auditing (log analysis), since it is possible that some of the possible visible traces
are never executed (run-time) or were not executed (auditing). For these two cases one
has to use Definition 19 instead applied to the executed traces, and to the traces of
instances of a process recorded in a log.

4 Running Example: A Complaint Handling Process

In this section we give a short description of the scenario we are going to analyse in
details in Section 5 to illustrate the how definitions given in Section 3 can be used to
check whether a business process complies with a particular normative framework.
The scenario is inspired by the internal complaint handling policy8 from the Land and
Property Management Authority (LPMA), New South Wales, Australia. In particular
we describe a complaint handling process we designed to satisfy the a number of dif-
ferent types of compliance requirements obtained from the internal policy document,
see Table 1. The first column shows the rule ID. The natural language description,
the specific obligation type and deontic effects it may produce are given in the sec-
ond column. Rule R1, for example, is a non-preemptive, non-perdurant achievement
obligation [OANPP], rule R1 describes that any received complaint must be resolved
at the earliest opportunity. Accordingly, the deontic effect (or obligation in force)
for any received complaint for R1 is the obligation resolve_complaint. Whereas R4
specifies that all the received complaint must be acknowledged for which two options

8The policy document is available on the LPMA website: http://www.lpma.nsw.gov.au/__data/
assets/pdf_file/0004/25663/rth_Ch26_Aug_2009.pdf

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 19

are provided: (1) immediately acknowledge complaint received in person or by a
phone and (2) within two working days for a written complaint. Rule R4 stipulates two
different obligations i.e., a punctual non-preemptive, perdurant obligation [OPNPP]
for (1) and a non-preemptive, perdurant achievement obligation [OANPP] for (2)
respectively. The deontic effect R4 produces is to acknowledge a received complaint,
see Table 1 for the description, types and deontic effects of the rules related to the
complaint handling process.

Figure 3 depicts the overview of the procedure followed to resolve a complaint
as a BPMN process model. According to the policy guidelines, the first step in the
process is to determine whether the received complaint is an oral complaint or a written
complaint. If it is an oral complaint, a staff member will identify himself and details
are gathered from the complainant before proceeding with the complaints handling
process. The staff member then verifies whether the received complaint meets the
requirements of a legitimate complaint as defined in Section 9 of the policy. If the
received complaint does not meet the definition of a complaint, alternative dispute
procedures are adopted (which is out of the scope of this process). After a complaint
has been determined as a legitimate complaint, the staff member must decide whether
(s)he has the appropriate authority to handle the complaint. If the staff is deemed to
have the authority, then the complaint will go though the complaints handling process
with the staff as its handler. Otherwise, the complaint is referred to an authorised staff
and the complainant is informed. The authorised staff explains the process and the
available options and attempts to resolve the compliant straight away if it is an oral
complaint. If the complaint is resolved, then the complaint is logged as resolved and
the complainant is informed about the decision.

For a written complaint, an authorised staff will confirm the process within two
working days. A complaint is escalated to a senior staff if it cannot be resolved or the
complainant is not satisfied or if the staff decides that it needs to be escalated. While
the complaint is being investigated, the complainant is being kept informed. When a
decision has been reached, the complainant is informed about the decision. When the
complainant is satisfied with the decision, the complaint is closed off and archived.

5 Compliance Checking Approach

Generally compliance rules are written in natural language (c.f. those that can be
found in legal documents or policy documents). To enable automatic compliance
checks, these rules need to be formalised in a machine-readable format. In addition,
at the same time we need a machine-readable representation of processes and what
the processes do in the various steps (and the states that would be generated by the
processes when executed). Hence given a business processes and a set of norms (or
compliance rules), checking whether a business process is compliant with the set of
norms amounts to the following operations:

1. To determine the deontic effects (and their type) of the set of norms;
2. For each task in each trace of the process:

(a) to determine what is the state corresponding to the task, and
(b) to determine what are the obligations in force for the task;

20 Mustafa Hashmi et al.

B

Id
en

ti
fy

yo
ur

se
lf

Ge
t

De
ta

il
s

Ve
ri

fy
co

mp
la

in
t

Us
e
ot

he
r

pr
oc

ed
ur

e

Lo
g
in

to
re

gi
st

er
Ch

ec
k

au
th

or
it

y

Co
nf

ir
m

co
mp

la
in

t

Ex
pl

ai
n

Ha
nd

li
ng

pr
oc

ed
ur

e

Ex
pl

ai
n

po
ss

ib
le

op
ti

on
s

At
te

mp
t
to

re
so

lv
e

Re
fe

r
to

au
th

or
is

ed
st

af
f

Co
nf

ir
m

wi
th

in
2
wo

rk
in

g
da

ys

In
ve

st
ig

at
e

co
mp

la
in

t

Lo
g
as

re
so

lv
ed

Es
ca

la
te

to
se

ni
or

st
af

f

In
fo

rm
co

mp
la

in
an

t

Ke
ep

in
fo

rm
of

pr
og

re
ss

In
fo

rm
de

ci
si

on
s

&
re

as
on

s

Ar
ch

ie
ve

Re
ce

iv
e

Co
mp

la
in

t

T1
T2

T3
T4

En
d

T5
T6

T7
T8

T9
T1

0

T1
3

T1
4

T1
5

T1
1

T1
6

T1
2

T1
7

T1
8

T1
9

En
d

W
ri

tte
n

O
ra

l

Is
it

a
C

om
pl

ai
nt

?

A
ut

ho
ri

se
d

to
re

so
lv

e?

A
ut

ho
ri

se
d

&
O

ra
l

au
th

or
is

ed
&

W
ri

tte
n

un
au

th
or

is
ed

Y
es

N
o

R
es

ol
ve

d?

Y
es N

o

N
ee

d
E

sc
al

at
io

n?

Y
es

N
o

C
om

pl
ai

nt
Sa

tis
fie

d?

No Y
es

Fig. 3 A Complaint Handling Process from LPMA, NSW Australia

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 21

Table 1 The Compliance Requirements of Complaints Handling Process from LPMA, NSW.

Rule ID Policy Description (Compliance Controls/Specifications)
R1 Staff receiving a complaint will aim to resolve it at the earliest opportunity or at least

confirm that complaint will receive attention.
Type: Obligation, Achievement, Non-Preemptive, Non-Perdurant
Deontic Effect: resolve_complaint

R2 Where the client is not satisfied with the initial response to the complaint, they will be given
the option to progress the issues through the formal complaints handling process outlined
in the complaints handling procedure.
Type: Obligation, Achievement, Preemptive, Perdurant)
Deontic Effect: provide_escalation_options

R3 Staff will treat all complaints fairly and impartially, as is their obligation under the code of
conduct.
Type: Obligation, Maintenance, Perdurant
Deontic Effect: treat_fairly

R4 All complaints will be acknowledged:
(1) immediately where complaints are made orally or by phone,
(2) within 2 working days for written complaints.
Type-1: Obligation, Punctual, Non-Preemptive, Perdurant
Type-2: Obligation, Achievement, Non-Preemptive, Perdurant
Deontic Effect: acknowledge_complaint

R5 All complainants kept informed about the progress of the matter, particularly if delays
occur.
Type: Obligation, Achievement, Non-Preemptive, Non-Perdurant
Deontic Effect: inform_progress

R6 Complainants will not be subject to any form of prejudice, lose of services, or be disadvan-
taged in any way as a result of having complained.
Type: Obligation, Maintenance, Perdurant
Deontic Effect: ¬disadvantage

R7 Complaints will be treated with an appropriate level of confidentiality. Information about
complaints will only be shared on a need–to–know basis, both within the agency and
externally.
Type: Obligation, Maintenance, Perdurant
Deontic Effect: ensure_confidentiality

R8 Reasons will be provided for decisions made in relation to complaints received.
Type: Obligation, Achievement, Non-Preemptive, Perdurant
Deontic Effect: provide_reasons

R9 If complaints do not meet the conditions in section 9, the department may set limits or
conditions on the handling of their complaint.
Type: Permission
Deontic Effect: limit_complaint

R10 Unauthorized staff cannot handle complaints (either oral or written).
Type: Prohibition, Maintenance, Perdurant
Deontic Effect: authorized

(c) to check whether the obligations in force have been fulfilled, violated (and
for compensable obligation, whether they have been compensated for) or post-
poned the judgement to the next task in the trace, according to the semantics
presented in Section 3.

This means that the problem of business process compliance reduces to that of pop-
ulating the functions Ann and Force. As we discussed in the previous sections the
aim of this paper is to provide a conceptually sound foundational framework for the
semantics of regulatory complaints for business process compliance. The scope of

22 Mustafa Hashmi et al.

this paper is not to propose a specific set of mechanisms, algorithms, or formalisms to
check whether business processes are compliant, but the definitions given in this paper
can be use to evaluate mechanisms, algorithms and formalisms proposed to check the
compliance of business processes against relevant regulations.

