
NORMIT: a Web-Enabled Tutor for Database Normalization

Antonija Mitrovic
Department of Computer Science, University of Canterbury

Private Bag 4800, Christchurch, New Zealand
tanja@cosc.canterbury.ac.nz

Abstract

The paper describes the design and development of
NORMIT, an Intelligent Tutoring Systems (ITS) that
teaches database normalization to university students.
NORMIT is a Web-enabled system, and we discuss its
architecture and techniques used to deal with multiple
students. We also discuss Constraint-Based Modeling
(CBM), the underlying student and domain modelling
approach. NORMIT is the first in the series of constraint-
based tutors developed at ICTG that teaches a
procedural task, and we comment on the suitability of
CBM for such tasks. We also discuss the plans for the
evaluation of the system and future work.

1. Introduction

Web-enabled educational systems are becoming the
dominant type of systems available to students. Web-
based systems offer several advantages in comparison to
standalone systems. They minimize the problems of
distributing software to users and hardware/software
compatibility. New releases of systems are immediately
available to everyone. More importantly, students are not
constrained to use specific machines in their schools, and
can access Web-enabled tutors from any location and at
any time. The time/location independence is of enormous
value for learning environments, as flexibility and
accessibility are extremely important for learning.

The Intelligent Computer Tutoring Group (ICTG)
has been involved with developing intelligent tutoring
systems for a number of years. We have developed two
stand-alone systems: KERMIT [12], an ITS that teaches
the conceptual database modeling using the Entity-
Relationship data model, and CAPIT [6], a system that
teaches English punctuation and capitalization rules. We
have also developed two Web-enabled systems: SQLT-
Web, an ITS that teaches the SQL database language [8,
9], and LBITS, a tutor that develops the language skills
of elementary school children. All these systems use
Constraint-Based Modeling [10] to model the domain

knowledge and the knowledge of their students. The
instructional domains covered by these systems differ
significantly. CAPIT and LBITS cover domains with a
small number of rules. SQL is a declarative database
language which students find very difficult to master.
KERMIT teaches an open-ended design task, and is
based on fuzzy knowledge. Therefore, we decided to
develop a system that teaches a procedural task, to see
how well our existing methodology for building ITSs
will support a different kind of tasks. We also decided to
develop a Web-enabled system due to reasons discussed
earlier.

The paper is organized as follows. In the next
section we discuss the process of database normalization
and how it is supported in NORMIT. In Section 3, we
present the architecture of the system, focusing on the
components necessary for dealing with multiple students.
The final section presents our plan for the evaluation of
the system, and discusses the future work.

2. Learning database normalization in
NORMIT

Database normalization is the process of refining a
database schema in order to ensure that all tables in a
relational database are of high quality [4]. Normalization
is usually taught in introductory database courses in a
series of lectures that define all the necessary concepts,
and later practised on paper by looking at specific
databases and applying the definitions. To the best of our
knowledge, there are no ITSs that support student
learning database normalization, and NORMIT is novel
in that respect.

The student needs to log on to NORMIT first, and
the first-time user gets a brief description of the system
and database normalization in general. NORMIT is a
problem-solving environment, and as such provides only
limited information about the task itself. We have
envisioned the system as a complement to traditional
classroom instruction, so the emphasis is on problem
solving, not on providing information. However, the
system does provide help about the basic domain



concepts, when there is evidence that the student does not
understand them, or has problem applying knowledge.
The system also insists on using the appropriate domain
vocabulary; “talking science” has been shown to increase
learning and deep understanding of the domain. After
logging in, the student needs to select the problem to
work on. NORMIT lists all the pre-defined problems, so
that the student may select one that looks interesting. In
addition, the student may enter his/her own problem to
work on.

The database normalization task is a procedural one:
the student should go through a number of steps to
analyze the quality of the database schema. We require
the student to go through the following steps in
NORMIT:
1.Determine candidate keys: the student needs to analyze

the given table and functional dependencies in order to
determine all candidate keys. A candidate key is an
attribute or a set of attributes that has two properties:
uniqueness (its value is unique within the table) and
irreducibility (no attribute can be removed from the

key so that each value of the key is still unique. Figure
1 illustrates this task: the student is currently working
on a table consisting of 5 attributes, for which five
functional dependencies are given. The student enters
the candidate keys one at a time, and may ask the
system to evaluate the solution at any time.

