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The main result of the present paper may be formulated as follows:

Put |4] = max z la,,| for an arbitrary matrix 4 = (a;). Let n be a
ik

natural number. Then n? — n + 1 is the minimum of all numbers ¢

with the following property: If A is a matrix of order »n such that |4| =

= ...= |49 = 1 then |A7}{ = 1 for all r.

Let B = (b;;) be a complex matrix of order n such that det B + 0 and
byl = z 6] for ¢ =1, 2, ..., n. Consider the system of equations z by, =
=y okzlmore briefly, ’
(1) By =y.
Clearly we may suppose that b;; = 1 for all 7. If we put [4| = max ; @]

for an arbitrary matrix A with elements a,;, we can instead of (1) write

(2) x=Ax +y,
where A .= F — B and |A] < 1. In order that the iterative method
(3) oD = Qa -y

be convergent for every initial vector x(® and every y it is necessary and
sufficient that the series H + 4 + 42 4 ... be convergent. Now it is well-
known that the following three properties of 4 are equivalent:

1° the series £ + 4 - 4?2 + ... is convergent,

2° the powers A" converge to the zero matrix,

3° the inequality |x| << 1 holds for every proper value x of 4.

Clearly these conditions are fulfilled if |4] << 1 or, more generally, if |A?| < 1
for some p. We are thus led to the following problem. Consider a matrix 4
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with [4] = 1 and construct the sequence 4, 42, A3, ... Clearly |4| = [A? =
= |43 = ... so that either [A7| = 1 for every natural r or [4?| < 1 for some
p and, consequently, 47 converges to the zero matrix.

It is thus natural to ask how far it is necessary to go in the sequence [A4],
|42], ... to decide which of the two preceding cases takes place. One of the
main results of the present paper consists in proving the existence of a number
q(n) which depends on n only and which possesses the following properties:

(1) if 4 is an arbitrary complex matrix of order n and |A| == |4™] =1
then |47 = 1 for every natural r (2) there exists a matrix A of order » such
that 4] = [42M™ - = 1 and |4%™]| << 1 (in other words, ¢(n) is the minimum

of all numbers possessing the first property). We prove that ¢(n) = n* —n + 1.

It turns out that the substance of this and other similar results consists
in the investigation of the combinatorial structure of matrices.

The proof of the result mentioned above is divided into forty-eight proposit-
ions most of which are of independent-interest. The purely combinatorial
ones are collected in the first section; in a suitable interpretation, this section
contains a large part of the theory of non-negative matrices. In the second
section, we study the combinatorial properties of matrices and vectors and
in the third section we obtain a series of theorems relating the distribution
of zeros in the given matrix 4 and the norms of iterations of 4. These theorems
culminate in the result mentioned above. For matrices whose diagonal elements
are different from zero, analogous theorems may be proved with n instead
of g(n). They form the subject matter of section four.

1. COMBINATORIAL THEOREMS

Throughout the present paper let # be a fixed natural number and let N
be the set of numbers 1, 2, ..., n. We shall denote by F the set of all mappings ¢
with the following two properties:

1° the mapping ¢ assigns to every set S ¢ N some set ¢(S) c N,

2° the mapping ¢ is additive; we have ¢(0) = 0 and ¢(S; U S,) == ¢(S;) v
U @(S,) for any two sets S, ¢ NV, S, c N.

If 9, ¢ Fand g, ¢ F, we define the superposition ¢ = ¢,¢, in the following
manner: ¢(S) = @,(p,(S)) for every S ¢ N. Evidently ¢ ¢ F as well.

In the whole paper, the symbol ¢ will denote an element of F. If r eV
and R is the set consisting of the point r, we shall frequently write ¢(r) for
@(R).

A mapping ¢ is said to be reducible if either p(N) = 0 or if there exists a
set § different from 0 and N such that ¢(S) ¢ S. (The existence of such a set S
is evident if ¢(N) =0 and » > 1.) A mapping ¢ is said to be irreducible if
it is not reducible. '

(L,1) Let ¢ be irreducible. Then ¢(N) = N and ¢(T') + 0 whenever T + 0.
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Proof. Since p(p(N)) ¢ ¢(N) and ¢(N) % 0, we have p(N)=N. I T c N,
T + N and ¢(T) = 0 then ¢(T) c T, whence 7' = 0.

(1,2) Let Sc N and let s be the number of elements of S. If r is a natural
number such that the set B = S u o(S) u ... u ¢7(8S) contains at most s |- r — 1
elements then ¢(R) c R.

Proof. There exists a ksuch that 1 < k < r and ¢*(S)c S v ... u g YI);
otherwise the set B would contain at least s 4- r elements. Clearly we have
¢?(S)c T for every j =k, where T =S v ... u ¢*1(S). It follows that

R =17 and ¢(R) c R.

(1,3) Let S c N and let S have s elements. If R =8 v ¢(8) v ... u ¢»3(S)
then @(R) c B. If ¢ is trreducible and S % 0, then ¢(S) U ... v *(S) = N.

Proof. This is an easy consequence of (1,2).

(1,4) Definition. Kvery disjoint system R of non-void sets whose union
is N is called a partition of N; the number of elements of R is called the length
of R. Now let ¢ € F and let R be a partition of length k. We say that R is a cyclic
partition (of N with respect to ¢) if there is a B ¢ N such that R = {R, ¢(R), ...

. PP YR)} and R = ¢*(R). The maximal possible length of a cyclic partition
is called the index of imprimitivity of ¢ and is denoted by d(¢). If d(¢) = 1 and
if ¢ is irreducible, we say that ¢ is primitive.

(1,5) Let ¢ be wrreducible and let T be a non-void disjoint system of non-void
subsets of N. Suppose that for each T e T there exists a V e T such that (T) c V.
Then T is a cyclic partition.