R1 : [OAPNP]
R2 : [OAP]
.
.
.
R11 : [PROH]

Formalisation

R1 : (T R1 ,T1),(T R3 ,T6),. . .
R2 : (T R2 ,T2),(T R3 ,T7),. . .
.
.
.
R11 : (T R11 ,T3),. . .

Obligations

Compliance
Checker

T R1 : T1 ,{a1 , . . . ,an},T2 ,{a1 , . . . ,an},. . .
T R2 : T2 ,{a1 , . . . ,an},T7 ,{a1 , . . . ,an},. . .
.
.
.
T R11 : T3 ,{a1 , . . . ,an},. . .

States

Legal Frameworks Business Process

Fig. 4 Business Process Compliance: Abstract Framework

Figure 4 illustrates the key concepts behind our approach for business process
compliance. Rules impose conditions on the tasks to control the behaviour of processes.
Business processes are annotated with rules for compliance checking purposes. These
annotations are usually formalised rules and the data is parsed in the tasks at design-
time. However at design-time, very limited information is available about the real
data that a process operates on. Thus, for design-time compliance checking, business
analysts provide abstract values and attributes to annotate processes. These abstract
annotations can be used to verify the compliant behaviour of a business process at
design-time. Contrary to that, at run-time processes are annotated with real values and
attributes which are, again, provided by the business analysts. Regardless of checking
the compliance at design-time or run-time, all we need is visible traces consisting of
annotated tasks of a process.

In the rest of this section we are going to illustrate how the functions Ann and Force
are populated in the scenario introduced in Section 4. Again, it not the scope of this
paper to propose algorithms or formalisms to check whether business process complies
with a set of compliance rules. The intention of the paper is to propose a language
independent semantics to describe the properties of the compliance requirements in
terms of business processes. It is up to different formalism to provide appropriate
constructions to model compliance. For example, Article 8.2.1 of TCPC 2012 in
Example 4, that prohibits a supplier to initiate credit management action when there is
an unresolved dispute about credit, can be (roughly) represented in Linear Temporal

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 23

Logic by the formula (where U is the Until operator)

G(creditDispute→ (¬creditManagementActionUdisputeResolved))

The until operator of Linear Temporal Logic is evaluated true if the left hand side
of the operator is true for all instants before an instant where the right hand side of
the operator is true. Thus the until operator respects the semantics for maintenance
obligations

5.1 Compliance Checking of the Complaint Handling Process

We now provide a concrete example of compliance checking based on the complaint
handling process shown earlier. Table 1 describes all the applicable rules on the
complaint handling process. For each rule we have also identified the obligation
triggered by the rule. These rules are of different types and relevant to one or more
tasks in the aforementioned process. No compliance of every rule can be automatically
checked because of several reasons e.g., the rule has been vaguely described or we
have partial information only etc, see Awad (2010). Rule R1 in the complaint handling
process is one such type of rules that has been vaguely defined. For example, the

‘earliest opportunity’ does not clearly specify until what time the obligation has to be
fulfilled. However, rule R1 is an achievement obligation applicable from T3 and the
obligation triggered by it remains in force until the obligation has been fulfilled. The
rule R4 is a punctual obligation (for oral complaint) and an achievement obligation
(for written complaint) where the received complaint has to be acknowledged within
2 working days. Rules R3, R6, R7 are maintenance obligation applicable from the
beginning of the process. They must be complied with for all the instances of the
complaint handling process.

To determine whether the obligation has been complied with, regardless when an
obligation comes into force and at which task in the process, one has to consider all
the traces of the process including the task from where the obligation gets into force.
Thus the first step is consider all the traces for a process. Given that there is a loop
in the process model, the number of traces is infinite. While this is not a problem for
the theoretical compliance model, for practical purposes we have to consider a finite
number of them. In practice loops typically have exit conditions, accordingly, we can
limit the analysis to the case where each loop is expanded once, and in case of a nested
loop, the external loop passes from the origin of the loop twice one where the internal
loop is executed and the second when the internal loop is skipped. The this case the
second time, the effect will be annotated with the exit condition. This procedure is
applied recursively for more deeply nested loops.

The complaint handling process generates the following (finite) set of traces.

Tp = {t1 = 〈T1,T2,T3,T4〉,
t2 = 〈T1,T2,T3,T5,T6,T13,T14,T15,T16,T17,T18,T19〉,
t3 = 〈T1,T2,T3,T5,T6,T13,T14,T15,T17,T18,T16,T17,T18,T19〉,
t4 = 〈T1,T2,T3,T5,T6,T13,T14,T15,T17,T18,T19〉,

24 Mustafa Hashmi et al.

t5 = 〈T1,T2,T3,T5,T6,T14,T15,T16,T17,T18,T19〉,
t6 = 〈T1,T2,T3,T5,T6,T14,T15,T17,T18,T16,T17,T18,T19〉,
t7 = 〈T1,T2,T3,T5,T6,T14,T15,T17,T18,T19〉,
t8 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T11,T12,T16,T17,T18,T19〉,
t9 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T11,T12,T19〉,
t10 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T16,T17,T18,T19〉,
t11 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T16,T17,T18,T16,T17,T18,T19〉,
t12 = 〈T3,T4〉,
t13 = 〈T3,T5,T6,T13,T14,T15,T16,T17,T18,T19〉,
t14 = 〈T3,T5,T6,T13,T14,T15,T17,T18,T16,T17,T18,T19〉,
t15 = 〈T3,T5,T6,T13,T14,T15,T17,T18,T19〉,
t16 = 〈T3,T5,T6,T14,T15,T16,T17,T18,T19〉,
t17 = 〈T3,T5,T6,T14,T15,T16,T17,T18,T16,T17,T18,T19〉,
t18 = 〈T3,T5,T6,T14,T15,T17,T18,T16,T17,T18,T19〉,
t19 = 〈T3,T5,T6,T14,T15,T17,T18,T19〉}

The next step is to determine what are the effects of the tasks in the trace as each task
is annotated with one or more effects (or sets of effects), we refer these effects as
annotations. Hence we look which literals are relevant to each task in the trace. We
use the Ann function defined in Section 2. To improve readability, in the rest of this
section we use the annotation function Ann as:

Ann(trace, task, integer) = {set of (consistent) literals}

this means we also include the name of the task in its signature.
We now take a significative trace, trace t11, to illustrate how the function populates

the states corresponding to the tasks in a trace. Trace t11 is as follows:

t11 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T16,T17,T18,T16,T17,T18,T19〉

Based on the information available we populate the function Ann for trace t11 as
follows:9

t11 : 〈Ann(t11,T1,1) = {receive_complaint,oral, identify_yourself}
Ann(t11,T2,2) = Ann(t11,T1,1)∪{get_details},
Ann(t11,T3,3) = Ann(t11,T2,2)∪{verify_complaint},
Ann(t11,T5,4) = Ann(t11,T3,3)∪{valid_complaint,register_complaint},
Ann(t11,T6,5) = Ann(t11,T5,4)∪{check_authority},
Ann(t11,T7,6) = Ann(t11,T6,5)∪{authorised,acknowledge_complaint},
Ann(t11,T8,7) = Ann(t11,T7,6)∪{explain_handling_procedure},

9The annotations for each task can be given by domain experts or can be extracted from databases or
forms related to the tasks, see (Hashmi et al, 2012).

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 25

Ann(t11,T9,8) = Ann(t11,T8,7)∪{explain_options},
Ann(t11,T10,9) = Ann(t11,T9,8)∪{attempt_resolution},
Ann(t11,T16,10) = Ann(t11,T10,9)∪{¬resolve_complaint,escalate},
Ann(t11,T17,11) = (Ann(t11,T16,10)−{escalate})∪{inform_progress},
Ann(t11,T18,12) = Ann(t11,T17,11)∪{inform_decision,provide_reasons},
Ann(t11,T16,13) = (Ann(t11,T18,12)−{inform_decision,provide_reasons})

∪{¬satisfied,escalate},
Ann(t11,T17,14) = Ann(t11,T16,13)∪{provide_escalation_options},
Ann(t11,T18,15) = Ann(t11,T17,14)∪{inform_decision,provide_reasons},
Ann(t11,T19,16) = (Ann(t11,T18,15)−{¬resolve_complaint,¬satisfied})

∪{satisfied,archive,resolve_complaint}〉

The integer and task appearing in the Ann function indicate, respectively, the step of
the process and the task (to be) executed at that step. Apart from its own, each task
in the trace may inherit effects from its previous tasks to determine the state corres
ponding to the task. These effects can be accumulated as the information grows for
every subsequent task in the trace. These effects are computed based on the updated
semantics where if the effects of previous tasks are in conflict with the effects of
the current task, the effects of previous tasks are replaced with current ones. For
example the state reached after task T2, namely Ann(t11,T2,2), accumulates the effects
of its previous task T1 and also has its own effects {get_details}. Similarly task T3
accumulates the effects of tasks T1 and T2 producing Ann(t11,T3,3). In other cases,
some effects, obtained in previous tasks can be remove or their truth value can be
changed. For example the first time we pass though task t17 (step 11) we remove
the escalate flag which was raised in the previous task indicating the complaint
was escalated. The change of polarity of literals is exemplified at step (16) where
the negative ¬resolve_complaint and ¬satisfied are removed and replaced by their
positive counterparts, resolve_complaint and satisfied.

