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Introduction

Over the years there has been considerable
interest in and debate about the validity of
the law of one price (LOP) as it pertains
to markets for tradable goods. On one hand,
economists take it as being nearly axiomatic
that freely functioning markets for traded,
homogeneous products should ensure that
prices are efficiently linked across regional
markets, the implication being that no persis-
tent opportunities for spatial arbitrage profits
exist. This general concept is so fundamental
that it often serves as an untested assump-
tion that forms the starting point in models
of exchange rate determination and regional
trade. In spite of the prominent role played
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by the LOP in trade research, a number of
qualifications to this general relationship exist.
In particular, the strength of spatial linkages
among commodity markets typically depends
on the availability of reasonably accurate mar-
ket information and the lack of significant
impediments to spatial trade. Linkages that
involve national borders also raise a number
of issues pertaining to exchange rate pass-
through and international trade policies. It is
therefore common to examine commodities
whose prices are denominated in a common
currency, such as is the case with regional trade
within national borders. An entire literature
devoted to considerations of spatial market
linkages within a country—the case of spa-
tial market integration—has parallelled LOP
studies.1

In any event, the general implication under-
lying these basic concepts is that prices for
homogeneous products at different geographic
locations in otherwise freely functioning mar-
kets should differ by no more than transport
and transactions costs, the latter including, for
example, insurance, contracting fees, licensing

1 Distinctions between tests of the “LOP" and “spatial market
integration” are not especially meaningful. In both cases, the eco-
nomic phenomenon being evaluated—spatial market arbitrage—is
identical. A survey of both strands of literature can be found in
Fackler and Goodwin (2001).
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fees, legal fees,and possibly a risk premium. On
the other hand, there is substantial evidence
that the adjustment lags required to restore
arbitrage equilibrium are often found to be far
longer than would seem natural based upon
any reasonable understanding of the mechan-
ics of physical trade as it pertains to the markets
in question. Indeed, in some instances price
differences have been observed to exhibit near
unit root behavior, a condition that would
most certainly be at odds with any typical
rendering of efficient spatial arbitrage and/or
the LOP.

What then is the empirical consensus regard-
ing the LOP? In an extensive study that
used disaggregate data for traded goods,
Isard (1977) found rather conclusive evi-
dence against the LOP. Isard’s conclusions
were, moreover, subsequently confirmed for
a variety of commodities in a wide array of
market settings by, among others, Richard-
son (1978), Thursby, Johnson, and Grennes
(1986), Benninga and Protopapadakis (1988),
and Giovannini (1988). Goodwin, Grennes,
andWohlgenant (1990) did,however,find some
support for the LOP when it was specified
in terms of price expectations as opposed to
observed prices. A potential shortcoming of
all of these studies is a general failure to
explicitly consider the role of transactions costs
and delivery lags. More recently, cointegra-
tion techniques have been used to rationalize
the LOP as a long-run concept. By adopt-
ing this view of the LOP, numerous authors
have found rather more compelling evidence
in favor of the law, including, for example,
Buongiorno and Uusivuori (1992) (U.S. pulp
and paper exports), Michael, Nobay, and Peel
(1994) (international wheat prices), Bessler
and Fuller (1993) (U.S. regional wheat mar-
kets), and Jung and Doroodian (1994) (soft-
wood lumber markets).

Most recently, economists have explored
the implications of spatial arbitrage by using
nonlinear models of various forms. The under-
lying motivation is that adjustments to equi-
librium may not be linear, and that this
nonlinearity may, in turn, be associated with
hard-to-observe transactions costs associated
with arbitrage. The theoretical underpinnings
in the LOP for nonlinearity induced by
transactions costs have been put forward
by Dumas (1992), although the basic idea
dates back at least to the work of Heckscher
(1916), who noted that transactions costs
may define “commodity points” within which
prices are not directly linked because the

price differences are less than the costs of
trade.2

Empirical investigations of the role of
nonlinearity as pertains to the LOP have been
reported by Goodwin and Piggott (2001),
Lo and Zivot (2001), Sephton (2003),
Balcombe, Bailey, and Brooks (2007), and
Park, Mjelde, and Bessler (2007). The empir-
ical work reported in these studies has been
conducted primarily by using variants of
discrete threshold cointegration models of the
sort introduced by Balke and Fomby (1997). In
general these studies have found support for
threshold effects, with the path of adjustment
to equilibrium depending typically on the size
if not the sign of the shock. Specifically, intro-
ducing nonlinearities in the form of threshold
effects often provides much greater support
for spatial market linkages of the sort implied
by theory. In particular, large shocks that
lead to profitable arbitrage opportunities net
of transactions costs are quickly eliminated,
whereas smaller shocks, which may not be
large enough to result in profitable arbitrage
opportunities, may elicit a much smaller effect
or even no adjustment at all.