Proof. For each 7' e T there is exactly one V e T such that ¢(1") c V. Hence
it is possible to define a mapping y of T into T by the relation y(7) =V,
where Voo(T). Let 0 4T = {T,,...,T,}cT and let »(T')cT. Then
p(UT) = Up(T,) c Ux(T;) = Uy(T) cUT’ so that YT'=N, T'=T. It
follows that T is a partition of N. If we put T' = y(T), we see that y is a per-
mutation of T; further we see that for an arbitrary 7 eT we have T = {7,
2T, . U, T = x"(T) (where [ is the length of T). Evidently ¢7(7) c
cypforallj Put V=T u ¢(T) v ... v ¢*YT). Since p*(T) c (1) =T,
we have ¢(V)cV whence V=N and ¢T)u...u ¢¥T)=y(T)v ...

.U x"T) = N. It follows that ¢¥(T) = 4(T") for j = 1, ..., k, so that T =
=T, ¢T), ..., " 1)}, oM(T) = y™(T) =T.

(1,6) Notation. If e F, let V(¢) be the system of all ¥ ¢ N such that
¢!(V) c V for some natural j. Further let M(¢) be the system of all minimal
non-void elements of V(g).

(7)) I}V, W e Vig) then V o W € V().
Proof. If ¢/(V)cV, (W) c W, then ¢/*(V 0 W)ycV n W.
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(1,8) Suppose that @(T) + 0 for every T =+ 0. Then (M) e M(g) for every
M < mM(g)- ,

Proof. If ¢i(M)c M, then evidently (M) = (¢’(M)) C o(M) so that
@(M) ¢ V(9). Let now 0 = L c (M), ¢*(L) ¢ L and put p = jk, M, = ¢ Y(L).
We have ¢?(M) c M, ?(L) c L, ¢*(M,) = ¢?Yg?(L)) c ¢*~1(L) = My whence
M, eV(p). Further M, c ¢*Xp(M))c M and M, + 0, whence M, = M,
so that g(M) = (M ,) = ¢?(L) c L. Tt follows that L = ¢(M) which completes
the proof.

(1,9) Theorem. Let ¢ be irreducible and let m be the number of elements of
M(p). Then

1° M(p) is the finest cyclic partition,

2° m = d(e),

3° ™M) = M for every M e M(¢) and ¢™ is primitive on the set M.

Proof. According to (1,7), M(¢) is a disjoint system; lemmas (1,8) and (1,5)
imply that M(¢) is a cyclic partition. Now let R be an arbitrary cyclic partition.
Since we have evidently R c V(p), it follows from (1,7) that M(¢) is finer than
R. At the same time we see that m = d(¢). For each M ¢ M(¢p) we have obviously
¢™(M) = M and ¢m is irreducible on M. Now let T be a cyclic partition of
the set M « M(p) with respect to ¢™; let ¢ be the length of T and let M, ¢.T.
Then we have ¢tm(M,) = M, c M, whence M, = M, t = 1; the proof is
complete.

(1,10) Theorem. Let ¢ ¢ F. Then the following three conditions are equivalent:

1° o* is drreducible for k =1, ..., n,

2° @ is primitive,

3° @* is irreducible for all natural k.

Proof. Let ¢ be irreducible. If ¢*(B) c B, 0 + B + N, there is a M ¢ M(p)
such that M c B; since, according to theorem (1,9), M(¢) is a cyclic partition,
we have d(p) > 1. We see that 2° implies 3°. If d(¢) > 1 then @9 is reducible
so that 1° implies 2°. Condition 1° being a trivial consequence of 3°, the proof
is complete.

(1,11) Let ¢ be primitive and let. n > 1. Then there exists a natural k < n
and an © e N such that 1 e p*(t).

Proof. If ¢(x) contains exactly one point for every x e N, then the sets
{1}, ..., {n} form a cyclic partition of N according to (1,5), so that ¢ is not
primitive. It follows that there exists an 7 e N such that ¢(i) contains at
least two elements. Further, lemma (1,3) implies that ¢ e ¢™(i) for some
natural m < n. If m << n, the proof is finished; if m = n, put i, = ¢, =1
and choose 7,_; € ¢" (i), ..., 9y € (¢} in such a way that ¢, € @(¢,) for r =
=0,1,...,n — 1. Since 7, ¢ ¢¥9(3;) we can suppose that 7, & i, for 1 =< j <
< k = n. Then {iy, ..., i,} = N so that there exists a § such that 1 <<j ==n
and ¢; € (7). Then ¢ = 4, € ¢"(¢;) C g"~it(¢) and n —j + 1 < n.
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(1,12) Let ¢ be primitive. Let i e N, 1 < k < n and i € p*(t). Then ¢a=1%(3) — N,

Proof. Let S, be the set consisting of the point 7. Put §; = ¢/*(S,). Since
S; c ¢*(S;) and @* is irreducible by (1,10), we cannot have equality here
unless S; = N. Hence S,_, = N, or, in other words, ¢®-V%(3) = N.

(1,13) Let ¢ be primitive and let n > 1. If 1 € @*(i) for some i e N and some
natural k, then gm=2%+n(j) = N for every j e N.

Proof. Let d be the least natural number such that ¢ € ¢4(2). Put 4, = i; = ¢
and choose %4 4, ..., ¢ s0 that 4, eq(,) for r=0,1,...,d -— 1. Suppose
that 4, = i, for some p, ¢ such that 1 =< p << ¢ =< d. Then ¢ = i, € ¢?91,) =
= @?-9(3,) ¢ ¢4~ (a=2(3) which is impossible. The set €' consisting of 1, ..., i,
has, consequently, exactly d elements. Clearly m e ¢%m) for every meC.
Now let j be an arbitrary element of V. The set R = j U ¢(j) U ... U ¢"4(j)
contains at least n — d - 1 elements by (1,2) so that R n ¢ + 0. It follows
that there exists an m e C and a non-negative integer s = n — d such that
m e g*(j). Since m e g¥(m), we have ¢»~Di(m) = N according to (1,12).
Hence g¢#*(=2d(j) 5 go=Dd() = N. Now (n — 1)d + s < (n — 1)d +
+n—d=(n-—2)d+n=<(n—2)k+ n which completes the proof.