Now we look at which rules are applicable to trace t11 on which task and when in
order to determine which obligations are in force. Table 2 illustrates when the various
rules become active in trace t11 (when they begin to produce their deontic effects), and
when the various obligations are in force.

Four rules are effective at T1. Rule R1, whose deontic effect is an achievement
obligation, becomes active as soon as a complaint is received, and remain active until
the complaint is resolved. The other three rules, i.e., R3, R5 and R6, are for maintenance
obligations and never terminate for all instances of the process. No rules are associated
with T2,T3, tasks T7–T10 and with the tasks in the last three steps of the trace. Rules
R4 and R5 produces achievement obligations, and their effects enter in force at step 4
(task T5) when the complaint has been deemed valid. Rule R10 kicks in at task T6, and
its deontic effect is a maintenance obligation (that the staff is authorized to handle it,
or alternatively the prohibition to handle a handle if not authorized).

Rule R8 is triggered twice. The first time at step 10, and the corresponding non-
preemptive obligation is in force for that step and the next one, when the obligation is
fulfilled. Thus the obligation provide_reasons is no longer in force for step 12. The new

26 Mustafa Hashmi et al.

Table 2 Applicable Rules and Obligations in Force for Trace t11

Task, Step Rules Obligations in Force

T1,1 R1,R3,R6,R7 Force(t11,T1,1) = { resolve_complaint, treat_farly,
¬disadvantage,ensure_confidentiatly}

T2,2 Force(t11,T2,2) = Force(t11,T1,1)
T3,3 Force(t11,T3,3) = Force(t11,T2,2)
T5,4 R4,R5 Force(t11,T5,4) = Force(t11,T3,3)∪{ acknowledge_complaint,

inform_progress}
T6,5 R10 Force(t11,T6,5) = Force(t11,T5,4)∪{authorized}
T7,6 Force(t11,T7,6) = Force(t11,T6,5)
T8,7 Force(t11,T8,7) = Force(t11,T7,6)
T9,8 Force(t11,T9,8) = Force(t11,T8,7)
T10,9 Force(t11,T10,9) = Force(t11,T9,8)

T16,10 R8 Force(t11,T16,10) = Force(t11,T10,9)∪{provide_reasons}
T17,11 Force(t11,T17,11) = Force(t11,T16,10)
T18,12 Force(t11,T18,12) = Force(t11,T17,11)−{provide_reasons}
T16,13 R2,R5,R8 Force(t11,T16,13) = Force(t11,T18,12)∪{ provide_escalation_options,

provide_reasons}
T17,14 Force(t11,T17,14) = Force(t11,T16,13)
T18,15 Force(t11,T18,15) = Force(t11,T17,14)
T19,16 Force(t11,T19,16) = Force(t11,T18,15)

decision in step 13, reinstate that non-preemptive obligation. The non-preemptiveness
of the obligation implies that the previous discharging instance does not count for the
instance of the obligation in force from step 13.

It is easy to verify that the trace is compliant for rules R1, R2, R4, R5, R6, R8,
R9 and R10: The achievement obligations triggered by rules R1, R2, R4, R5, R8 are
fulfilled, respectively at steps: 16, 13, 5, 11, and 11 and 15 for the two instances of
R8. The maintenance obligation of rule R8 is maintained from step 5, when it enters in
force to the end of the process. R9 is trivially complied with since it is a permission,
and it cannot result in a non-compliant situation. Finally, the maintenance obligations
of rules R3, R6 and R7 are not fulfilled. This is due to lack of information of what their
obligations means in term of the given process.

5.2 Evaluation

To conclude this section we report on an evaluation of the framework against real
processes and norms. The purpose of this section is to provide evidence that all types
of obligations are eventually present in real life compliance scenarios.

The evaluation was carried out using Regorous.10 Regorous is an implementation
of the compliance checking methodology proposed by Sadiq et al (2007); Governatori
and Sadiq (2009) where the normative provisions relevant to a process are encoded
in PCL Governatori and Rotolo (2010a,b) and the tasks of a process are annotated
with sets of literals taken from the language used to model the norms. The Regorous
module to check compliance generates the traces of the given process and cumulates
the annotations attached to the tasks using an update semantics to determine the state

10Regorous: Compliance Checker, available at https://nicta.regorous.com.

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 27

corresponding to a task in a trace (i.e., in case a literal from the then current task is
the complementary of from a previous task, we remove the old literal and we insert
the new one). PCL offers support for all types of obligations described in the previous
section, and for every steps in a trace, it retrieves the state corresponding to the task
being examined. Based on state PCL determines the obligations in force for current
task. Finally, it checks if the obligations have been fulfilled or violated based on the
semantics discussed in the previous section. For the full details of PCL mechanisms,
see Governatori and Rotolo (2010b).

Regorous was tested against the novel Australian Telecommunication Consumers
Protection Code 2012. The code specifically mandates that every australian entity
operating in the telecommunication sector has to provide a certification that their day
to day operations complies with the code.

The test was limited to TCPC Section 8 concerning the management and handling
of consumer complaints. The section was manually mapped to PCL. The section of
the code contains approximately 100 commas, in addition to approximately 120 terms
given in the Definitions and Interpretation section of the code. The mapping resulted
in 176 PCL rules, containing 223 distinct PCL (atomic) propositions (literals). The
formalisation of Section 8 required all types of obligations described in Section 3.
Table 3 reports the number of distinct occurrences and, in parenthesis, the total number
of instances (some effects can have different conditions under which they are effective).

Table 3 Number and types of obligations and permissions in Section 8 of TCPC

Punctual Obligation 5 (5)
Achievement Obligation 90 (110)

Preemptive 41 (46)
Non preemptive 49 (64)

Non perdurant 5 (7)
Maintenance Obligation 11 (13)

Prohibition 7 (9)
Non perdurant 1 (4)

Permission 9 (16)
Compensation 2 (2)

The evaluation was carried over in cooperation with an industry partner operating
in the sector of the code. The PCL formalisation of TCPC Section 8 was reviewed
and informally approved for the purpose of the exercise by the regulator. The industry
partner did not have formalised business processes. Thus, we worked with domain
experts from the industry partner (who had not been previously exposed to BPM
technology, but who were familiar with the industry code) to draw process models to
capture the existing complaint handling and management procedures and other related
activities covered by TCPC Section 8. As result we generated and annotated 6 process
models. 5 of the 6 models are limited in size and they can be checked for compliance
in seconds. We were able to identify non compliance issues in the processes and to
rectify them. In the simplest and most frequent cases the modification required were
just to ensure that some type of information was recorded in the databases associated

28 Mustafa Hashmi et al.

to the processes. Other cases needed to addition to simple activities (tasks) either
after or before other tasks (e.g., make customer aware of documents detailing the
escalation procedure after an unsatisfactory outcome of a non-escalated complaint).
The above two types of non-compliance were detected by unfulfilled achievement
obligations and they were the results of new requirements in the 2012 version of
the code. Another case of non-compliance was related to ensuring that a particular
activity does not happens in a part of the process. Finally, there were some cases where
combination of the above issue were needed (the novel way to handle in person or by
phone complaints) where totally new sub-processes were designed.

The largest process contains 41 tasks, 12 decision points, xor splits, (11 binary, 1
ternary). The shortest path in the model has 6 tasks, while the longest path consists
of 33 tasks (with 2 loops), and the longest path without loop is 22 task long; in total
there are over 1000 traces, and approximately 25000 states. The time taken to verify
compliance for this process amounts approximately to 40 seconds on MacBook Pro
2.2Ghz Intel Core i7 processor with 8GB of RAM (limited to 4GB in Eclipse).

6 Conceptual Evaluation of Existing Business Process Compliance Frameworks

So far we have discussed the different types of obligations and provided the semantics
for each obligation type in Section 3 and in Section 5 we have illustrated how these
notions can be used to check whether a business process complies with a relevant
set of normative requirements. We also discussed a number of existing CMFs (c.f.
Section 1). In this section, we present the results of an evaluation conducted on seven
CMFs using the classification model we proposed in Section 3. A summary of the
evaluation results is shown in Table 4.

