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NORMS AND INEQUALITIES FOR CONDITION NUMBERS

ALBERT W. MARSHALL AND INGRAM OLKIN

The condition number cφ of a nonsingular matrix A is
defined by cφ(A) = φ(A)φ(A-ί) where ordinarily φ is a norm.
It was proved by 0. Taussky-Todd that (c) cφ(A) ^ cφ(AA*)
when φ(A) = (tr AA*)1/2 and when φ(A) is the maximum abso-
lute characteristic root of A. It is shown that (c) holds when-
ever p is a unitarily invariant norm, i.e., whenever φ
satisfies ψ(A) > 0 for A Φ 0; φ(aA) = | a \ ψ(A) for complex α;
ψ(A + B) ^ p(A) + p(J3); p(A) = p(Aϊ7) = ψ(AU) for all unitary
Z7. If in addition, φ(Eij) = 1, where £7̂  is the matrix
with one in the (i, i)th place and zeros elsewhere, then
cφ(A) ^ [^(AA*)]1/2. Generalizations are obtained by exploiting
the relation between unitarily invariant norms and symmetric
gauge functions. However, it is shown that (c) is inde-
pendent of the usual norm axioms.

l Introduction* The genesis of this study is the proposition that
under certain conditions, the matrix AA^ is more "ill-conditioned" than
A. More precisely, the condition number cφ(A) is defined for nonsingular
matrices A as

cφ(A) = ψiAMA-1) ,

where ordinarily φ is a norm. The statement concerning ill-condition-
ing of A A* is the inequality

(c) cφ(A) S cφ{AA*) .

Where φ{A) is the maximum absolute characteristic root of A and
where φ(A) — (tr AA*)lβ, inequality (c) was proved by 0. Taussky-Todd
[7]. This raises the question of whether (c) is true for all norms. In
this paper, we show that quite the contrary is true; (c) is independent
of the usual norm axioms. However, we also prove that (c) does hold
for a quite general class of norms.

In the course of proving these results, we obtain some inequalities
for symmetric gauge functions, which may be of independent interest.

2* Gauge functions and matrix norms* We call φ a matrix
norm if

( a l ) <p(A) > 0 when A Φ 0 ,
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(all) φ(aA) = | a \ φ{A) for complex a ,

(alii) φ(A + B) ^ φ(A) + φ(B) .

In addition to these basic axioms, various other conditions are some-
times imposed:

(alV) φiEv) = 1 ,

where Ei£ is the matrix with one in the (i, j)th position and zero
elsewhere,

(aV) φ(AB) rg φ(A)φ(B) ,

(aVI) φ{A) — φ( UA) = φ(A U) for all unitary matrices U .

If φ satisfies al, all, alii, and aVI, φ is called a unitarily invariant
norm.

There is an important connection between unitarily invariant norms
and symmetric gauge functions. A function Φ on a complex vector
space is called a gauge function if

( b l ) Φ(u) > 0 when u Φ 0 ,

(bll) Φ{au) = I a \ Φ(u) for complex a ,

(bill) Φ(u + v) ^ Φ(u) + Φ{v) .

Often it is convenient to assume, in addition, that

(blV) Φ{ed = 1 ,

where e{ is the vector with one in the ith place and zero elsewhere.
If, in addition to bl, bll, and bill,

(bV) Φ(ult , un) = Φ{exuil9 , enuin)

whenever ε̂  = ± 1 and (ίl9 , in) is a permutation of (1, , n), then
Φ is called a symmetric gauge function.

It was noted by Von Neumann [8] that a norm φ is unitarily
invariant if and only if there exists a symmetric gauge function Φ
such that φ{A) = Φ(a) for all A, where al, , a\ are the eigenvalues
of AA*.

If Φ is a symmetric gauge function and u, v satisfy u{ ^ vi9 i —
1, " ,n, then it follows [6, p. 85] that

(2.1) Φ(ulf , un) ^ Φ(vlf , vn) .