(1,14) Theorem. If ¢ is primative, then ¢@=V*1(j) = N for every j ¢ N.

Proof. We can suppose that n > 1. According to (1,11), there exists an
te N and a natural & << n such that 7 e ¢*(z). It is sufficient now to apply
lemma (1,13) and to note that n —2)k+n<(n—2)(n — 1)+ n =
= (n — 1)+ 1.

(1,15) Theorem. Let n > 2 and let ¢ be primitive. Let j e N and ¢=9'(j) +
+ N. Then it is possible to arrange the elements of N into a sequence j,, ..., j,
in such a way that j = 1§, e(f,) = {Jrea for r=1,2,..,n — 1 and ¢(j,) =
= {j, jo}. Further, ¢=0'(j) = N — {j} and ¢V (x) = N for every xe N
different from j.

Proof. Suppose first that ¢e ¢*(¢) for some ¢ e N and some kb < n — 2.
Then ¢~2+7(j) = N according to lemma (1,13). This, however, is impossible
since (n — 2)% + n < (n — 1)2 for » = 3. Tt follows that an inclusion 7 ¢ ¢*(3)
cannot hold unless k¥ = — 1. The inclusion je ¢"-1(j) is impossible by
lemma (1,12). Hence j is not contained in ¢(j) v ... v ¢*~1(j). Put F, =
=g{)u...ue(j) for r=1,2,...,n It is easy to see that F, contains
exactly r elements (otherwise F,_; would be equal to N which is a contra-
diction since j ¢ F,_,). Hence it is possible to arrange the elements of N into
a sequence iy, ..., %, so that F, consists exactly of ¢y, ...,4, for r = 1,2, ...
...y . Since j € F,_,, we have i, = j. Further, ¢(j) = F, = {i1}. Let 1 <r <
= n — 1; then 4, € p"(j) U ... U ¢%j) = @(F,) so that i,,, € ¢(i;) for some
k1 <k <r. Since ¢, ¢ F, and ¢(3,) c F,, c F, for k < r, we have k = r,
whence 4,,,€9(i,) for r=1,2, ..., n — 1. Suppose that ¢(¢,) = {i,,,} for
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r=1,2,...,n — L It follows then that ¢"(x) = {«} for every z ¢ N which is
impossible. Since ¢(i,) c p(F,) C {ty, ..., t,41}, there exist natural numbers
p=g=mn-—1 such that i,eq(i,). Hence i,epu?{)cqi~r+1(i,). It
follows that ¢ — p 4+ 1 =n — 1 whence ¢ =#n — 1, p = 1. We have thus
@(ly) = {ipay for r = 1,2, .., m — 2, @(i,) = {11}, @lin_y) = {in, 3,}. Now it is
sufficient to put j, = ¢, = jand j, =1, , forr =2, .., n.

Put S = ¢*~1°(j) so that S + N. At the same time, ¢(S) = N by (1,14).
Since jy.q € @(S) for r = 2, ..., n — 1, the inclusion §, € 8 holds for r = 2, ...
...,n — 1. Since 7 € ¢(S), we have j, € S as well. It follows that S = N — {j}.
Finally, for every x ¢ N different from j we have evidently = € ¢"—*(z), whence
(7/("‘])2(:[) = N by (1,12).

(1,16) Definition. Let F, be the set of all ¢ € F such that ¢(N) = N and
that ¢(P) == 0 whenever 0 5= P c N. For each ¢ ¢ F, let us define a relation
E(p) on N in the following manner: we put jE(¢)k if and only if there exist
Tos - Tpand g, ..., qysuch that vy = j, 7, = kand r,_,,r; e p(g,) fori =1, 2, ...
..y p- The relation E(¢) is clearly symmetrical and transitive; since ¢(N) = N,
it is also reflexive so that E() is an equivalence on N. If p e Fy and if m is a
non-negative integer, we have ¢™ e F, as well. Evidently ¢ ¢ F, for each irreduc-
ible ¢ ¢ F.

(1,17 Let ¢ eFy; put E.= E(¢). Let jE, %, x € ¢(j), y € p(k). Then jE,, %
and 2E,, ,y.

Proof. Let j = ry, k = 7, and let r,_,, r, e p™(¢,) for i =1, 2, ..., p. There
exist s, ¢ N such that q; € ¢(s;). Then r,_,, r; € " *(s;) so that jE,_ k. Choose
now t; e g(r;) for i = 2, ..., p — 1 and put ¢, = z and £, = y. It follows that
tiy, tiegmti(g,) for e =1, 2, ..., p whence zE,,1¥Y-

(1,18) Let peFy. If E,, = E, ., then E, ., = E,,.

Proof. Let 4, k e p"*2(q). We have j € p(q,), k € ¢(gs), where gy, ¢; € 9™ (q).
Since E, ., = E,,, we have ¢,E,q, whence jE, .,k by the preceding result,
Hence 2E,, .y implies 2E,,,,y. The other implication being a consequence of
(1,17), we have E,, ., = E,, ;.

(1,19) If ¢ eF,, then for every m the equivalence E,, | is coarser than E,,.
Further, E,_, = E,,.

Proof. This is an immediate consequence of the two preceding results.

(1,20) Let geF,. Let us denote by C the equivalence E,_y. Let {T', ..., T,}
be the partition of N corresponding to C. Then every @(T';) ts contained in some T,

Proof. Since C = E,_, = E, by (1,19), the conclusion follows from lemama
(1,17).