2.Determine the closure of a set of attributes: if the
student is unsure whether a set of attributes makes a
candidate key, he/she may compute the closure of that
set under the given set of functional dependencies.

3.Determine the prime attributes(a prime attribute is an
attribute that belongs to any candidate key).

4.Simplify functional dependencies: if any of the given
functional dependencies has more than one attribute on
the right-hand side, the student needs to turn it into as
many dependencies as there are attributes on its right-
hand side (this step is the application of the decomposition
rule).

5.Determine the normal formthe table is in. During this
task, when necessary, the student will also be asked to
specify functional dependencies that violate one or
more normal forms.

Fig. 1. A screenshot from NORMIT



6. If necessary,decompose the tableso that all the final
tables are in Boyce-Codd normal form.

The sequence of the steps is fixed: the student will
only see a Web page corresponding to the current task.
However, the student may ask for a new problem at any
time during problem solving. In addition to that, he/she
may review the history of the current session, or examine
a global view of the student model. When the student
submits the solution to the current step, the system
analyses it and offers feedback. The first submission
receives only a general feedback, specifying whether the
solution is correct or not. If there are errors in the
solution, the incorrect parts of the solution are shown in
red. On the second submission, NORMIT provides a
general description of the error, specifying what general
domain principles have been violated. On the next
submission, the system provides a more detailed
message, by providing a hint as to how the student
should change the solution. The correct solution is only
available on student’s request.

3. The architecture of NORMIT

Figure 2 illustrates the architecture of NORMIT. As
can be seen, NORMIT is based on a centralized
architecture, as many other existing Web-enabled ITSs
(e.g. ELM-ART [3], AST [11] and SQLT-Web [7]).
Centralized tutors perform all tutoring function on the
server side, where all student models are also kept.
Distributed systems (e.g. ADELE [5], AlgeBrain [2] or
Belvedere [13]) also keep the student model on the
central server, but some of the tutoring functions are
performed on the client.

NORMIT is developed in Allegro Common Lisp
(ACL) [1] and uses the AllegroServe Web server, which
is an extensible server provided with ACL. At the
beginning of interaction, a student is required to enter
his/her name, which is necessary in order to establish a
session. The session manager requires the student
modeller to retrieve the model for the student, if there is
one, or to create a new model for a student who interacts

Web server
(AllegroServe)

Session
manager

Student
modeler

Problem
solver

Pedagogical
module

student
models

Problems

Web
browser

Internet

Fig. 2. The architecture of NORMIT



with the system for the first time. A Web-based tutor
must be able to associate each request to the appropriate
student model. Some Web-enabled systems use cookies
or IP numbers to identify the student who made a
request. Those two approaches were not suitable in our
case. It was not possible to use the IP number, as several
students might be using the same machine. We did not
want to use cookies for identification purposes because
cookies reside on a specific machine and would prevent
the student from using the system from different
machines. Instead, we identify students by their login
name, which is embedded in a hidden tag of HTML
forms and sent back to the server. If a student accesses a
page by following a link instead of accessing it through a
form, then user name is appended to the end of the URL.

It is also necessary to store student-specific data
separately from data about other students. All processing
is carried out within a single address space, and therefore
there must be a uniform mechanism for identifying
students and associating requests to corresponding
student models. In order to achieve this, we use a hash
table that maps the string representing a student name to
their student object, which contains all details pertaining
to the student.

Each action a student performs in the interface is
first sent to the session manager, as it has to link it to the
appropriate session and store it in the student’s log. Then,
the action is sent to the pedagogical module, which
decides how to respond to it. If the submitted action is a
solution to the current step, the pedagogical module
sends it to the student modeller, which diagnoses the
solution, updates the student model, and sends the result
of the diagnosis back to the pedagogical module. The
pedagogical module then generates feedback. If the
student has requested a new problem, the pedagogical
module consults the student model in order to identify
the knowledge elements the student has problems with,
and selects one of the predefined problems that feature
identified misconceptions.