If Φ is a symmetric gauge function satisfying blV, then [6, p. 86]

n

(2.2) max luA ^ Φ(uu , un) ̂  Σ I uι I
i i l
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If φ is the unitarily invariant matrix norm determined by Φ as above,
then it follows that

φ(AB)
φ(A)φ(B) [max Xt

* 3

n max λ, (J55MM)

[max X{ (AA*)][max λ, (BB*)]
i j

^ n ,

where λ^M") are the eigenvalues of M. Thus, for any k Ξ> n, kφ is
a unitarily invariant matrix norm also satisfying aV. Of course, φ
itself satisfies alV (since Φ satisfies bIV)? and this property is destroyed
by the renormalization.

3* The condition number inequality*

THEOREM 3Λ. If φ is a unitarily invariant norm, then

< c ) cφ(A) ^ cφ(AA*) .

If Φ is a symmetric gauge function which determines φ, then we
may rewrite (c) in the form

, an)Φ(ar\ , α--1) ^ Φ(a\, , a\)Φ(a?9 , a~2) .

Thus, Theorem 3.1 is a very special case of

THEOREM 3.2. If Φ is a symmetric gauge function, then
Φ(a{, , ar

n)Φ{aϊr, , α~r) is increasing in r > 0, where at > 0.

The proof of Theorem 3.2 is embodied in the lemmas below.

Following [2] we say (a19- -,an) is majorized by (&i, •••,&„),

written (a) -< (b), if

( i ) a, ^ . ^ an > 0, 6X ^ . ^ 6n > 0,

(ϋ) i > ; ^ Σ & ; , fc=l, . . . , n - l ,
1 1

(iϋ) Σ «ί = Σ &*
1 1

LEMMA 3.3. 7/ (a) •< (b)? α̂ c? Φ is a symmetric gauge function,
then

(3.1)

(3.2)

Proof. Proofs of (3.1) have been given by Fan [1] and Ostrowski
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[3]; by an argument similar to that of Fan, we prove (3.2).
First, note that we can assume for h and j fixed, h < j ,

( 3 . 3 ) ah = abh + ( 1 - a)bj9 aά = ( 1 - a)bh + abjf a, = bi9iΦ h , j .

That this is true follows from the fact that if (a) -< (b), then a can
be derived from b by successive applications of a finite number of
transformations of the form (3.3) (see [2, p. 47]).

Let 6 = (6i, , bh_19 bjf bh+l9 , bd_19 bh9 bj+1, , 6Λ), so that Φ(bl9 9bj
= Φ(b19 , bn). By convexity,

(abt + (1 - a)^)-1 ^ αδΓ1 + (1 - α^Γ 1 .

Then using (2.1) and the convexity of Φ, it follows that

Φ(ar\ , a-1) = (PKα^ + (1 - α)^)- 1 , , (αδΛ + (1 -

^ Φ{abτι + (1 - αjδf1,

^ aΦφτ\ , 6^x) + (1 - a

As a consequence of Lemma 3.3., we have that if (a) -< (b) them

Φ{aλ, , an)Φ(ar\ , α"1) ^ Φ(blt , δJ^ίδΓ1, , 6Γ1) .

The proof of Theorem 3.2 is completed by the following

LEMMA 3.4. If ax ^ . ^ an > 0 and a, = a\IΣoCU9 b, = a\jΣas^
0 < r < s, then (a) •< (b).

Proof. We must show that for all k,

s >

which is true if and

k

1

only

*

if

<r
Σ«!

1

Σ ocl Σ «5 - Σ αί Σ «5 = Σ«I Σ «ϊ(αrr - «Γr) ̂  0 .
1 Λ+l 1 A+l i=l j~k+l

The latter follows from at ^ α,-, i < j . ||
Observe that by (3.1) and Lemma 3.4, we have

In view of (2.2), it is perhaps natural to expect that

( 8 4 ) or, y , . , < ) sμ_ 0<r< ai^...^
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for any symmetric gauge function Φ. To see this we need only prove
the left hand inequality, which may be written in the form

and which is a consequence of (2.1).
An interesting counterpart to Theorem 3.2 can be obtained from

(3.4).