The extent to which spatially distinct markets
are efficiently linked may have important
implications for overall market performance.3

Here we consider regional North American
markets for a prominent traded commodity—
oriented strand board (OSB). OSB now
accounts for the largest share of the overall
panel wood products market, exceeding the
production and use of plywood by a consider-
able extent. Spatial linkages in this market are
of particular interest because it is a good that
is widely traded across considerable distances
within the North American continent. Con-
sumption is widespread and spatially dispersed,
while production tends to be concentrated in
particular regions such as the U.S. South and
East Canada. Depletion of old-growth timber
stocks that traditionally served as a source for

2 A good albeit brief review of the theory of nonlinearity induced
by transactions costs vis-à-vis the LOP is reported in Lo and Zivot
(2001).

3 Many different conceptual definitions of the notion of “spatial
efficiency” are used in the literature and as a result the coher-
ence of conclusions based upon empirical tests is often strained.
Here we are interested in the extent to which price shocks in
one location induce market reactions in another. This is consistent
with conventional views of market efficiency—that is, an absence
of persistent arbitrage opportunities. However, we do not explic-
itly pursue other aspects of efficiency that are often considered
(especially in developing economy studies), such as the underly-
ing structure and transportation linkages associated with regional
commodity trade.
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panel wood products brought about tremen-
dous growth in the use of engineered wood
products such as OSB. A burgeoning housing
market and its more recent contraction have
brought about a number of significant shocks
to this rapidly expanding industry. Construc-
tion market responses to large hurricanes such
as Andrew in 1992 and Katrina in 2005 are
another source of OSB market price volatility
that merits clearer understanding for better
quantifying the economic impacts of these
catastrophic events. These and related factors
underscore the importance of understanding
and quantitatively measuring linkages among
regional OSB markets. Wood products are also
bulky commodities, which are costly to trans-
port. This simple observation suggests that
transactions costs should play a substantive
role in shaping market linkages and reactions
to market shocks for this particular good.

Other aspects of the OSB market make
an investigation of spatial price linkages and
price dynamics especially timely and interest-
ing.The NorthAmerican OSB market has been
affected by a case involving allegations of price
fixing behavior in violation of the Sherman
Antitrust Act and related state antitrust laws.
The source of the data used in our analysis—
Random Lengths—played a role in the alleged
conspiracy as a mechanism used by the OSB
manufacturers to fix prices.4 Any such actions
on the part of producers, consumers,or middle-
men who have market power may be reflected
in spatial price linkages and adjustments to
market shocks.

In this paper we apply a class of nonlinear,
time-series models that allow for the possibility
of gradual adjustments among price linkages
and, moreover, for the possibility of structural
change. Specifically,we focus on a class of mod-
els known as time-varying smooth transition
autoregressions (TV-STARS). As the name
implies, TV–STAR models allow for a (possi-
bly) smooth transition in and out of a trans-
actions cost band that segments markets. As
noted by Taylor et al. (2000), this feature may

4 See Master File No. 06-826, OSB Antitrust Litigation, United
States District Court for the Eastern District of Pennsylvania. Ran-
dom Lengths is an independent, privately owned price reporting
service providing information on commonly produced and con-
sumed wood products in the United States, Canada, and other
countries since 1944. Reported open-market sales prices are based
on hundreds of weekly telephone interviews with product buy-
ers and sellers. These interviews are with producers, wholesalers,
distributors, secondary manufacturers, buying groups, treaters, and
some large retailers. The regional OSB price data used are FOB
mill price averages.

be important if agents operating in OSB mar-
kets are heterogenous, and each faces a slightly
different and unique set of trading costs. Fur-
thermore, by incorporating time-varying fea-
tures it is possible to allow for structural change
that may be associated with changes in pro-
duction costs, changes in demand, or other
changes that might, for example, be associated
with non competitive behavior. We present
the results of an empirical study wherein we
examine market linkages on a weekly basis
for six price pairs derived from four important
regional North American OSB markets. Initial
test results indicate there is considerable evi-
dence in every case in favor of nonlinearity in
price linkages as well as structural change. And
in every instance the estimated nonlinear mod-
els are superior to their linear counterparts.
Moreover, the results show how ignoring trans-
actions costs can lead to erroneous conclusions
regarding the nature and the strength of OSB
market linkages and the economic behavior
underlying them.