The domain knowledge is represented as a set of
constraints. Constraint-Based Modeling (CBM) is a
student modeling approach proposed by Ohlsson [10], as
a way of overcoming the intractable nature of student
modeling. CBM starts from the observation that all
correct solutions to a problem are similar in that they do
not violate any of the basic principles of the domain.
CBM is not interested in the exact sequence of states in
the problem space the student has traversed, but in what
state he/she is currently in. As long as the student never
reaches a state that is known to be wrong, they are free to
perform whatever actions they please. Constraints define
equivalence classes of problem states. An equivalence
class triggers the same instructional action; hence all
states in an equivalence class are pedagogically
equivalent. It is therefore possible to attach feedback
messages directly to constraints. A violated constraint

signals an error, which translates to incomplete/incorrect
knowledge. The domain model is therefore a collection
of state descriptions of the form:

“If <relevance condition> is true, then
<satisfaction condition> had better also be
true, otherwise something has gone wrong.”

In other words, if the student solution falls into the state
defined by the relevance condition, it must also be in the
state defined by the satisfaction condition in order to be
correct.

NORMIT currently contains 53 constraints, which
are modular and problem-independent; they describe the
basic principles of the domain, and do not involve any
elements of problems directly. Some constraints check
the syntax of the solution, while others check the
semantics, by comparing the student’s solution to the
ideal solution, generated by the problem solver. The
semantic constraints check whether the student has
specified all the necessary parts of the solution. In order
to identify constraints, we studied material in textbooks,
such as [4], and also used our own experience in teaching
database normalization. Figure 3 shows constraint 5,
which specifies one condition the student’s solution must
satisfy when working on the closure task. The constraints
are written in Lisp, and can contain built-in functions as
well as specially developed functions. The first two lists
of constraint 5 are its relevance and satisfaction
condition. The relevance condition is a compound one: it
firstly tests whether the current task the student is
working is the closure task, and then it checks whether
the student has specified the attribute set. Finally, it binds
variablea to each attribute that appears in this set, thus
forming a multiple binding list. The satisfaction part
consists of a single test, which is applied to each binding
of variable a separately. If the attribute appears in the
closure, the constraint is satisfied. In the opposite case,
the student will be given the appropriate feedback.

There are two feedback messages in the constraint,
which are given to the student if his/her solution is
incorrect. The first message is shorter, and tells the

(5
(and (equalp (current-task sol) 'closure)

(not (null (attribute-set sol)))
(bind-all ?a (attribute-set sol) bindings))

(member ?a (closure sol) :test 'equalp)
"Each attribute that is an element of the set of attributes
we want to compute the closure of must appear in the
closure."
"Remember the reflexivity rule? Each attributes
determines itself (A -> A).
The general form of the reflexivity rule is:
If X is a superset of Y, or X=Y, then X -> Y"
(?a "attribute-set"))

Fig. 3. An example c onstraint



student what needs to be done. If the student still cannot
correct the solution after this message, NORMIT will
present the second message, which explains the
underlying domain principle that has been violated (in
this case, it is the reflexivity rule). The final element of
the constraint specifies the part of the solution that is
incorrect (in this case, that is the attribute to which
variablea is bound). This binding is used for highlighting
the error.

4.Conclusions and future work

This paper presented the architecture and underlying
philosophy of NORMIT, a Web-enabled ITS for teaching
database normalization. NORMIT uses Constraint-based
modelling to model domain knowledge and the
knowledge of its students. However, unlike the previous
tutors we developed, NORMIT is the first constraint-
based tutor that teaches a procedural task. We have
experienced no problems specifying constraints for such
a task. The system contains a problem solver, capable of
solving normalization problems. The knowledge base
contains 53 constraints that check the syntax and
semantics of students’ solutions, enabling it to analyze all
students’ submissions. To analyze the semantics of
solutions, NORMIT compares the student’s solution to
the ideal solution produced by the problem solver. The
number of constraints is likely to be higher, as we are
currently working on the decomposition task.