(1,21) Let 9 eFy. Let T={T,,....,T,) be a partition of the set N such
that every ¢(T';) is contained in some T,. Let m be a non-negative integer. Then
E,, is finer than the equivalence on N generated by the partition T.
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Proof. It is easy to sec that every ¢™(T';) is contained in some 7. It is
thus sufficient to limit ourselves to the case m = 1. If j, ke p(¢) and je T,
then the whole of ¢{(q) is contained in 7'; so that ke 7', as well. The rest is
easy.

(1,22) Theorem. Let ¢ be irreducible. Then the classes of the equivalence C
constitute the finest cyclic partition with respect to ¢.

Proof. According to (1,20) and (1,5) the classes of € form a cyclic partition.
By (1,213, the partition corresponding to € is finer than any cyclic partition
of N.

(1,23) Notation. If p e Fand S c N, let us define ¢*(S) as the set of those
x e N for which ¢(x) n S # 0. It is easy to verify that ¢* e F as well. Clearly
¢* may also be defined by the requirement that ¢*e F and that e ¢*(j)
if and only if §e @(s).

(1,24) We have ¢** = @ for every ¢ € F and (xf)* = p*x* for any two «, f < F.

Proof. Tmmediate.

(1,25) Let S ¢ N. Then ¢(N — ¢*(S)) c N — S.

Proof. Suppose that S n (N — ¢*(8)) &= 0. Then there exists an xe¢ N
— ¢*(8) such that S n ¢(@) + 0 whence x e ¢*(5) which is impossible.

(1,26) We have p*(S) ¢ T if and only if (N — T)c N — S.

Proof. If ¢*(S) ¢ T, we have according to (1,25) (N — T') ¢ ¢(N — ¢*(S)) c
¢ N — §. The other implication is a consequence of the relation ¢** = ¢.

(1,27) 4 mapping ¢ is reducible of and only if ¢* is reducible.

Proof. If ¢(N) = 0, then ¢*(N) = 0, too. If § c N is different both from
0 and N, sois T =N — 8. If ¢(S)c S, we have ¢*(T) c T according to
(1,26).

(1,28) A mapping p is primitive if and only if ¢* is primitive.

Procf. Let ¢* be primitive and let T = {7, o(T'), ..., ¢*~YT)} be a cyclic
partition with respect to ¢. Since ¢*(V) c V for each V e T, we have (¢*)*(T) c
c 7. Theorem (1,10) implies that (¢*)* is irreducible; by (1,24) we obtain
(p*)* = (p")* whenee T' = N, k = 1. It follows from (1,27) that ¢ is irreducible
so that ¢ is primitive.

2. MATRICES AND THEIR COMBINATORIAL PROPERTIES

In the rest of the paper the symbols 4, B will always denote matrices of
order n with complex elements a;;, b,,. The letters z, ¥ will denote vectors
with n complex coordinates x;, ¥;.

For every matrix 4 we define a mapping ¢ ¢ F in the following manner:
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if ScN,let ¢(S) be the set of those j ¢ N for which there exists an ¢ € § such
that a;; + 0. The fact that ¢ € F is easily verified. Further it is easy to see
that ¢*(S) is the set of those 7 ¢ N for which there exists a § ¢S such that
a; += 0. We shall write ¢ = F(4).

We shall adopt the following convention: the matrix 4 will be called redu-
cible, irreducible or primitive if the corresponding mapping F(A4) is reducible,
irreducible or primitive.

(2,1) Suppose that the malrices A and B are non-negative. Then F(AB) =
= F(4) F(B). Especially we have F(Ar) = (F(A))" for every natural r.

Proof. Put « = F(4), = F(B), ¢ = F(AB). Let Sc N and ke ¢(S).
There exists an ¢e.S such that Za,-,.b,-,c + 0 so that a;b;, + 0 for some [.

J
Clearly 1e a(S), ke p(x(S)) whence ¢(S)c f(«(S)). If, on the other hand,
k € f(«(8)), then there exists an 7 € S and an I e «(¢) such that & € 8(1); it follows
that > a,;b;. = ;b > 0 whence k e ¢(2) so that B(x(:S)) c ¢(S).

ik =
j
(2,2) Notation. For every 4 and every z put [4| = maxz lasl, ] =
i %
= max |z;. We have thus |dxz] < |4|.|z], |[AB]| =< |A].|B]. If |[A| =<1
let P(A4) be the set of those ¢ ¢ N for which z |l = 1. If |2] =< 1, we shall

denote by P(x) the set of those i ¢ N for which rx | = 1; further, we put @(4) =
=N — P(4), Q&) =N — P(x).

(2,3) Suppose that |[A| =< 1, [x| <1 and put ¢ = F(A). Then

1° P(4zx) c P(4),

2° P(x) o p(P(Aw)),

3° p*(Q(2)) c Q(4x).

Proof. The first inclusion is obvious. Now let ¢ € p*(@(x)); there is a ke N
such that |z;| <1 and a,;, & 0. We have then | Zawx | < Z ;] < >l =

J
=< 1 so that ¢ € @Q(4x) which proves 3°. Accordmg to lemma (1,26), the second
inclusion is a consequence of 3°.

- (2, 4) Let |A] <1 and let M be the matriz consisting of elements |a;,|. Let
r be a natural number, (p = F(A4"), o = F(M"), Sc N. Then P(A") c P(M"),

o(S) ¢ w(8). If ¢(i) = w(@ ]‘orsomei then 1 e Q(A7).

Proof. It is easy to see that we have |a{y| < m{}, where af}) and m{}) are
elements of A7 and M. Further, Zm”) = 1 for every ¢. The rest is easy.

(2,6) Let |[A] <1 and let r be a natuml number. If P(A™) = N then F(AT) =

= (F(4))".

Proof. According to (2,4), we have F(A") = F(M"), where M is the matrix
with elements |a;;). Clearly F(M) = F(A4). It follows from (2,1) that F(M") =
= (F(M))" so that (F(4))" = F(4").