The Economic Model

We present here a simple model of spatial
price relationships that incorporates the effects
of transaction costs. The conceptual model
is based upon a framework developed by
O’Connell and Wei (2002). To simplify, trans-
action costs are assumed to be entirely due to
transport costs, which in turn are of the “ice-
berg” variety. Assume there is a homogeneous
commodity traded in two regional markets rep-
resented, respectively, by location indices i and
j. The regional market prices for the good are
given by pi and pj; moreover, assume for the
moment that the good is ordinarily purchased
in region i and sold in region j. The per-unit
revenue to arbitragers selling in region j is
therefore (1 − κ)pj, where κ denotes the per-
unit loss in value for the commodity due to
transaction (transport) costs, 0 < κ < 1. In gen-
eral the greater the distance between locations
i and j, the closer is κ to one. We then have the
following. Arbitrage from region i to region j
is not profitable so long as (1 − κ)pj − pi ≤ 0
or conversely (1 − κ) ≤ pi/pj. Alternatively, if
arbitrage is instead contemplated from j to i,
it follows that this activity will not be prof-
itable so long as pi/pj ≤ 1/(1 − κ). Combining
the inequalities associated with non profitable
arbitrage, we obtain

1/(1 − κ) ≥ pi/pj ≥ (1 − κ)
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or, after taking natural logarithms,

(1) −ln(1 − κ) ≥ y ≥ ln(1 − κ)

where y = lnpi − lnpj. The implication from
equation (1) is that there is a band, [−ln(1 − κ),
ln(1 − κ)], within which no profitable arbitrage
activity will occur; arbitrage is, however,
profitable when log relative prices, y, fall
outside of the limits of the band. Over time
we would expect that log relative prices within
the limits of the band would follow something
very close to a unit root process, likely without
drift. But log relative prices that fall outside of
the limits of the band should be mean revert-
ing, perhaps strongly so. Among other things
the implication is that standard unit root tests
applied to y collected over time may be mis-
leading in as much as the linear alternative
employed in these tests is inconsistent with
the presence of transactions costs (e.g., Lo and
Zivot 2001).

The relation in equation (1) implies a dis-
crete transactions cost band, which has often
been assumed in the literature (see, e.g.,
Balcombe, Bailey, and Brooks 2007; Goodwin
and Piggott 2001) and which typically yields
an empirical model consistent with a thresh-
old autoregression (TAR). Such an approach
is reasonable if agents are largely homoge-
neous and are geographically concentrated.
But to the extent that agents (firms) are not
geographically concentrated (i.e., they face dif-
fering transport costs), as is likely the case for
the application considered here, the threshold
approach may be limiting (Taylor et al. 2000).
One reasonable alternative, then, and one that
we consider subsequently, is to allow for a con-
tinuum of transactions cost bands, as might be
implied, for example, by a smooth transition
model.

The OSB Market and Price Data

Our focus here is on spatial price relationships
for OSB, an important regionally traded man-
ufactured wood product that was introduced
in 1978 (before which waferboard was used).
OSB is engineered by using waterproof and
heat-cured resins and waxes and consists of
rectangular wood strands that are arranged
in oriented layers. OSB is produced in long,
continuous mats that are then cut into pan-
els of varying sizes. In this regard OSB is
similar to plywood, although OSB is gener-
ally considered to have more uniformity than

plywood and is, moreover, cheaper to pro-
duce. The Structural Board Association (SBA)
reports that in 1980 OSB panel production in
North America was 751 million square feet
(on a 3/8-inch basis) but that by as early as
2005 this number had grown to 25 billion
square feet. The SBA also reports that by 2000
OSB production exceeded that of plywood
and that by 2006 OSB production enjoyed
a 60% market share among all panel prod-
ucts in North America. Figure 1 illustrates the
substantial growth in OSB use and the corre-
sponding decline in consumption of plywood
products. OSB is widely used in residential
and commercial construction, with the bulk of
OSB produced in North America originating
in the southern United States and Canada: in
2009 and 2010 Canada and the southern U.S.
produced nearly 90% of all OSB produced
in North America (Engineered Wood Product
Association 2010).

Considering the above, we focus on price
relationships for OSB in four regional North
American markets. Specifically, the regions
examined are: (1) East Canada (production at
plants in Ontario and Quebec), (2) U.S. North
Central (production at plants in Wisconsin,
Michigan, and Minnesota), (3) U.S. Southeast
(production at plants in Georgia, Alabama,
Mississippi, South Carolina, and Tennessee),
and (4) U.S. Southwest (production at plants
in Texas, Louisiana,Arkansas, and Oklahoma).
The result is that there are six pairwise spa-
tial price relationships that may be examined,
with the market/price pairs identified, in order,
in table 1. The price data are for panels of
7/16-inch OSB and are expressed in U.S. dol-
lars per thousand square feet.All price data are
observed on a weekly basis and were obtained
from the industry source Random Lengths.
The period covered is from February 3, 1995
through October 9, 2009, the result being that
there are 767 usable weekly observations. A
plot of the regional OSB price data is reported
in figure 2; important events impacting North
American OSB markets during the sample
period are recorded in table 2.