THEOREM 3.5. If Φ is a symmetric gauge function satisfying
blV, then [Φ(ar

u , ar

n)]llr is decreasing in r > 0 whenever ai > 0,
i — 1, 2, , n. Thus [Φ(a[, , ar

n)Φ(aΐr, , a~r)]llr is decreasing
in r > 0.

Proof. We have that

the first inequality by blV and (2.1). The second inequality is (3.5).
Thus

so that

The theorem now follows from bll. ||

Theorem 3.5 can, of course, be specialized to yield a kind of con-
verse to (c).

THEOREM 3.6. If φ is a unitarily invariant norm satisfying
alV, then

(c*) [cφ(AA*ψ2 ^ cφ(A) .

Condition (c*) can also be obtained under somewhat different hy-
potheses. In particular, if ψ satisfies aV, then

cφ{AA*) -
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If also φ(A) = <p(A*), then (c*) follows. Of course, φ{A) = φ{A*) if
φ is unitarily invariant.

4* Independence of the norm axioms and (<:)• It is our pur-
pose here to show that the condition number inequality (c) does not
follow from the usual norm axioms al — aV. In fact, all, alii, alV,
aV and (c) are independent.

REMARK. It has been shown by Ostrowski [4] that al is implied
by all, alii, aV, together with φ(A) ^ 0, so that al is not included
in the list of independent properties. Rella [5] has shown that all,
alii, alV and aV are independent, and we add (c) to this list.

The results which prove the independence of all — aV and (c) are
summarized in the following table, where +( —) indicates that a
property is true (false).

φ(A)

1

(rank A)(tτ AA*)1'2

n max

max

all

—

+

+

+

+

alii

+

—

+

+

+

alV

+

+

—

+

+

aV

+

+

+

—

+

(c)

+

+

+

+

—

An example which serves in the last line of the table just as well
as Σ I ai3 | is the norm max̂  ^y I aij I = SUP* Φ(%A)/Φ(x)9 where Φ{x) —

xi |. Norms of this form are called "subordinate" or "lub" norms,
and in this case Φ is a symmetric guage function.

The remainder of this paper is devoted to proving the propositions
indicated in the table.

The results for φ(A) = 1 are obvious, so we begin by considering
φ{A) — (rank A)(tr AA*)1'2. In this case, all and alV are obvious, and
(c) follows from Theorem 3.1, since (tr AA*)112 is unitarily invariant.
As is well known, (tr AA*)112 satisfies aV; this together with rank AB ^
(rank A)(rank B) yields aV for φ(A) = (rank A)(tτ AA*)112. That alii
is violated may be seen by taking A — I and B the matrix with a
unit in the (1, l)th place and zeros elsewhere.

For <p(A) = n maxί(i | ai3 | and maxΐfi | aί31 the first four columns
of the table are well known, and we need only prove (c). Let ei be
the row vector with one in the ith position and zero elsewhere. Denote
M~λ — (mίj) where M= {mi3), and let U— AA*. By Cauchy's inequality,



NORMS AND INEQUALITIES FOR CONDITION NUMBERS 247

, aiS I I a« I - ! e.Aef 11 β ^ β j I ̂  [(eiUeT)(eri){eae*)(eβU-1etψ*

Hence,

max I a{j | max \aaβ\ g (max | uu | max | ua<* | ) 1 / 2 ,
ί j Cύ β ί Cύ

or

cφ(A) ^ M

Since U = AA* is positive semi-definite,

and it follows that cφ(AA*) ^ 1. Thus, we have that

(4.1) cφ(A) ^ [cφ(AA*)]112 ^ cφ(AA*) ,

which gives (c).
Note that the left inequality of (4.1) is a reversal of inequality

(c*). That (4.1) also holds if φ(A) is the maximum of the absolute
values of the characteristic values of A was proved by 0. Taussky-
Todd [6].

Since the first four columns of the table are well known for φ(A) =

Σ\ai3-\f we again need consider only (c). If A=(n o τ \ where B —

p). Then (c) is violated. This same example shows that (c) is

violated for φ(A) — max; 2JJ I aa l
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