)
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(2,6) If [A]| = |B| = 1 then P(AB) c P(4), Q(AB) > Q(A4).

Proof. If ¢ € P(AB), there exists a vector x such that |x| = 1 and that the
vector y = ABx has |y;| = 1. Putting z = Bz, we have |z] = 1 and i e P(4z) C
¢ P(4). The second inclusion is an immediate consequence of the first relation.

(2,7) Let |A] = |B| = 1, yp = (F(A))*. Then y"(Q(B)) c Q(A"B) for every
non-negative integer r.

Proof. Our assertion is trivial for » = 0. Suppose first that » = 1 and put
AB = W = (wy,). If ieyp(Q(B)), then there exists a k such that «,, + 0,
ke Q(B), whence |a, > |byg| < lazl. Tt follows that > lw| = > |a,by,l =

q P:q

p y
Z ] D bl < 2 lag,] = 1 so that i e Q(W). The rest follows by induction.
P q P

(2,8) Suppose that |A| == |B| =1, AB = BA and put ¢ = F(A). Let s
be the number of elements of P(B). Then there exists a set 7 such that ¢(Z) c Z,
P(AsB) c Z c P(B).

Proof. Put @ =QB), py =¢*, V=Qu p@) v ...uyQ), Z=N—V.
Evidently Z ¢ N — @ = P(B). Since @ has n — s elements, it follows from
(1,3) that ¢(V)cV whence ¢(Z)c Z by (1,26). Lemma (2,6) implies that
Q(A*+1B) = Q(A*BA) > Q(A*B) for every k = 0;if 0 = k = s, it follows from
(2,7) that »*(Q) c Q(A*B) c @Q(A4:B), whence V c Q(4A*B), Z > P(4°B) which
completes the proof.

(2,9) Let |A] = |B| =1, AB = BA and let A be irreducible. If P(B) has
8 < n elements, then |ASB] < 1.

Proof. By the preceding result, there exists a set Z such that P(4°B) c
c Z c P(B) and ¢(Z) c Z. Since ¢ is irreducible and Z c P(B) + N, we have
7 = 0 whence P(4sB) = 0.

3. NORMS AND PROPER VALUES

If |4} < 1 and if « is a proper value of 4, then there exists a vector x such
that |z| = 1, Ax = ax; it follows that |a| = |ax| = [dx| =< |4]. 2] = 1.
If |« =1, we have |A7| = |A"2| = |x"z| = 1 and, consequently, |47 =1
for every r.

We say that the matrix A4 is conservative, if |[A] = 1 and if |«| = 1 for some
proper value of A. We have then |47 = 1 for every r. On the other hand,
the main result of this section asserts that a matrix A of order 7 is conservative
if |A] = |A™-"*! = 1. In other words: if |4] = 1 and A is not conservative,
we have [A™ """ < 1 so that A" converges to the zero matrix.

(3,1) Let s be a natural number. If |A| = 1 and if A% is conservative, then A
s conservative as well.
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Proof. There exists an « such that |« = 1, det (4° — «*E) = 0. Let
&y, .., & be all s-th roots of 1. Then 0 = det (4 — ¢ akl) ... det (4 — e E)
so that det (4 — g;all) == 0 for some j.

(3.2) Let A be irreducible; let || = 1, x| = 1, Ao = aw. Then P(A) = P(x) =
=N, a;, = a2, ;.
Proof. By lemma (2,3), we have 0 + P(z) 2 ¢(P(4x)) = ¢(P(x)), so that
N = P(x) = P(4x) c P(4). Since || =1, 3 lag| =1, 2 a,mx, = ox,, we
k

have a;.2), = [a;| xx;.

(3,3) Theorem. Let A be an irreducible matriz. Then A is conservalive if
and only if A = o« DMD™ ' where « is a complex number with |x| = 1, D =
= (d;x) 18 a diagonal matrix with |d,| = 1 and M = (m;;) 18 @ non-negative
matriz with 3 m, = 1 for i = 1,2, ..., n.

k

Proof. This is an immediate consequence of (3,2).

(3.4) Notation. If 4 is a matrix and if V' ¢ N, we shall denote by A4, the
matrix with elements a,,, where 4, ke V. If (V) c V, then obviously (4,)" =
= (A7), for every natural r.

(3,5) Theorem. Let [A| =< 1 and let {T,, ..., T,} be the family of all minimal
nonvotd T ¢ N such that ¢(T) c T, where ¢ = F(A). Put V = N — UT;. Then

1°T, nT; =0 for ¢ £ 7,

2° the matrices ATi are trreducible,

3° the relations Z ¢V, ¢(Z) c Z imply Z = 0,

4° each proper value x of A such that || = 1 is a proper value of some AT,»

~

5° af V = 0, then Ay is not conservative.

Proof. f T, nT; =T =+ 0, then o(7T) c o(T,) 0 @(T;) c T, whence T =
=T, ="1,;, so that 1° is proved; 2° and 3° are obvious. Let now |x| = 1,
2] = 1, Ao = xz. Since P(z) 2 p(P(4x)) = ¢(P(x)) by (2,3), we have T; c P(x)
for some j; it follows that « is a proper value of Ay, which proves 4°. Now
suppose that ¥ # 0 and let g be a proper value of 4, with || = 1. According
to what has just been proved there exists a non-void W c V such that V n
n (W) c W, that Ay is irreducible and that § is a proper value of Ay. It
follows from (3,2) that P(dy) = W so that ¢(W)c W. We see that W > T,
for some § in contradiction with the relation W ¢.V ¢ N — T;. This completes
the proof.