As noted previously, the sample period coin-
cides with the growth and eventual dominance
of OSB as a building material in North Amer-
ica. But specific episodes affecting regional
OSB prices are as follows. First, the sam-
ple period coincides with an era of sustained
growth in domestic housing markets (approx-
imately 1991 through 2006), and most notably
in several states in the U.S. Southeast (i.e.,
Florida and Georgia). Second, the sample
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Figure 1. U.S. plywood and OSB consumption, 1958–2009 and projected for 2010

Table 1. Definition of Six Regional OSB
Price Pairs

Pair Market Pairs Price Pairs

(A) East Canada–U.S. North
Central

ln(p1/p2)

(B) East Canada–U.S. South-
east

ln(p1/p3)

(C) East Canada–U.S. South-
west

ln(p1/p4)

(D) U.S. North Central–U.S.
Southeast

ln(p2/p3)

(E) U.S. North Central–U.S.
Southwest

ln(p2/p4)

(F) U.S. Southeast–U.S. South-
west

ln(p3/p4)

Note: East Canada refers to prices from plants operating in Ontario and

Quebec; U.S. North Central refers to prices from plants operating in plants

in Wisconsin, Michigan, and Minnesota; U.S. Southeast refers to prices

from plants operating in Georgia, Alabama, Mississippi, South Carolina, and

Tennessee; and U.S. Southwest refers to prices from plants operating in Texas,

Louisiana, Arkansas, and Oklahoma.

period also encompasses the more recent sharp
contraction in U.S. new home construction
(2006–2008) and the corresponding economic
downturn. Third, and as previously noted, the
sample period spans the time for which a
number of North American OSB manufactur-
ers allegedly conspired to hold down produc-
tion in a bid to increase prices (2002–2006).
Fourth, five tropical cyclones, four of which
were hurricanes, struck Florida in 2004, result-
ing in considerable property damage. Fifth, the
sample period includes the immediate effects

and aftermath of Hurricanes Katrina and Rita
in 2005, of which Katrina alone was the second
worst hurricane in terms of property dam-
age in the past 105 years (Pielke et al. 2008).
Finally, there were several notable periods
of capacity expansion in OSB manufactur-
ing. As reported by Kryzanowski (1996/1997),
during 1996 and 1997 considerable new OSB
production capacity came online in Canada,
with the result that OSB mill prices in East
Canada declined relative to other regions
during much of the late 1990s and early 2000s
(figure 2). As well, from 2006 to 2007 consid-
erable new production capacity came online
in the U.S. Southeast at almost precisely the
same time that conditions in the housing mar-
ket, and most notably in the U.S. Southeast,
started to weaken.5 The net result is that from
2007 on, prices for OSB in the U.S. Southeast
are below those for the remaining regions in
this study (see figure 2). Taken together, these
events raise interesting questions about how
these various market “shocks” may have been
transmitted among regional OSB prices and
what the role of structural change in regional
price relationships might have been.

As implied previously, the basic unit of anal-
ysis used throughout this study is the natural

5 Monthly data on regional housing starts show that construc-
tion in the Atlantic States declined more rapidly than most other
regions during much of the December,2006 to May,2010 period. Of
the Atlantic states, Florida and Georgia experienced the steepest
declines.
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Figure 2. Regional weekly OSB prices, 1995–2009

Table 2. Major Events Impacting Regional OSB Markets

Event Description Time Period

(1) Steady growth in new home construction, most notably in
the U.S. Southeast.

1991–2006

(2) New production capacity comes online in Canada. 1996–1997
(3) Price-fixing scheme allegedly engaged in by nine OSB

manufacturers that account for 90% of U.S. production.
through June, 2002 February, 2006

(4) Four hurricanes and one named storm make landfall in
Florida, causing over $49 billion in damage (2005 dollars).

August, 2004 through September,
2004

(5) Hurricanes Katrina and Rita make landfall. Combined they
account for more than $90 billion in property damage (2005
dollars).

August, 2005 through September,
2005

(6) New production capacity comes online in South Carolina
and Georgia.

2006–2007

(7) Significant weakening in new home construction, especially
in Florida and the Atlanta metro region.

2006–2009

Note: Dollar figures for named storms were obtained from Pielke et al. (2008) and are based on their PL05 methodology.

logarithm of the price ratio, that is, ln(pit/pjt),
where i and j are indices indicating regional
location (i.e., i, j = 1, . . . , 4) and a subscripted
t is a time index such that t = 1, . . . , T , where
T = 767.6 Plots of the six price pairs, expressed
in logarithmic form, are presented in figure 3.
These plots reflect many of the patterns
and events outlined above. For example,

6 The bulk of the empirical literature examining the LOP and,
relatedly,purchasing power parity (PPP) utilizes relative price rela-
tionships in logarithmic form. Alternatively, price differences in
levels could also be examined,although the strong kurtosis patterns
observed in the data would only be exacerbated by doing so.

during the late 1990s prices in East Canada
were generally lower than those in other
regions, due presumably to the expansion in
production capacity in Canada during this
time. As well, the plots in figure 3 reveal that
beginning in the fall of 2006 the relationship
between prices in the U.S. Southeast versus
those in other regions changed fundamentally,
with prices in the U.S. Southeast becoming
considerably cheaper (see panels (b), (d), and
(f) in figure 3). As well, the OSB price in East
Canada rose steadily relative to that of the U.S.
Southwest throughout much of the sample
period, presumably for some of the reasons
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Time-series plots of natural logarithms of sample (dashed line) and bootstrap simu-
lated (solid line) regional relative prices for OSB. Dashed horizontal lines denote approximate
transactions cost bands

described previously. Figure 3 also shows that
there is considerable volatility in price ratios,
suggesting the potential for significant market
interactions and reactions to shocks.