NORMIT is a Web-enabled system, with a
centralized architecture. Student models are kept on the
server, and all tutoring functions are also executed on the
server. The amount of information that needs to be
transferred from the browser to the server is not large,
and we believe that such architecture is appropriate.
NORMIT is developed in AllegroServe, an extensible
Web server that allows the components of the system to
be developed in Lisp. A special component of the system
called the session manager ensures that a student’s
actions are associated with her/his student model, thus
enabling the system to be used by multiple students
simultaneously.

We plan to evaluate NORMIT in a real classroom in
September 2002 at the University of Canterbury. The
system will be used in an introductory database course,
which has more than 170 enrolled students. We plan to
compare the students’ performance on a pre-test to their
performance on a post-test, after using NORMIT.
Information about all sessions will be recorded in logs,
and we will analyze how students learn constraints, and
also evaluate other types of support the system offers,
such as the open student model and support for self-
explanation.

Acknowledgements

The work presented here was supported by the Computer
Science Department, University of Canterbury. We thank
Li Chen for developing the interface.

References

1. Allegro Common Lisp, Franz Inc, 1998.
2. S. Alpert, M. Singley, P. Fairweather, Deploying

Intelligent Tutors on the Web: an Architecture and an
Example. Int. J. Artificial Intelligence in Education, 10,
1999, 183-197.

3. P. Brusilovsky, E. Schwarz, G. Weber, ELM-ART: an
Intelligent Tutoring System on Wolrd Wide Web. In C.
Frasson, G. Gauthier, A. Lesgold (eds),Proc. 3rd Int. Conf.
On Intelligent Tutoring Systems (ITS’96), Springer, LCNS
1086, 1996, 261-269.

4. R. Elmasri, S.B. Navathe,Fundamentals of database
systems. Benjamin/Cummings, Redwood, 1994.

5. W.L. Johnson, E. Shaw, R. Ganeshan, Pedagogical Agents
on the Web. Proc. ITS’98 Workshop on Intelligent
Educational Systems on the Web, 1998.

6. M. Mayo, A. Mitrovic, Optimising ITS Behaviour with
Bayesian Networks and Decision Theory’.International
Journal on Artificial Intelligence in Education, 12(2),
2001, 124-153.

7. A. Mitrovic, K. Hausler, Porting SQL-Tutor to the Web.
Proc. ITS’2000 workshop onAdaptive and Intelligent
Web-based Education Systems, 2000, 37-44.

8. A. Mitrovic, B. Martin, M. Mayo, Using Evaluation to
Shape ITS Design: Results and Experiences with SQL-
Tutor. User Modeling and User-Adapted Interaction,
12(2-3), 2002, 243-279.

9. A. Mitrovic, S. Ohlsson, Evaluation of a constraint-based
tutor for a database language,Int. J. Artificial Intelligence
in Education, 10(3-4), 1999, 238-256.

10. S. Ohlsson, Constraint-based Student Modeling. InStudent
Modeling: the Key to Individualized Knowledge--based
Instruction. Berlin: Springer-Verlag, 1994, 167-189.

11. M. Specht, G. Weber, S. Heitmeyer, V. Schoch, AST:
Adaptive WWW-Courseware for Statistics. Proc.
Workshop on Adaptive Systems and User Modeling on the
World Wide Web, UM-97, 1997, 91-96.

12. P. Suraweera, A, Mitrovic, Designing an Intelligent
Tutoring System for Database Modelling. In: M.J. Smith,
G. Salvendy (eds)Proc. 9th Int. Conf Human-Computer
Interaction International (HCII 2001), New Orleans, vol.
2, 2001, 745-749.

13. D. Suthers, D. Jones, An Architecture for Intelligent
Collaborative Educational Systems In: B. de Boulay, R.
Mizoguchi (eds) Artificial Intelligence in Education:
Knowledge and Media in Learning Systems.IOS,
Amsterdam, 1997, 55-62.