(3,6) Notation. If ¢ is a complex number different from 0, put o(¢c) = é .
(3,7) Let |A| =1, |x|] = |y| = 1 and P(dz) = P(Ay) = N. Let ¢ = F(A4)
be irreducible. If jE(p)k) and x; = xy; then z, = oy, and |x| = 1. :

1) See definition (1,16).
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Proof. We may clearly limit ourselves to the case when j and % are contained
in some q(i); then a;a, + 0. Now |Ya,x,| = [Dasy,] = 1; it follows that
l2;] = || == ly;] = lyi] = | whence |x| = 1. Clearly o(a;x;) = o(a;x;) and
o(ay;) = olagyy).  Further, xo(ay) = olagw) = olayx;) = aolayy,) =
= ao(ty:) = &y,0(a;) Whence x, = oy, which completes the proof.

(3,8) Theorem. Let A be primitive, |A| =1, |v| = |y| == 1. If P(A"1x) =
= P(A"ly) = N, then there exists a complex number ~ such that y = xx,
lx] == 1.

Proof. Put w = F(A»1). It follows from the relation P(47-1) 5 P(A71x) =
= N and from (2,5) that @ = (F(A))*!; since 4 is primitive, theorem (1,22)
implies that there cannot be more than one class of the equivalence E(w). The
rest follows from (3,7) applied to 4»-1.

(3,9 Let n > 2 and let 4 be the matrix

0 a 0...0
0 0 a,...0

where pq + 0. Suppose that |[A] <1, |2 =1 and |y,| = ... = |y,| = 1, where
y = Arx. Then A is conservative.

Proof. It is easy to see that det (€ — A) =t — ut — A where 1 = a, ...
e QP M= Gy ... @y yq. By the Hamilton-Cayley theorem, we have A? =
= AE 4 uA whence
Y; = Ax; -+ pae;,, for j=1,..,n—1,
Yn = A2, + ppy - 1q, .
Now 1=y, = A + |u] = |pl + ¢ =1 whence |p| + {g| == 1. Suppose
that 'a,...a,_; << 1. Then |A] = a,...a,_;|.|p] < |p| whence 1 = ]3] 4

-+ |pe] <7 |p| 4 Ig| == 1; this contradiction shows that |a,| = ... = &, = 1.
Since 1 = |y,;| = |Ax; + paze; 4| for j=2,3,...,n — 1, we have |x,| = ...
... = |a&,] = 1. Since 1 == |y,| = |Ax, + upx; + pgx,l, we have |a;| = |x,| = 1

as well so that P(x) = N. It is easy to sce that y; = o(dx;) = o(4) 2, for j =
= 2,3, ..., n; since y, = Av, + upxr, + ugr,, we infer that y, = o(upx,) =
= o(uqr,). It follows that o(pz,) = o(qx,). Now y; = Ax, + pax, = a, ...
o @y (P qRy); hence [y = |pay -+ qao| = {pay| + |g@,) = [pl + lg] =1
so that y, = o(1) z; as well. We have thus y = o(1) « which implies that A»
is conservative. The rest follows from lemma (3,1).

(3,10) Let A be a primitive matrix of order 2 such that |A| = |43 = 1.
Then A is conservative.

191



Proof. We have a,;a, == 0 and at least one of the diagonal elements is
different from zero; consider the case @,; + 0. There exists an x such that
Jzf =1 and |A%| = 1. Put y = Az, 2z = Ay. Since |4dz| = |[Ay| =1 and
a1ty £ 0, we have |y,] = |2y = 1. Now a0, + 0 and |a,,y, + a9, =
= |, + @2, = 1. Clearly this is impossible unless y = ax for some «
of modulus 1.

(3,11) Notation. For every non-negative integer » put ¢(r) = 2 — r + 1.

(3,12) Let A be a primitive matrix such that (A} = |44™| = 1. Then 4 is
conservative, .

Proof. If n = 2, then our assertion reduces to the preceding result. Now
let » > 2 and put s = (n — 1)?, ¢ = F(A4), B = A%. According to (2,9),
we have P(B) = N so that F(B) = ¢* by lemma (2,5). Take a vector z such
that |x| = 1 and |A4mx| = |[BA"x| = 1. We shall distinguish two cases.

1° We have ¢*(i) == N for every i e N. From the relation F(B) = ¢* it
follows that b,;, + 0 for all ¢, k. Since |BA"-1x| = |BA"x| = 1, we see that
P(Ar-1z) = P(A"-*Ax) = N. According to theorem (3,8) there exists an «
such that || = 1, 4z = ax.

2° The set ¢%(j) is different from N for some j. In virtue of theorem (1,15)
we can suppose that 4 has the form described in (3,9). We have then ¢%(t) =
= N for i = 2,3, ..., n, while ¢*(1) = {2, 3, ..., n} so that b,, = 0 for every

pair of indexes except ¢ = k = 1. Since |By| = 1 for y = A"z, we have ly,| =
= ... = |y,] = 1 and A is conservative by lemma (3,9).
3,13) For d =1, ..., n we have
on—1= 00D a2y,
n(n — 1)
Proof. For t > 0 put g(t) = T --t. We have ¢(1) = g(n), gn) =
= 2n — 1;if n > 1 then g(n — 1) = 2n — 1, too. Our assertion is thus proved
for n=1.Tfn=2and 1 <t=n— 1 then g’(t):-—f(—nt—:—l)— +1<0,

whence g(n) = g(n — 1) < ¢(t) < g(1) which completes the proof.

(3,14) Theorem. Let A be an irreducible matrix of order m; let d be the index
of imprimitivity of F(A). If |A7| =1 for every integer r such that 1 <r =

—1 . .
< ﬁ(ﬁd——) -+ d, then A is conservative.