Econometric Methods

As noted in previous sections, for various rea-
sons, including firm heterogeneity, we use a
specific class of nonlinear time-series models,

TV-STARs, to examine the potential role
of transactions costs and structural change
in regional OSB markets. Specifically, our
empirical analysis will focus on transac-
tions costs being modeled according to a
quadratic STAR (QSTAR) or exponential
STAR (ESTAR) model. In this section we
define the TV-STAR models used and dis-
cuss ways of testing for threshold effects and
unit roots simultaneously in the context of
provisional linear models.
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STAR-Type Models

The fundamental building block of any non-
linear time-series model is a linear model, and
typically a linear autoregressive model. Let
yt = ln(pit/pjt) for some i and j. We may then
specify a linear pth-order autoregressive model
for the price pair as

(2) �yt = φ0 + φ
′

xt + θyt−1 + εt

where φ = (φ1, . . . , φp−1) and xt = (�yt−1, . . . ,
�yt−p+1).

7 As well, εt is a mean-zero indepen-
dent and identically distributed error term with
finite variance. Lag length p may be chosen
by using, for example, a model selection crite-
rion such as the Akaike Information Criterion
(AIC).

In the basic STAR modeling framework
used to investigate the LOP, the linear autore-
gression in equation (2) is typically modified as
follows:

�yt = φ̃
′

1x̃t(1 − G(st ; γ , c))(3)

+ φ̃
′

2x̃tG(st ; γ , c) + εt

where x̃t = (1, xt , yt−1), φ̃1 = (0, φ1, 0)
′

, φ̃2 =

(φ2,0, φ1, θ2)
′

, and θ2 < 0 is required. As well, c
may either be scaler valued or vector valued.
In equation (3) G(st ; γ , c) is the so-called
“transition function" that varies in a potentially
smooth manner between zero and one accord-
ing to a “transition" variable st , and whose
properties are determined by the values of the
speed-of-adjustment parameter γ > 0 and the
location parameter(s), c. The transition vari-
able st may be a function of nearly any observed
variable, but in practice it is typically taken
to be some function of the lagged dependent
variable, yt . For example, Killian and Taylor
(2003), in their investigation of the behavior of
real exchange rates based on fundamentals of
purchasing power parity (PPP), suggest using
something like

(4) st =

(
1

Dmax

) Dmax∑

d=1

yt−d

where Dmax is a pre-specified lag limit. The
specification in equation (4) is also consistent

7 In the ensuing discussion we assume that yt is stationary in
the levels, that is, is a mean-reverting process. As we shall see in
subsequent sections, this assumption is entirely consistent with our
preliminary analysis of the OSB regional price data.

with the notion that profit opportunities occur
when large deviations in relative prices occur
from some moving average.8 In what follows
we use the specification for st in equation (4)
with Dmax = 5.

In equation (3) we have a priori imposed a
set of restrictions that are commonly employed
in price parity studies where transactions costs
are a feature of the analysis. Specifically,
we have imposed φ1,0 = θ1 = 0 throughout, a
set of restrictions that, moreover, have been
employed by Michael, Nobay, and Peel (1997),
Taylor, Peel, and Sarno (2001), and Killian
and Taylor (2003), among others.9 The impli-
cation is that when the transition function
G(.) in equation (3) approaches zero, the log
price differential will follow a unit root pro-
cess without drift. Alternatively, when G(.)
approaches one, the log price differential will
exhibit mean-reverting behavior with, more-
over, φ2,0 denoting the long-run equilibrium.

In any event, equation (3) has a natural
economic interpretation in terms of depar-
tures from equilibrium parity conditions. The
transition variable determines the nature of
adjustment (or transition). In our case, the
transition variable represents a function of
lagged differences in logarithmic prices at two
distinct locations. The larger the (absolute)
value of the transition variable, the bigger
will be the difference in recently observed
prices and thus the larger is the deviation
from a presumed parity condition and potential
gains from arbitrage. We anticipate that larger
deviations will induce faster and/or larger
market adjustments than will smaller devia-
tions. In this manner the STAR specification
accommodates potentially different market
adjustments that approximately follow depar-
tures from spatial price parity. The overall
implication is that large market shocks that
lead to departures from the LOP at time t −
1 should result in adjustments that tend to
restore the LOP beginning at time t. Smaller
shocks may indicate significantly different pat-
terns of adjustment.