The evaluation was conducted to gain more understanding on the various aspects
of a compliance framework especially from the legal knowledge (compliance require-
ments) representation perspective. Specifically, we were interested in knowing that
how existing frameworks support normative requirements; what kinds of constructs
are provided to model norms; which formalism is used, how normative requirements
are linked to processes for compliance checking purposes; and what is the level of
compliance management support in such frameworks etc.

Next, we first present our evaluation approach and then we discuss in details the
frameworks we used to address these questions.

6.1 Evaluation Approach

The aim of this section is to discuss the evaluation approach used to conduct the
evaluations. We adopted a (systematic) case study based shallow research approach,
which allowed us to start the evaluations with minimal information available on the
CMFs. We followed a three steps structured approach where, we first defined the
evaluation objectives and criteria, and then selected the frameworks based on the
defined criteria. The details of each step are as follow:

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 29

Evaluation Objectives: Our objective is to examine the conceptual foundations of
existing CMFs. We specifically look at the conceptual approach a framework
proposes to secure compliance, and the support for the normative requirements:
more specifically what constructs are provided for modeling the norms. In addition,
how the norms are linked to business processes for compliance checking.

Evaluation Criteria: To select a representative compliance management framework
we defined a three steps framewok evaluation criteria which we used to conduct
the evaluation as:
(a) Level of compliance management: this criterion describes the level of support

a framework provides. We only selected CMFs which provide full compliance
management support and did not consider those merely provides a compliance
checking algorithm or a modeling language,

(b) Requirements modeling: this criterion allows examining how frameworks
model different types of compliance requirements, and using which formal
logic. Essentially, this criterion is used to identify the modeling constructs
for a specific obligation type proposed in a framework. For this purpose, we
provide a classification of normative requirements which has been obtained
in a systematic and exhaustive way by considering the aspect of validity of
obligations or prohibitions and the effects of violation on them,

(c) Requirements linking: this criterion allows identifying how different frame-
works link the compliance requirements with business process models for
compliance checking.

Sample Frameworks Collection: Although we reviewed and analysed several CMFs,
we abstained from doing a systematic literature survey (as in El Kharbili, 2012;
Fellmann and Zasada, 2014) rather we selected frameworks based on the expert
discussions, and mostly cited in literature. In addition, we also considered the eval-
uation criteria while selecting the evaluated frameworks. We believe the selected
frameworks are best suited for our evaluation according to the aforementioned
criteria.

6.2 PENELOPE

PENELOPE (Process Entailment from Elicitation of Obligations and Permissions
Goedertier and Vanthienen (2006)) is a declarative language that captures obligation
and permission constraints imposed on business processes by business policies. Aiming
to provide design-time compliance verification capabilities, the language uses an
algorithm that progressively generates the state space and control-flow of a business
process. The state space generated contains a set of obligations and permissions that
are active at a particular state. The interaction between the generated process models
flows from state to state, and all the states are enumerated until no obligation or
permission holds at a state or if there is a violation which cannot be repaired. Once all
the states are computed, the algorithm draws the BPMN model for a role involved in
the business interaction. The tasks of the process are drawn whenever an obligation
set contains all obligations fulfilled by a role in the activity. PENELOPE allows the
modelling of interactions between all involved partners and any from a third partner is

30 Mustafa Hashmi et al.

represented as a time out event in the generated BPMN model. In addition, errors and
end events are drawn if there is a violation of an obligation or permission by a role in
a state.

The deontic assignments in the PENELOPE are modelled using event-calculus
that provides a rich semantics to reason about the normative requirements. However,
currently PENELOPE can only support achievement obligations and permissions
while no other obligations types are explicitly supported. PENELOPE can model
achievement obligations because they permit to explicitly define deadlines in the form
of precedence rules. Prohibitions are not considered under close-world assumption
(CWA) to avoid the anomalies that might occur because of incomplete knowledge
about all the parties involved in business interactions.

Violations in PENELOPE can only occur in the form of deadlock situations or
temporal conflicts. Deontic conflicts cannot occur in PENELOPE generated BPMN
model because the framework does not consider prohibitions or waived obligations.
Moreover, no support for compensation obligations is provided because PENELOPE
does not offer any mechanism to handle violations and this task is left to the process
modellers.

6.3 Process Compliance Language (PCL)

PCL (Process Compliance Language) by Governatori and Rotolo (2010a) is a formal
framework based on defeasible and deontic logic. It provides a conceptually rich
formal foundations to model norms, and is able to efficiently capture the intuition of
almost all types of normative requirements. These norms are modelled in the form of
PCL rules for which the framework provides rich semantics. The state variables and
the tasks in the process are represented by a set of propositional literals. PCL formulas,
also called PCL specifications are written based on a set of primitive propositions using
¬ negation, ⊗ (a non-boolean connective modelling violations chains), and deontic
operators representing obligations and permissions. The tasks in business processes
are annotated with PCL specifications that are either provided by domain experts or
are automatically extracted from the schemas of the databases or data sources linked to
the processes using the technique proposed by Hashmi et al (2012). These annotations
are used to analyse whether the behaviour of an execution path is consistent with the
annotated specifications. For this purpose, a three-step algorithm is used in which the
process graph is first traversed to find the set of effects for all tasks. These effects
are then used to determine the norms in force for the tasks. The effects of the tasks
and pertaining obligations are then compared in the last step to find any divergent
behaviour. The compliance of the norms is reported as full, partial, or not compliant
by the algorithm.

The rich combination of defeasible and deontic logic allows PCL to model all
types of obligations as depicted in Table 4 and other aspects of normative reasoning.
This is because the use of two types of logics where the deontic logic provides the
support to model obligation’s violations and chains of reparation, while the issue
of partial information and inconsistent prescription is handled by the defeasible
logic (Governatori and Rotolo, 2010b). To model the fundamental obligations, PCL

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 31

provides three major constructs: punctual (Op), maintenance (Om), and achievement
(Oa); achievement obligations are further refined in perdurant/non-perdurant and
pre-emptive/non-preemptive.

Violations and obligations arising from the violations are major concerns in CMFs
and PCL provides effective management of the violations and their compensations.
For this purpose PCL defines a special contrary-to-duty non-boolean ⊗ connective
that is used to create reparation chains for handling multiple violations of obligations.

6.4 DECLARE

Declare (DECLARE, 2010) is a prominent framework for run-time verification of
constraint-based declarative models. Declarative models describe what a model can do
by specifying the business constraints as rules that should not be violated. The business
knowledge in Declare is defined in terms of constraints using ConDec (Constraint
Declarative, Pesic and van der Aalst (2006)11), a language which provides graphical
notations to model the flows of business interactions. Declare models (also called
templates) are enacted by a workflow engine verifies the interactions among the tasks
in the model to ensure compliance. The framework includes two types of constraints
i.e., mandatory and optional constraints on the process models. In a Declare model, a
process instance can only be active when there is no violation of mandatory constraints
and all constraints are fully satisfied at the end of the execution of an instance. The
verification results of each constraint of an active instance are expressed as satisfied,
temporarily violated, and violated. In case all constraints are satisfied the activities are
not executed any further, but if there is a violation state no possible further execution
would be allowed to satisfy the constraints. Accordingly, in the temporarily violated
state the constraints are not satisfied, but there would be a possibility to satisfy the
constraints.

Business constraints (norms) in the Declare framework are modelled by means
of Declare expressions which are classified as existence, relation, choice and neg-
ative constraints. The majority of these constraints are used to express obligations
while the negative constraints can be used to express prohibitions. These constraints
correspond to LTL expressions that provide the semantics to the Declare graphical
notation. Currently, only achievement obligations and prohibitions can be modelled
in the Declare Model, while no other norms types can be explicitly modelled. Since
achievement obligations define deadlines and the obligation condition must be true
at least once, the support for such obligations is only available because the tasks
in the Declare model with such constraints will be performed in some future time.
However, the different modalities of persistence and preemptiveness of obligations
cannot be expressed. Expressing maintenance obligation constraints can be problem-
atic in Declare because the obligation conditions must hold in all instances throughout
the execution of the process. There might be some situations when the applicable
maintenance obligation constraints might not be present thus there will be deadlocks
in the course of interactions among tasks. Declare is able to identify conflicts among

11From Nov 2012, the name of ConDec language has been changed to Declare see. http://www.win.
tue.nl/declare/2011/11/declare-renaming/.

32 Mustafa Hashmi et al.

constraints in the model, however it does not provide any support to handle violations
because the expressions are written in LTL and the non-deterministic behaviour of
the process models. Hence, in case of a violation the interaction among tasks in the
Declare model will be stopped and no further activity can be performed. Accordingly,
it is not possible to express permissions, compensations and perdurant obligations.