Proof. Put B = A%, ¢ = F(4), w = F(B). Sincen — 1 + d < g (n—1) +

+d, we have [BA"| = |4%-1| = 1. In accordance with lemmas (2,9) and
(2,5) we obtain P(B) =N, w = ¢% Let {M,, ..., Mz} be the finest cyclic
partition with respect to ¢. We have w(M,) = M, for j =1,...,d and it
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follows from theorem (1,9) that the matrices B; = By, are primitive. Let
n; be the order of B;. There exists a j such that n; < g—; put s = g(n,;). Sup-
posethat |Bj| < 1.Then P(B¢) has at most n — n; elements, whence | 4as+n—ni| < 1
by lemma (2,9). On the other hand, we have ds —}— n—n; < — (n2 —n; 4+ 1) 4-
+ (n — n;) = f(n;), where f(t) = (n — 1)¢ + Accordmg to lemma (3,13)

we have f(1) =2n — 1 < —(~—-—~)A +d=f (d); since f'(t) > 0 for ¢t > 0,

we obtain f(n;) < max (f(l), f(g—)) = E@,J____); + d, whence |Adsta—nj| = 1,
This contradiction proves that |Bj| = 1. By lemma (3,12) B, is conservative.
It follows that B = A¢ is conservative; by lemma (3,1) 4 is conservative as

well.

(3,15) Let A be an irreducitble matrixz such that |A| = [A¥™] = 1. Then A
18 comservative.

Proof. This is an easy consequence of lemma (3,13) and theorem (3,14).

(3,16) Theorem. Let A be a reducible matrixz of order n such that |A| =
= |[4un=D*1 = 1. Then A is conservative.

Proof. Let T, ..., T,, V be the sets from theorem (3,5). We intend to show
that at least one of the matrices Ay, is conservative. Suppose not. Let n; be
the number of elements of 7';; put » = maxt,;, B = A4%". Let P(B) have s
elements. We infer from lemma (3,15) that |45 < 1 for all j so that P(B)c
c N — UT,;, whence s <n — r. It follows from (2,8) that there exists a
Z c N such that ¢(Z) c Z, P(43B) ¢ Z c P(B). Since P(B) c V, theorem (3,5)
implies that 0 = Z = P(A4sB), whence [4«4"*s| = [43B| < 1. On the other
hand, we have s <n —r, so that q(r) +s Zq(r) +n —7r = (r — 1)2 +
+n=(m—2)2+4+n=¢r— 1)+ 1 and hence [4-1+i] < 1. This con-
tradiction proves that at least one of the matrices ATi is conservative; conse-
quently, the matrix 4 itself is conservative.

(3,17) Theorem. Let A be a matrix of order n such that |A| = |A™ "+ = 1.
Then A s conservative.

Proof. If 4 is irreducible we make use of lemma (3,15). If 4 is reducible we
have n > 1 so that ¢(n — 1) < g(n) and we may apply theorem (3,16).

(3,18) Let n > 1; put

010...0
001...0
A=1.......
000 1
pgo 0

193



where |p| + gl =1, pg £ 0 and o(p"t) + o(qn).2) Then |A| = |4""" =1
and [A™ " < 1.

Proof. Since det (t/ — A) =" — gt — p, we have A" = pH + ¢4 so

n-1
n—1 ) . .
that An-1 —= Z ( , grpr-trAr. Let al™ = [afp, ..., a{?] be the i-th
7=0
row of A7. It is evident that a{” = a{?; = ... = af’; if » << n, we have there-

n

fore a{),; =1, a} =0 for k +r- 1. It follows that > |a{"(""V| =

izl
(n(n—_1y), "n—1 _
= Z T =2 1 et = (pl + lghnt =1, whence
r=0
[A"(" b = 1. Suppose now that |A™ """ = 1. Theorem (3,17) implies that
there exists an « such that |x] = 1 and a® — g — p = det (xB — A) = 0.

Since a” = qo + p, we have o(p) = o(qx) whence & = o(pg1), o(prq—") = a® =
= o(p) and o(p"~1) = o(g") contrary to our assumption. The proof is complete.

(3,19) Theorem. For every natural number n there exists a matriz A of order n
such that |A] = |A""" =1 and |A™ "] < L.

Proof. Our assertion is trivial for n = 1. If » >> 1, we can take the matrix 4
from (3,18) where we put p = ¢ = — 1.
4. MATRICES WITH DIAGONAL ELEMENTS DIFFERENT FROM ZERO

(4,1) Let A be irreducible. Let a,; +£ 0 and o(a,;) = x for 1 =1,2 .. n,
If |A®| = 1, then there exists a vector x such that |x| = 1, P(x) = N and Ax =

= xX.
Proof. Put ¢ = F(A). We note first that ¢(S) 2 8 for every S c N. Since
| A7 = 1, there exists a vector x such that x| = 1 and |4"x| = 1. Forr = 0,1, ..

,n put P, = P(Amx). We have P(A™ ) 2> p(P(A™2)) > P(4A™x) by (2,3)
so that P, c P,_,c...c P, c P, Since P, * 0, there exists a natural » such
that P, = P,_,. Now P,_, o ¢(P,) o P,, whence ¢(P,) = P,. Since P, > P, + .
#+ 0 and ¢ is irreducible, we have P, = N so that P, = P,. It follows that
P(x) = P(y) = N where y = Az. Now y,; = Z i, |y = 1 and 3* la;,] <

= 1, whence a2, = |a;|y, for every ¢ and k. Especially, a;x;, = |a,] y;
for every ¢. Since a,;, = « |a;| & 0, it follows that ¥y = ax which completes
the proof.

(4,2) Let A be irreducible, |A| = 1. Suppose that a;; + 0 for i =1,2, ...
., 0 but that o(ay,) + o(ay,) for some p and q. Then P(A?) has at most n — 2
elements and |A® << 1. <

) I n — 2 we have 4 — (g ;)
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Proof. Let us denote by S the set of those j ¢ N for which o(a,;) = o{a,,)
80 that 1 eS. At the same time S + N. Let T = N — S. The mapping ¢ =
= F(A) being irreducible, we have ¢(T) n S + 0 £ ¢(S) 0 T so that there
exist points £, s, v, w such that t e T, se S, seqp(t) and ve S, we T, we ¢(v).
Further, o(a,) + o{a,) = o(t,,) = 0{@,,). Since a,, + 0, we have o(a,a,,) +
+ o(a,y) so that |by| = |2 ayyl < D layl . ja,] where B = A2 Now

7 K
z 6] < Zz lay] . |a;xl <1 whence t¢ P(B). In a similar manner, it is
k Lk j
possible to show that v ¢ P(B). Since t ¢ T' and v € S, the set P(B) contains
at most » — 2 elements so that |A% = |47 28] <1 by lemma (2,9).
(4,3) Theorem. Let A = (a,,) be a matrixz of order n such that a, + 0 for
=12 ..,n If |[A| = |47 = 1, then A is conservative.