There are a number of candidates for the
transition function G(.) in equation (3). Even
so, one that has been used extensively in
price parity analysis is the exponential or
ESTAR model (see, e.g., Fan and Wei 2006;

8 We are grateful to a referee for suggesting this specification for
the transition variable, along with its interpretation/justification.

9 Moreover, in the subsequent empirical analysis a test of these
restrictions for each price pair never resulted in a p-value less
than 0.05.
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Kilian and Taylor 2003; Paya and Peel 2004;
Taylor, Peel, and Sarno 2001). In this case the
transition function embedded in (see, e.g., (3))
is specified as

G(st ; η, c)(5)

= 1 − exp{−γ (η)[(st − c)/σst
]2ν},

γ (η) > 0, ν = 1, 2, . . .

where typically ν = 1 and σst
is the sample

standard deviation of the transition variable,
st—normalizing (st − c) by σst

tends to make
the speed-of-adjustment term, γ (η), unit free.
The exponential function in equation (5) dif-
fers from many prior specifications in that the
speed-of-adjustment term, γ , is specified in
turn as a function of an estimable parameter,η.
It is, of course, required that γ (η) be positive.
This inequality restriction is satisfied here by
specifying γ = exp(−η),and thereby estimating
η in lieu of γ . The resultant exponential transi-
tion function is therefore given by

G(st ; η, c)(6)

= 1 − exp{− exp(−η)[(st − c)/σst
]2ν},

ν = 1, 2, . . . .

In any event the exponential transition func-
tion includes one location parameter, c.10

The combination of equations (3) and (6)
when ν = 1 yields the ESTAR model. Alter-
natively, when ν �= 1, we refer to equation (5)
as the generalized ESTAR, or GESTAR. In

either case the parameters φ̃1(1 − G(st ; γ , c)) +

φ̃2G(st ; γ , c) change symmetrically about the
parameter c in equation (5) with st , thereby
allowing for the possibility of a transactions
cost band. Both the ESTAR and GESTAR
become linear as γ → 0 but as well when γ →
∞. The ESTAR setup is therefore capable of
modeling a spatial market setting where there
are transactions costs associated with alter-
ing trade flows and where movements in or
out of the band are potentially smooth. One
potential limitation of the ESTAR is that, as
such, it does not nest as a special case a three-
regime self-exciting threshold autoregression
(SETAR).This property is potentially useful in
part because several previous studies of spatial

10 A number of studies employing the ESTAR in the context
of the LOP or PPP have added the additional restriction that
c = φ2,0. See, for example, Killian and Taylor (2003). In the appli-
cation considered here, however, this restriction was found to have
little empirical support.

price relationships have successfully employed
three-regime SETAR models to account for
nonlinearities introduced by transactions costs
(see, e.g., Goodwin and Piggott 2001). What is
true, however, is that the GESTAR does nest a
(restricted) three-regime SETAR. Specifically,
even for finite γ as ν → ∞ the GESTAR takes
on SETAR properties. In this regard the GES-
TAR is a reasonably flexible transition func-
tion, with a potentially wider range of applica-
tion than its nested ESTAR counterpart.11

An alternative to the ESTAR/GESTAR
setup that is also well suited for examin-
ing questions related to price parity is the
second-order or quadratic logistic function,
proposed initially by Jansen and Teräsvirta
(1996), where c = (c1, c2) are location param-
eters, and given by

G(st ; γ , c) = [1 + exp{− exp(−η)(7)

(st − c1)(st − c2)/σ
2
st
}]−1,

γ > 0, c1 ≤ c2.

An interesting feature of equation (7) is that
when combined with equation (3), the param-

eters φ̃1(1 − G(st ; γ , c)) + φ̃2G(st ; γ , c) change
symmetrically as a function of st around (c1 +
c2)/2, the quadratic logistic function’s mid
point. In this manner the model that com-
bines equations (3) and (7), the QSTAR,allows
for the possibility of a transactions cost band
wherein movements in or out of the band are
potentially smooth. Note that as γ → 0 the
model in equation (3) becomes linear and, as
well, as γ → ∞; and assuming that c1 �= c2, then
G(.) assumes a value of one for st < c1 and
st > c2 and zero otherwise. In this manner the
QSTAR, similar to the GESTAR, nests as a
special case a three-regime SETAR. Even so,to
date the QSTAR has not been explicitly used to
examine the LOP or PPP.12 Because each tran-
sition function involves three parameters, the
choice between a QSTAR and a GESTAR will
generally be application specific, being deter-
mined by overall fit (i.e.,AIC) as well as various
model diagnostic measures.

There are several intuitive reasons to suspect
that the patterns of price adjustment in

11 The choice of ν may be determined by estimating the model
for a wide range of power parameters and comparing, for example,
AIC or likelihood function values. Since the value for ν does not
affect the number of free parameters being estimated, the model
with the lowest AIC is typically chosen. See, for example, Pollak
and Wales (1991).