6.5 Business Process Modeling Notation-Query (BPMN-Q)

BPMN-Q (Awad et al, 2008, 2011) is a query based automated compliance checking
framework capable of answering YES/NO type answers to query questions. The
framework can model control-flow, data flow and conditional flow related compliance
rules using visual patterns. These visual patterns are translated into LTL formulas for
checking the structural compliance of a processes model. The framework adopts a
systematic approach to generate the patterns of compliance rules in the form of query
templates. These templates are used to identify the set of process models subject to
compliance checking in the process repository. Compliance checking is carried out in
several steps. First, BPMN-Q sub-graphs are extracted from a process repository using
temporal query templates. The query processor only extracts processes that structurally
match the query template. These sub-graphs are then reduced by eliminating irrelevant
activities and gateways, and translated into a Petri net model to generate the state
space. Alongside the state space generation, BPMN-Q queries are translated into LTL
formulas which are then fed into a model checker together with the generated state
space. In turn, the model checker yields YES/NO to indicate whether the extracted
process models comply with the query templates.

The framework uses a visual language BPMN-Q to express various types of
compliance rules. The language provides visual notations similar to the standard
BPMN notations. Currently, the framework is able to handle almost the same types of
obligations as Declare (cf. Table 4). While BPMN-Q is equipped with the so called
global space presence pattern, this enables the execution of an activity that is required
in all process instances, but this is not the same as an “activity” that must be performed
for every single task in a process instance.

In BPMN-Q no conceptual or formal constructs for modelling permissions have
been provided. Whereas prohibitions are represented by global space absence to
prevent the execution of some activities. Unlike Declare, BPMN-Q is able to handle
violations for which a violation handling approach has been discussed in (Awad and
Weske, 2009). Finally, compensations and perdurant obligations are not supported
because of using LTL as the underlying formalism to model compliance rules.

6.6 SEAFLOWS

SeaFlows (Ly et al, 2010, 2012) is a compliance framework that can be used for verifi-
cation of semantics constraints. It incorporates a graphical language which provides
primitives to capture process related complex business rules. These compliance rules
are modeled in the form of first-order logic predicates equivalent and instantiable to

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 33

compliance rules graphs (CRG). SeaFlow employs a structural compliance checking
strategy for the verification of compliance rules where node relations are verified
against the imposed constraints. The verification is done in three steps: in the first
step a set of structural templates based on the queries on the relations of nodes in
the process models is automatically derived. Then, the process model is checked
against the derived templates to detect any non-compliant structural templates. The
queried templates are then aggregated and fed into the SeaFlows compliance module
for further compliance report in the last step. The compliance results are based on the
execution of traces of the process models where a process model is fully compliant
when all the activities in the trace comply with the instantiated rule. Whereas a ‘No’ is
returned to indicate rule violations when no activity in the execution trace satisfies the
rules.

To model the compliance rules, the SeaFlows framework adopts a compositional
graph-based modelling formalism allowing the modelling of the typical antecedent–
consequence structure of rules. These graphs serve as placeholder for the first order
logic representation of the relevant rules. Although SeaFlows is able to model achieve-
ment obligations which stipulate the occurrence of some event in the future by means
of the occurrence pattern, the framework is not able to capture other types of deon-
tic effects, e.g., punctual, maintenance, permission, and compensation (see Table 4.
Moreover, compensations and perdurant obligations arising from the violation of the
primary obligations cannot be modeled because first-order logic is not suitable to
reason about the normative requirements (Herrestad, 1991).

6.7 COMPAS

The COMPAS framework (COMPAS, 2008) is a comprehensive compliance gov-
ernance framework which provides an all-around compliance support for service-
oriented-architecture (SOA) based systems. The framework adopts a model-driven
development approach for designing compliant processes/services using a view based
modelling framework and domain specific languages to model the compliance con-
cerns in process models (Daniel et al, 2009). For compliance checking, business
processes are annotated with compliance constraints in the form of (re-usable) process
fragments. These fragments underline the required behaviour of the control-flow of
a process model, and are formalised using Linear Temporal Logic (LTL). Then the
annotated process fragments are assessed to validate the compliant behaviour of the
process models at run-time using event logs. A protocol component evaluates the
generated event logs to check whether the process model complies with the behavior
described in the attached compliance constraints process fragment. If the monitoring
protocol detects any non-compliant behaviour it reports a violation and publishes
it as a violation event. More recently some advances in the COMPAS framework
(Elgammal et al, 2014) extended the modeling and reasoning support for the main-
tenance obligation, violation detection and handling. Also, the framework is now
able to provide support for compensations obligations. Similar to Declare framework
(cf. Section 6.4), COMPAS also use LTL as its underlying logic for modelling the
normative requirements.

34 Mustafa Hashmi et al.

6.8 Business Process Compliance Auditing Framework

The business process compliance auditing framework (Ghose and Koliadis, 2007)
is a compliance checking framework to verify business process compliance against
regulatory requirements. A local context description of accumulated effects is first
defined by the analyst because the framework evaluates compliance locally at parts of
the process where the effects are applicable. The effects accumulation process involves
the derivation of a set of scenario labels at a point in the process (Hinge et al, 2009).
Once the effects of relevant activities are accumulated and annotated to processes, the
annotated processes are then encoded into directed graphs called semantic process
networks (SPNs). These networks are used to verify properties related to the execution
ordering of activities using an algorithm that exhaustively traverses all execution traces
of the effect-annotated process model to check the rule violations. Then compliance
results are reported (in boolean form) to indicate whether a process model satisfies the
applicable compliance requirements or not.

The compliance requirements in this framework are annotated onto process models
in the form of parsimonious effect-annotation. These effects annotations are parsed
and modelled using a state-based logic, namely, Computational Tree Logic (CTL).
Currently punctual, maintenance and compensation, permission and perdurant obliga-
tions are not modelled. It is not clear how the framework will model such normative
requirements for compliance checking because no conceptual and formal constructs
have been provided.

Table 4 Summary of Normative Requirements Support in Existing Frameworks

Obligations

Framework Pu
nc

tu
al

A
ch

ie
ve

m
en

t

M
ai

nt
en

an
ce

C
om

pe
ns

at
io

n

Pe
rd

ur
an

t

Pe
rm

is
si

on
s

Pr
oh

ib
iti

on
s

V
io

la
tio

ns

PENELOPE – + – – – + – –
PCL + + + + + + + +
DECLARE – + – – – – + –
BPMN-Q – + – – – – + +
SEAFLOWS – + – – – – + +
COMPAS – + + + – – + +
AUDITING BPC – + – – – – – –

6.9 Discussion

Table 4 shows the summary of the support provided by different compliance frame-
works to model the different types of normative requirements. A ‘+’ means that the
framework provides direct support for the requirement, and a ‘–’ means that the notion
is not captured.

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 35

From the results presented in Table 4, it is clear that the vast majority of the
evaluated CMFs is capable of supporting all types of norms and that only a fraction of
normative requirements is widely supported. For example, PENELOPE is only able to
support obligations and permissions. It is unable to model other obligation modalities,
and violations because Event Calculus is not suitable for reasoning of legal constraints.
Contrary to that, PCL supports all types of norms because of the non-monotonic
characteristics of the formal logic it uses. The combination of defeasible and deontic
logic allows PCL to provide reasoning for deontic modalities and violations especially
for temporally varying obligations, e.g., achievement obligations and their persistence
over time. However, its language is restricted to literals. DECLARE, BPMN-Q and
COMPAS are LTL based frameworks, and only address ‘structural compliance’ where
the tasks are defined by the constraint models. These frameworks cannot capture the
intuition of all types of obligations, violations, and their compensations. DECLARE
can only support achievement obligations and prohibitions while BPMN-Q can support
achievement and prohibitions only. Generally it is highly desirable that a formal lan-
guage for compliance covers most of the properties and properties of the environment
of the unit under verification (e.g., normative requirements). In addition, it should
also support the complex properties from simpler ones, but temporal logic lacks such
support because it has no conceptual relative correspondence to the legal domain, thus
cannot expressively model the properties of the norms.

The conceptual results portray somewhat a bleak picture when it comes to see
how existing frameworks represent legal knowledge for compliance checking because
none is able to support all types of normative requirements. This does not, however,
necessarily mean that the framework does not have the expressive power to model the
notion, but the concept is not considered or analysed in that framework, including the
case where the deontic effects cannot be faithfully represented. Governatori (2014)
provides an example where not paying attention to legal reasoning principles leads to
results opposite to what legally trained professionals would conclude. This implies
that adopting formalisms that are non conceptually grounded in legal practice creates
framework that are unreliable and not suitable to be used in real-life applications.

7 Related Work

We divide the related work section into two parts. We first discuss some papers that
address the business process compliance problem and propose various techniques to
solve the problem. We then describe some of the works which reported their results
on the evaluations of existing compliance frameworks and position our work on the
evaluation of compliance frameworks among them.