Proof. It 4 is irreducible, our assertion is an immediate consequence of the
preceding results. If 4 is reducible, we may apply the method used in the
proof of theorem (3,16); we write, of course, r instead of g(r) and we make
use of theorem (4,3) for irreducible matrices instead of lemma (3,15).

Let us conclude with the following remark as an illustration.

Let B be a complex matrix of order » with elements b,;, such that det B + 0
and |b;;| = 2 |b,x] for ¢ = 1, 2, ..., n. Consider the system of equations
k41

(4) Bx =y
and the equivalent system
(5) x=Ax 4y
where 4 = K — B.
Clearly we may suppose that 0 < b,; << 1 for all i. We have then > || =
=1—1b,; +ka1)“¢| < 1, so that |A] =<1 and, moreover, a;; = 1 i by >0
=’

for all 7. Tet x be a proper value of A. There exists a vector x = [xy, ...

..., 2] such that Az = ax, |x,| = 1 for all ¢ and x; = 1 for some j. It follows

that o = xx; = 3 aja, whence [x| < 1. Since det (B — A) = det B + 0,
k

then 0 < <1, so that [x] < 1; otherwise |x| = | @] < > layl <1,
k k

we have « = 1; further we observe that a;z; > 0. If a;x, = 0 for all k,

8o that |x| << 1 again. It follows that the iterative method x(+) = Aa® -y
converges and, according to the results of the fourth section, |47 < 1.



Peszwowume
HOPMBI, CIIEKTPHI I KOMBUHATOPHBIE CBOMCTBA MATPHILL
AH MAPHUK (Jan Maiik) 1 BJACTHMHIJI IITAR (Vlastimil Pték), [Ipara

Hycrs A — MarTpuna DopsiKa % ¢ KOMIUICKCHBIMU BIIEMEHTAMU ¢, M ¢ HOP-
Moii [ 4] = max > |a;]. Pacemorpum ypasuenne 2 = Ax + y. s roro, uroGnt
i k

npomece urepanuu ¥, = Ax, + y 6bul cxopAmMUMCs I 11060r0 HaYaTbHO-
ro BeKrTopa &, u JHoboro ¥y, HeoGXOAMMO W [0CTATOUHO, 4To0H pam B + 4 -
+ A2 + ... cxommiics. Xopomio W3BECTHO, UTO IJIsT HTOTO HEOOXONUMO M AGCTa~
TOUHO, YTOOBI WMEJIO MCCTO HepaBeHceTBO |A| << 1 paa moboro coberBeHHOrO
uncsta A Matpunst A. 1o yesiosue, 09eBUAHO, BEITONHSETCs, ecan 4] < 1 wnm,
Goastee 060, ecan [A?] < 1 gaa waxkoro-mubo p. Mrak, MBI NPHXOINM K CICAYIO-
mew npobieme:

IIycrs mana marpuma A ¢ wopmoit |A| = 1 m moCTPOUM HOCICAOBATCIBHOCTE
A, A2 A3, . ... Ouesmujino, Oyner [A] = |A%] = |43 = ..., TaK 9T0 BOZMOJKHUBL CJIe~
nylomue upa ciydasi: nnm [A7| = 1 pysa Kammporo HaTypanbHoro » miu |A?) < 1
JULST Karoro-mmbo p; rtorma AT, O4eBUIHO, CTPEMUTCA K HYJIEBOW MaTpHLE.
Wrar, BOBHUKAaeT BONMPOC, CKOJLKO WIEHOB mociemoBatenbuoctu |A|, |42, ...
HYJKHO PAcCMOTPETh, YT00B! POINATH, KAKAS U3 YRABAHHBIX IBYX BO3MOIKHOCTCH

UMeeT MecTo.
I'nmaBubiM pesyabTaToM HacTosell paGOTHL ABISCTCA CIIC/YION[AA TeopeMa:

ITyemv A — Komnaekcnas Mampuya NOpadka m ¢ AeMEHMAMU A, NYCML
[A] = 1 u npednoaoxcun, 4mo euInoAngeMES 0010 U3 CACOYIOWUL MPET YCAOCUTL:
1° (A" " = 1
2° mampuya A pazaoncuma u | AW = 1;
P a,;, £00wai=1...,nuld4" = 1.
Toeda |AT| = 1 Oaa ecex .
Leau nonosscum 0 10...0
0 01...0
A= ... ,
0 060 ...1
—t—30...0
mo |A® " =1 u |A™ " < 1,

CylnmocTeio 3TOTO  pe3ysabrata SIBISAETCH WCCACHOBAHWE KOMOUHATOPHOIT
cTpyKRTypsl MaTpul. [JorazaresnnerBo riIaBHOI TeOPEeMbI PABNENTETCS Ha COPOR
BOCEMb YACTHUHLIX PE3yIBTATOB, M3 KOTOPHIX OOJILIIHHCTBO HWMCET CAMOCTOSI~
Teabroe 3HaveHne. Uuero KOMOMIATOPHE Pe3yALTATEL cOOpPAHEl B IePBOM Iia-
parpade; npu Hajale;KallleM WCTOTKOBAHHM BTOT naparpad) COAep:KuT Cyie-
CTBeHHYIO YacTh TCOPHU HEOTPULATeABHEIX MAaTPHIL.
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