12 Eklund (2003) considers QSTAR models in the context of
PPP but does not directly estimate such models.
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regional markets might be smooth rather than
discrete, even though the economic behavior
underlying the adjustments is of a discrete
nature (i.e., arbitrage is either profitable or it
is not). Weekly prices of the sort used in our
analysis comprise many transactions among
many agents, all averaged (or otherwise aggre-
gated) to obtain a single price. To the extent
that agents are heterogeneous and markets are
not entirely static within the week, differences
will exist across individual transactions. Aver-
aging or otherwise aggregating prices to obtain
a weekly price quote smooths these differences
and should result in smooth patterns of price
adjustment. Thus, it is preferable to allow for
the possibility that market shocks will result in
smooth adjustments back to parity rather than
a priori imposing discrete breaks that define
market regimes (Taylor et al. 2000).

Modeling Structural Change

An essential feature of the LOP, as imple-
mented in the context of transactions costs
bands, is that the process explaining the log-
arithm of relative prices is mean reverting for
all values of the transition function, G(.) > 0.
In short, the intercept term φ2,0 in equation (3)
defines the long-run equilibrium between price
pairs. There is, however, no reason to suspect
a priori that the long-run equilibrium term is
constant over time. Changes, either temporary
or permanent, in the marginal costs of produc-
ing OSB in one area relative to another could,
for example, cause the value of φ2,0 to change.
As well, changes in market structure, induced
perhaps by a change in competitive behav-
ior in one region relative to another, could
also cause the long-run relationship between
regional OSB prices to be altered.

Generally speaking structural change has
not been a feature of models investigating
either PPP or the LOP,at least when nonlinear-
ity induced by transactions costs is considered.
Even so, the model in equation (3) is eas-
ily modified to account for structural change
and, indeed, to account for multiple structural
changes. Specifically, consider the following
modified version of equation (3) that allows for
up to τ ≥ 1 structural breaks:

�yt = φ̃
′

1x̃t(1 − G1(st ; η1, c1))(8)

+

⎡
⎣̃φ

′

2x̃t +

τ∑

j=2

φj+1,0Gj(t
∗; ηj, cj)

⎤
⎦

G1(st ; η1, c1) + εt ,

where t∗ = t/T , t = 1, . . . , T .13 In other words,
Gj(.) is a transition function where the
transition variable st is the time index, t∗. As
such, the specification in equation (8) is similar
in spirit to the TV–STAR framework put forth
originally by Lundberg, Teräsvirta, and van
Dijk (2003). In the event that structural change
is smooth over time and non-monotonic the
transition function Gj(.) could be specified to
belong to the class of ESTAR or GESTAR
models in equation (6). Alternatively, if struc-
tural change is either monotonic or discontin-
uous, Gj(.) could be specified according to the
following logistic function:

Gj(t
∗; ηj, cj) = [1 + exp{exp(−ηj)(9)

[(t∗ − cj)/σt∗ ]
k}]−1,

j = 2, . . . , s

and where k could be any consecutive odd
integer but is typically set to k = 1 or k = 3
(see Balagtas and Holt 2009 for additional
details). In any event as γ (ηj) = exp(−ηj) → ∞
the relevant structural change becomes dis-
crete (discontinuous). There are various ways
to test for and fit models similar to equation (8),
that is, for models that allow simultaneously
for nonlinearity due to transactions costs and
structural change. In what follows, we employ
a specific-to-general modeling strategy simi-
lar to that described by Lundberg, Teräsvirta,
and van Dijk (2003). Specifically, a QSTAR or
GESTAR is first fitted to the relevant data and
then evidence of structural change is obtained
via additional diagnostic testing.

A Combined Unit Root and Linearity Testing
Framework

A key component of any study of spatial price
relationships is: (a) testing for unit roots (i.e.,
stochastic trends) in the respective ln(pit/pjt)
price pairs and (b) testing for linearity against
nonlinear alternatives. In as much as standard
unit root tests (e.g., the augmented Dickey–
Fuller [ADF] tests) do not consider nonlin-
ear alternatives, prior research has generally
approached testing in a two-step process. First,
stationarity is examined by using standard
unit root tests. Second, the data are then

13 In general other parameters, including the autocorrelation
coefficients and the coefficient on the lagged dependent vari-
able, could change over time as well. In the subsequent empirical
application, however, there was not much evidence that this was
the case.



Goodwin, Holt, and Prestemon Oriented Strand Board Markets and Price Dynamics 1003

examined for nonlinear features by specifying
an appropriate linear model and testing this
model against various nonlinear alternatives.