7.1 Process Compliance in SOA/Cloud Computing

In the SOA and cloud-computing domains there is considerable amount of approaches
focusing on the compliance management of SOA based workflows. Also, these ap-
proaches offered several classifications of business rules for compliance checking

36 Mustafa Hashmi et al.

purposes. Accorsi et al (2011) classifies compliance rules from regulatory frameworks
for cloud-based compliant workflows. Spanning over nine categories their classifica-
tion comprises three main rule classes relevant to either the control-flow or data-flow
of workflow models. These rules are then formalised in Petri nets for automated
detection of non-compliant behaviour. Whereas Rodrìguez et al (2013) proposed a
SOA-enabled compliance management framework for auditing the compliance of
SOA based processes. The authors used compliance templates enabling the detection
of non-compliant behaviour of processes. These templates are annotated with the
business constraints written in first-order-logic. Elgammal et al (2010, 2012) provide
a taxonomy of high level pattern-based compliance constraints for business processes.
The compliance patterns are divided into three distinct classes of patterns; namely
atomic, composite, and timed. These patterns are then formalised using temporal
logic for generating the formal expressions for checking the compliance of business
processes before actual deployment. Orriäns et al (2003) dealt with business rules
driven business processes as service composition using various types of composition
elements. The business rules considered in their framework are related to the struc-
ture of a business process. Weigand et al (2011) provide a formal characterisation of
behavioural rules for business policy compliance for SOA which is again useful for
checking the structural compliance of business processes. While Ramezani et al (2013,
2012) identified 54 control-flow based compliance rules distributed over 10 categories
and 15 temporal rules distributed over 7 categories and proposed a compliance check-
ing approach. These rules are mainly intended for compliance checking of business
processes from structural and temporal aspects of a business process only. In addition,
these studies do not address how to model and reason about the normative component
of compliance. In contrast, the classification we provide can be used both for structural
and non-structural compliance of business processes. Moreover, we argue that first
order logic is not suitable for modelling the legal norm as used by Rodrìguez et al
(2013).

7.2 Existing Compliance Approaches

We provide a quick overview of other existing compliance approaches not examined
in Section 6.

Hee et al (2010) propose a monitoring system for on-the-fly auditing of a business
process. The proposed monitoring system is built either as labelled transition system
with an infinite state space, or as a coloured petri net with tokens that grow unbound-
edly in size. The system operates in parallel to the business information system (BIS),
and checks whether the essential business rules are complied with or interrupts the
BIS to prevent the occurrence of a violation. From a set of business rules, an exe-
cutable process model (i.e. a labelled petri net) is generated using a business rules
language (BRL). The monitoring system tries to execute the events of the generated
process model. If the monitor is able to execute the event the BIS operates without
any interruptions, otherwise the violation of a business rule is reported and BIS is
interrupted from processing the event any further. The proposed approach provides
a good process monitoring mechanism for a deviant behaviour, the scope of this

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 37

approach is for modelling as well as compliance checking support for all different
types of normative requirements because it only supports a subset of business rules
related to the authorisation and resources.

Ramezani et al (2013) report a conformance checking approach based on Petri-Net
patterns and alignments. The authors created a repository of 55 control-flow based
compliance rules spanned over 15 distinct categories including compliance rules for
data, resource and organisational rules. The collected rules were formalised in terms
of Petri-nets rather than logics. For conformance checking, they employed alignment
techniques from van der Aalst et al (2012) to analyse if the process is compliant with
the formalised Petri-Net patterns. If the patterns are consistent with the compliance
rules, the execution behaviour is consistent. However, if any deviant behaviour is
observed a violation of the rule is reported and the alignment shows the reason(s) for
the deviations. The approach is promising for checking the compliance of control-flow
related rules, but this only provides the structural compliance of the rules. In addition,
conformance checking of business processes against the business rules have different
specifications and properties from those of the legal domain. Thus the proposed
approach is not suitable for compliance checking of the normative requirements.

The works by (Elgammal et al, 2014; Mulo et al, 2013) provide more compre-
hensive compliance checking frameworks for business processes and incorporate the
whole spectrum of business process aspects. Mulo et al (2013) proposes a domain
specific language (DSL) for event-based compliance monitoring for process driven
SOA. The DSL implements the specifications of compliance directives imposed on
the business processes. Whereas Elgammal et al (2014) propose a compliance request
language (CRL) grounded on linear temporal logic for design time compliance check-
ing. Their language includes the series of compliance requirements patterns for all
aspects of a business process. Although these approaches significantly improve the
compliance checking for the normative requirements yet have are not able to fully
cover all types of legal norms. For example, the CRL is still not able to model a
punctual obligation and the obligations perduring after the violations whereas, with
the DSL punctual, maintenance, compensation and obligations cannot be modeled.

Jiang et al (2013, 2014) proposed a consistency and compliance-checking frame-
work (CCCF) using the norms nets (NN) and colored petri nets (CPNs). The NN
are used to formalise the regulatory rules and their relationship whereas the CPNs
semantics implement the compliance checker toolbox. The CCCF framework provides
the information whether a set of regulations is consistent and whether the business
processes comply with the imposed regulations. Although the framework is able to
provide a reasonable degree of automated support for verifying the compliance to reg-
ulation, however the transformation of the legal rules into NNs is interpreted primarily
manually. In addition, from a business process perspective, the transformation of the
model event sequences modeling the behaviour of the agent i.e., trace generation is
also manual making the proposed framework less effective. Another downside of the
framework is that there is no mechanism for modeling the temporal constraints in
CPNs thus the compliance to regulation with temporal modality cannot be verified.

Letia and Groza (2013) reports a logic-based model checking approach for compli-
ance verification of the integrated business processes models. The proposed approach
extends the norm temporal logic of Ågotnes et al (2007) and introduced obligations

38 Mustafa Hashmi et al.

and permissions operators into the temporal logic to model the various compliance
requirements from HACCP standard12 in the food safety domain. The compliance
checking is performed by a four steps mechanism, where in the first step the domain
knowledge i.e., the normative requirements, is translated into Norms Temporal Logic
and Attribute Language with Complement (NTL-ALC) logic, then a WF-net using
a Kripke structure is generated with states which are labeled with the all normative
requirements are specified in the form of normative formula f pertaining to the state.
The each formluma f in the state in the WF-net is verified if the formula f repre-
senting the norm holds in the state. If f does not hold the state violating the norm is
added to the set of breached states. The proposed approach allows the integration of
subsumption-based reasoning with the possibility to check the compliance of various
types of norms. By the virtue of the extended logic NTL-ALC, the proposed approach
allows the integration of abstract and the concrete business processes making it more
explicit in representing the compliance requirements into business process models.
This approach is very close to our approach presented in this paper, however it has
limited scope in providing the modeling and reasoning support for all obligations
classes discussed in Section 3.

Maggi et al (2011) examine a declarative conformance checking framework which
models the business knowledge defined in terms of constraints using a graphical
language to model the flow of business interactions. The framework allows mandatory
and optional constraints and a process instance is only active when there is no violation
of the mandatory constraints and all the constraints are satisfied at the end of the
instance execution. The business constraints in this framework are modelled by means
of declarative expressions which are grouped as existence, relations, and choice and
negative constraints. These constraints correspond to the LTL expressions which
provide semantics to the graphical notation. The majority of these constraints are used
to express obligations and prohibitions only. Whereas not all the classificatory classes
of the our proposed classification model can be modeled using their LTL expressions.

7.3 Existing Evaluation Frameworks

Becker et al (2012) offer a literature survey based on the generalisability and appli-
cability of business process compliance frameworks. The evaluation is based on the
reported implementation results from the surveyed frameworks, while El Kharbili
(2012) compares the functional and non-functional capabilities of regulatory com-
pliance management (RCM) solutions from a BPM perspective using a large set of
evaluation criteria. Similarly, Cabannilas et al (2010) study various frameworks using
a four point criteria including the study of modelling languages that are used to model
business processes and rules. Whereas Fellmann and Zasada (2014) surveyed 84 busi-
ness process compliance approaches from their scope, phases of the process lifecycle
and the trends of compliance research in variety of domains. The authors classified
the existing compliance approaches using a four dimensions criteria. Elgammal et al
(2010) report a comparative analysis between formal languages to analysis how the

12The Hazard Analysis Critical Control Point System, available at http://www.standards.org/
standards/listing/haccp, retrieved 20 Feb 2014

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 39

compliance requirements are specified for automatic verification while Turki and
Bjekovic-Obradovic (2010) investigate the practice of regulation analysis and the
approaches aiming to achieve and maintain regulatory compliance of given normative
systems from an information systems and services perspective. Bonatti et al (Au-
gust 2004) study the existing approaches to logic and rule-based systems behaviour
specifications from business and security policies rules to identify the possible usage
for rule-based policies in a semantic web context. Addressing the issue of how to
compare and evaluate compliance monitoring approaches, Ly et al (2013) report on
an evaluation of five frameworks from various domains using a set of core compli-
ance management functionalities derived from the compliance literature and various
case studies. Primarily their evaluation has a limited scope and lacks generalisability
because it covers compliance monitoring frameworks only and excludes design-time
compliance checking frameworks, which is a preferable compliance checking method
these days.

Our evaluation is complementary to and different fromthese studies because we
primarily evaluated existing CMFs to examine what they can do in terms of providing
round-up compliance, and what constructs they provide to model different types of
normative requirements. In addition, using the classification of normative requirements
we also examined whether or not existing CMFs can provide reasoning support for all
types of normative requirements.

8 Conclusions and Outlook

Legal norms have been studies from others fields e.g. Law and Legal reasoning but in
the areas of Business Process Management and Service-Oriented Architecture (SOA)
less attention has been paid. Since SOA enabled business process are subject to strict
regulations for effective and transparent operations, in this paper we examine the
various types of normative requirements for determining whether a business process
complies with a normative documents (where normative document can be understood
in a very broad sense, ranging from policies internal to an organisation, to best practice
policies, to statutory acts). Primarily, most of the approaches have focused on compli-
ance rules which are useful from a structural compliance of business processes. Also,
not many studies address how to model and reason about the normative component of
compliance.

Contrary to that, in the presented abstract framework, we studied the normative
component of the business process compliance problem and provided a classification
model of normative requirements, their formal semantics in terms of validity of a norm,
what constitutes a violation, and the effects of the violations on the business processes.
This analysis done in the framework was based on the idea of (possible) executions of
a business process. In addition, for each type of the normative requirements we have
provided concrete examples from clauses of statutory/legislative acts corresponding
to the requirements. With formalised compliance rules, we can specify the different
types of rules describing various deontic modalities e.g. obligations, permissions etc.
As result, business processes can be annotated with the rules for compliance checking
purposes. This means that any system (process-driven SOA or any other) for checking

40 Mustafa Hashmi et al.

whether real life business processes are compliant with real life regulations have
to handle all of such normative requirements. To validate the effectiveness of our
proposed classification of normative requirements and compliance checking approach,
we used a complaint handling process and other case examples; and practically demon-
strated how the compliance of business processes can be checked annotated with the
compliance rules.

The reported framework can be used in a number of ways: (1) it can be used to
compare different systems, logics and frameworks for business process compliance.
We have used the classification model to check the conceptual foundations of existing
compliance frameworks, and plan to carry out further investigations, (2) it can be used
to study the (formal) properties of the problem of checking whether a business process
is compliant. A first step in this direction is the work by Colombo Tosatto et al (2014)
proving that whether a structured business process (without loops) complies with a
set of achievement obligations is already an NP-complete problem. Compliance is
conceived as a type of soundness property of process, and thus the result must be
compared to checking the soundness of process, and for the same class of processes
(e.g., structured without loops) this can be done in linear time (see, Kiepuszewski
et al, 2000). This opens another area where the framework can be applied, namely
to identify computationally tractable subclasses of the business process compliance
problem. Since in presenting this framework we did not restrict ourselves to any
particular formalism, the framework is generic in the sense that any formal language
could fit in the framework despite the fact that we grounded it on deontic logic in
mind. To validate this fact whether the classes of normative requirements and formal
semantics presented in this work can be efficiently modeled with other formalisms we
proposed a Event-Calculus based norms modeling framework in Hashmi et al (2014).
We intend to continue this work using other formal languages e.g., first-order-logic,
temporal logic etc., for more comprehensive validation.

Acknowledgements his paper revises and extends ASSRI’13 (Hashmi et al, 2013) and AP-BPM 2013
(Hashmi and Governatori, 2013) conference papers respectively.

NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT Center of
Excellence Program.

References

van der Aalst W, Adriansyah A, van Dongen B (2012) Replaying History on Process
Models for Conformance Checking and Performance Analysis. Wiley Int Rev Data
Min and Knowl Disc 2(2):182–192

van der Aalst WMP (1998) The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1):21–66

van der Aalst WMP (2000) Workflow Verification: Finding Control-Flow Errors Using
Petri-Net-based Techniques. In: van der Aalst WMP, Desel J, Oberweis A (eds)
Business Process Management: Models, Techniques, and Empirical Studies

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 41

Accorsi R, Lowis L, Sato Y (2011) Automated Certification for Compliant Cloud-
based Business Processes. Business & Information Systems Engineering 3(3):145–
154, URL http://dx.doi.org/10.1007/s12599-011-0155-7

Ågotnes T, van der Hoek W, Rodríguez-Aguilar JA, Sierra C, Wooldridge M (2007)
On the logic of normative systems. In: Normative Multi-agent Systems, 18.03. -
23.03.2007, URL http://drops.dagstuhl.de/opus/volltexte/2007/921

Awad A (2010) A Compliance Management Framework for Business Process Models.
PhD thesis, HPI, Potsdam University, Germany

Awad A, Weske M (2009) Visualisation of Compliance Violations in Business Process
Models. In: 5th Workshop on Business Process Intelligence, vol 9, pp 182–193

Awad A, Decker G, Weske M (2008) Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. In: BPM, Springer, LNCS, pp 326–341

Awad A, Weidlich M, Weske M (2011) Visually Specifying Compliance Rules and
Explaining their Violations for Business Processes. Journal of Visual Languages &
Computing 22(1):30–55

Becker J, Delfmann P, Eggert M, Schwittay S (2012) Generalizability and Applicability
of Model-Based Business Process Compliance-Checking Approaches – A State-
of-the-Art Analysis and Research Roadmap. BuR - Business Research Journal
5(2):221–247

Bonatti PA, Shahmehri N, Duma C, Olmedilla D, Nejdl W, Baldoni M, Baroglio
C, Martelli A, Coraggio P, Antoniou G, Peer J, Fuchs NE (August 2004) Rule-
based Policy Specification: State of the Art and Future Work, REWERSE Project
Report-i2-D1

Cabannilas C, Resinas M, Ruiz-Cortes A (2010) Hints on How to Face Business
Process Compliance. In: III Taller de Procesos de Negocio e Ingenieria de Servicios
PNIS10 in JISBD10, vol 4, pp 26–32

Colombo Tosatto S, Governatori G, Kelsen P (2014) Business process regulatory
compliance is hard. Services Computing, IEEE Transactions on PP(99):1–1, DOI
10.1109/TSC.2014.2341236

COMPAS (2008) Compliance Driven Models, Languages, and Architectures for
Services. 7th Framework Programme For ICT

Daniel F, Casati F, D’Andrea V, Mulo E, Zdun U, Dustdar S, Strauch S, Schumm D,
Leymann F, Sebahi S, de Marchi F, Hacid MS (2009) Business Compliance Gov-
ernance in Service-Oriented Architectures. In: Advanced Information Networking
and Applications, 2009. AINA ’09. International Conference on, pp 113 –120

DECLARE (2010) Declarative process models, http://www.win.tue.nl/declare/. URL
http://www.win.tue.nl/declare/

Dijkman RM, Dumas M, Ouyang C (2008) Semantics and Analysis of Business
Process Models in BPMN. Information and Software Technology 50(12):1281 –
1294

El Kharbili M (2012) Business Process Regulatory Compliance Management Solution
Frameworks: A Comparative Evaluation. In: APCCM 2012, CRPIT 130, pp 23–32

Elgammal A, Turetken O, Heuvel WJ, Papazoglou M (2010) Root-Cause Analysis of
Design-Time Compliance Violations on the Basis of Property Patterns. In: Maglio
P, Weske M, Yang J, Fantinato M (eds) Service-Oriented Computing, Lecture
Notes in Computer Science, vol 6470, Springer Berlin Heidelberg, pp 17–31, URL

42 Mustafa Hashmi et al.

http://dx.doi.org/10.1007/978-3-642-17358-5_2
Elgammal A, Turetken O, van den Heuvel WJ, Papazoglou M (2011) On the Formal

Specification of Regulatory Compliance: A Comparative Analysis. In: Proceedings
of ICSOC’10, pp 27–38

Elgammal A, Oktay T, Heuvel WJ (2012) Using Patterns For the Analysis and Resolu-
tion of Compliance Violations. International Journal of Cooperative Information
Systems 21(31), DOI 10.1142/S0218843012400023

Elgammal A, Turetken O, van den Heuvel WJ, Papazoglou M (2014) Formalizing
and Applying Compliance Patterns for Business Process Compliance. Software &
Systems Modeling pp 1–28, DOI 10.1007/s10270-014-0395-3

Fellmann M, Zasada A (2014) State-of-the-Art of Business Process Compliance
Approaches. In: 22st European Conference on Information Systems, ECIS 2014,
Tel Aviv, Israel, June 9-11, 2014, URL http://aisel.aisnet.org/ecis2014/
proceedings/track06/8

Gambini M, Rosa M, Migliorini S, Hofstede A (2011) Automated Error Correction of
Business Process Models. In: Rinderle-Ma S, Toumani F, Wolf K (eds) Business
Process Management, LNCS, vol 6896, Springer, pp 148–165

Ghose A, Koliadis G (2007) Auditing Business Process Compliance. In: Krämer B,
Lin KJ, Narasimhan P (eds) Service-Oriented Computing (ICSOC 2007), LNCS,
vol 4749, Springer, pp 169–180, DOI 10.1007/978-3-540-74974-5_14

Goedertier S, Vanthienen J (2006) Designing Compliant Business Processes with
Obligations and Permissions. In: BPM Workshops, LNCS, vol 4103, Springer, pp
5–14

Gordon TF, Governatori G, Rotolo A (2009) Rules and Norms: Requirements for Rule
Interchange Languages in the Legal Domain. In: RuleML 2009, Springer, LNCS
5858, pp 282–296

Governatori G (2005) Representing Business Contracts in RuleML. International
Journal of Cooperative Information Systems 14(2-3):181–216, DOI http://dx.doi.
org/10.1142/S0218843005001092

Governatori G (2014) Thou Shalt is not You Will. Tech. rep., NICTA, Brisbane,
Australia

Governatori G, Rotolo A (2010a) A Conceptually Rich Model of Business Process
Compliance. In: Proceedings of APCCM ’10, vol 110, pp 3–12

Governatori G, Rotolo A (2010b) Norm Compliance in Business Process Modeling.
In: RuleML 2010: 4th International Web Rule Symposium, Springer, pp 194–209,
DOI http://dx.doi.org/10.1007/978-3-642-16289-3_17

Governatori G, Sadiq S (2009) The Journey to Business Process Compliance. In:
Handbook of Research on Business Process Management, IGI Global, pp 426–454

Governatori G, Hoffmann J, Sadiq SW, Weber I (2008) Detecting Regulatory Com-
pliance for Business Process Models Through Semantic Annotations. In: Business
Process Management Workshops’08, pp 5–17

Hashmi M, Governatori G (2013) A Methodological Evaluation of Business Process
Compliance Management Frameworks. In: Song M, Wynn M, Liu J (eds) Asia
Pacific Business Process Management, LNBIP, vol 159, Springer, Switzerland, pp
106–115

Normative Requirements for Regulatory Compliance: An Abstract Formal Framework 43

Hashmi M, Governatori G, Wynn MT (2012) Business Process Data Compliance.
In: Rules on the Web: Research and Applications - 6th International Symposium,
RuleML 2012, Montpellier, France, August 27-29, 2012. Proceedings, pp 32–46,
DOI 10.1007/978-3-642-32689-9_4

Hashmi M, Governatori G, Wynn MT (2013) Normative Requirements for Business
Process Compliance. In: Service Research and Innovation - Third Australian Sym-
posium, ASSRI 2013, Sydney, NSW, Australia, November 27-29, 2013, Revised
Selected Papers, pp 100–116, DOI 10.1007/978-3-319-07950-9_8

Hashmi M, Governatori G, Wynn MT (2014) Modeling Obligations with Event-
Calculus. In: Rules on the Web. From Theory to Applications - 8th International
Symposium, RuleML 2014, Prague, Czech Republic, August 18-20, 2014. Proceed-
ings, pp 296–310, DOI 10.1007/978-3-319-09870-8_22

Hee K, Hidders J, Houben GJ, Paredaens J, Thiran P (2010) On-the-Fly Auditing of
Business Processes. In: Jensen K, Donatelli S, Koutny M (eds) Transactions on
Petri Nets and Other Models of Concurrency IV, LNCS, vol 6550, Springer, pp
144–173

Herrestad H (1991) Norms and formalization. In: ICAIL’91, ACM, pp 175–184,
DOI 10.1145/112646.112667

Hinge K, Ghose A, Koliadis G (2009) Process SEER: A Tool for Semantic Effect
Annotation of Business Process Models. In: EDOC ’09. IEEE International, pp
54–63, DOI 10.1109/EDOC.2009.24

Hoffmann J, Weber I, Governatori G (2012) On compliance checking for clausal
constraints in annotated process models. Information Systems Frontiers 14(2):155–
177

Jiang J, Dignum V, Aldewereld H, Dignum F, Tan YH (2013) Norm compliance
checking. In: Proceedings of the 2013 International Conference on Autonomous
Agents and Multi-agent Systems, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, AAMAS ’13, pp 1121–1122, URL http:
//dl.acm.org/citation.cfm?id=2484920.2485101

Jiang J, Aldewereld H, Dignum V, Wang S, Baida Z (2014) Regulatory Compliance of
Business Processes. AI & SOCIETY pp 1–10, DOI 10.1007/s00146-014-0536-9

Kiepuszewski B, Hofstede AHMt, Bussler C (2000) On Structured Workflow Model-
ing. In: Proceedings of the 12th International Conference on Advanced Information
Systems Engineering, Springer, London, UK, CAiSE ’00, pp 431–445

Letia IA, Groza A (2013) Compliance Checking of Integrated Business Processes.
Data & Knowledge Engineering 87(0):1 – 18, DOI http://dx.doi.org/10.1016/j.datak.
2013.03.002

Ly LT, Knuplesch D, Rinderle-Ma S, Goeser K, Reichert M, Dadam P (2010) SeaFlows
Toolset - Compliance Verification Made Easy. In: CAiSE’10 Demos

Ly LT, Rinderle-Ma S, Göser K, Dadam P (2012) On Enabling Integrated Process Com-
pliance with Semantic Constraints in Process Management Systems. Information
Systems Frontiers 14(2):195–219

Ly LT, Maggi FM, Montali M, Rinderle S, vanvan der Aalst W (2013) A Framework for
the Systematic Comparison and Evaluation of Compliance Monitoring Approaches.
In: Proceeding of EDOC

44 Mustafa Hashmi et al.

Maggi F, Montali M, Westergaard M, van der Aalst W (2011) Monitoring Busi-
ness Constraints with Linear Temporal Logic: An Approach Based on Coloured
Automata. In: BPM, LNCS 6896, Springer, pp 132–147

Mulo E, Zdun U, Dustdar S (2013) Domain-specific language for event-based compli-
ance monitoring in process-driven soas. Service Oriented Computing and Applica-
tions 7(1):59–73, DOI 10.1007/s11761-012-0121-3

Murata T (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4):541–580

Orriäns B, Yang J, Papazoglou M (2003) A Framework for Business Rule Driven
Service Composition. In: Benatallah B, Shan MC (eds) Technologies for E-Services,
LNCS, vol 2819, Springer, pp 14–27

Ouyang C, Dumas M, Breutel S, ter Hofstede AHM (2006) Translating Standard
Process Models to BPEL. In: CAiSE, pp 417–432

Ouyang C, Dumas M, van der Aalst WMP, ter Hofstede AHM, Mendling J (2009)
From Business Process Models to Process-Oriented Software Systems. ACM Trans
Softw Eng Methodol 19(1)

Pesic M, van der Aalst W (2006) A Declarative Approach for Flexible Business
Processes Management. In: BPM Workshops, LNCS, vol 4103, Springer, pp 169–
180

Ramezani E, Fahland D, van der Werf J, Mattheis P (2012) Separating Compliance
Management and Business Process Management. In: Daniel F, Barkaoui K, Dustdar
S (eds) Business Process Management Workshops, Lecture Notes in Business
Information Processing, vol 100, Springer Berlin Heidelberg, pp 459–464, DOI
10.1007/978-3-642-28115-0_43

Ramezani E, Fahland D, van Dongen BF, van der Aalst WMP (2013) Diagnostic
Information for Compliance Checking of Temporal Compliance Requirements. In:
CAiSE, pp 304–320

Rodrìguez C, Schleicher D, Daniel F, Casati F, Leymann F, Wagner S (2013) Soa-
enabled compliance management: instrumenting, assessing, and analyzing service-
based business processes. Service Oriented Computing and Applications 7(4):275–
292, URL http://dx.doi.org/10.1007/s11761-013-0129-3

Sadiq S, Governatori G, Namiri K (2007) Modeling Control Objectives for Business
Process Compliance. In: Proceedings of BPM’07, Springer, pp 149–164, URL
http://portal.acm.org/citation.cfm?id=1793114.1793130

Sartor G (2005) Legal Reasoning: A Cognitive Approach to the Law. Springer
Turki S, Bjekovic-Obradovic M (2010) Compliance in e-Government Service En-

gineering: State-of-the-Art. In: Exploring Services Science, LNBIP, Springer, pp
270–275

Weigand H, van den Heuvel WJ, Hiel M (2011) Business Policy Compliance in
Service-Oriented Systems. Information Systems 36(4):791 – 807

Wen L, Wang J, van der Aalst WM, Huang B, Sun J (2010) Mining Process Models
with Prime Invisible Tasks. Data & Knowledge Engineering 69(10):999–1021