When considering the LOP, it may be desir-
able to test the null of a linear model with
a unit root against an alternative that incor-
porates nonlinear features and mean rever-
sion. Eklund (2003), for example, presents a
bootstrapping framework for testing a linear
unit root model against a stationary STAR-
type alternative, specifically, a QSTAR alter-
native. Rothe and Sibbertsen (2006) extend
Phillips–Perron type of tests of unit roots
to consider a stationary ESTAR alterna-
tive. Finally, Bahmani-Oskooee, Kutan, and
Su (2008) use tests developed by Kapetanios,
Youngcheol, and Snell (2003) to to examine
the unit root hypothesis against nonlinear, sta-
tionary alternatives consistent with an ESTAR
specification.

Here we employ a testing approach similar
to Eklund’s (2003). Formally, consider that we
wish to test the validity of the linear unit root
model

(10) �yt = φ0 + φ
′

xt + εt

against a stationary GESTAR or QSTAR
alternative

�yt = (φ1,0 + φ
′

1xt + θ1yt−1)(11)

× (1 − G(st ; γ , ω))

+ (φ2,0 + φ
′

2xt + θ2yt−1)

× G(st ; γ , ω) + εt ,

where ω denotes parameters in G(.) other than
γ (i.e.,ω includes one or more centrality param-
eters and, possibly, the power parameter ν).14

Luukkonen, Saikkonen, and Teräsvirta (LST;
1988) note that even in the absence of the
unit root question, it is not possible to directly
test equation (10) against equation (11) by
using standard tests. The reason is that even
under the null hypothesis of linearity, that is,
under H

′

0 : γ = 0, the remaining parameter(s)
in G(.), as well as those in φ1 and φ2, are
unidentified. Simply put, there are unidentified
nuisance parameters under the null, the clas-
sical Davies (1977, 1987) problem; usual test

14 For purposes of unit root and linearity testing, we assume
under the alternative that both regimes contain a drift term and that
both contain the lagged level of the log price ratio. The reason for
doing so is that the testing framework,developed by employing suit-
able Taylor series approximations of G(.), cannot also distinguish
between equation (3) and (11).

statistics such as the log likelihood ratio have
no known classical limiting distributions.

LST describe a practical approach to test-
ing H

′

0. Specifically, they replace G(st ; γ , ω)
in equation (11) with a suitable Taylor
series approximation evaluated at γ = 0. For
GESTAR or QSTAR models, LST suggest
using a first-order approximation to G(.); how-
ever, Escribano and Jordá (1999) present evi-
dence that a second-order approximation may
have certain advantages. By using the latter,
and after substituting the resultant second-
order approximation into equation (11) and
collecting terms, the following auxiliary regres-
sion is obtained:

�yt = δ0 + ϑ
′

xt + λ0yt−1 +

4∑

i=1

δis
i
t(12)

+

4∑

i=1

ϑ
′

ixts
i
t +

4∑

i=1

λiyt−1si
t + ξt .

The error term ξt is a linear function of the orig-
inal error term εt in equation (11) plus approxi-
mation error. Even so,under H

′

0 approximation
error is zero and ξt = εt .

We use equation (12) to test the null hypoth-
esis that log-relative price pairs for regional
OSB markets are best characterized by a lin-
ear model containing a unit root. Specifically,
by imposing the restrictions δ1 = . . . =
δ4 = λ0 = . . . = λ4 = ϑ1,1 = . . . = ϑ4,p = 0 on
equation (12), a linear unit root model is
obtained. We refer to the null hypothesis being
tested in this case as H0,lur . Likewise, we refer
to the resulting F-statistic associated with
testing H0,lur as Flur , which in turn is associated
with (9 + 3p) and T − (10 + 5p) degrees of
freedom.

The Flur test statistic will not be associated
with a limiting F-distribution when the unit
root hypothesis is also embedded in the restric-
tions being tested. We therefore approximate
the limiting distribution of Flur empirically by
using nonparametric bootstrapping methods.
(see Balagtas and Holt 2009 for additional
details).

Empirical Results

The econometric results obtained for the
weekly OSB regional North American price
data for the 1995–2009 period are presented in
three parts. First,we discuss the results of linear
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Table 3. Results of Unit Root Tests against Linear and STAR-Type Alternatives Applied to Six
Regional OSB Price Pairs

Linear Alternative Nonlinear Alternative

Price Pair Lag Length ρ̂ τμ p-Value ρ̂ τμ Flur p-Value

ln(p1/p2) 4 0.895 −5.590 0.001 0.703 −2.801 3.605 0.001
ln(p1/p3) 4 0.960 −3.299 0.013 1.010 0.238 2.198 0.013
ln(p1/p4) 1 0.902 −6.538 0.001 0.870 −3.161 5.635 0.001
ln(p2/p3) 3 0.952 −3.822 0.005 0.907 −2.847 3.992 0.001
ln(p2/p4) 1 0.865 −7.722 0.001 0.848 −4.445 9.297 0.001
ln(p3/p4) 8 0.961 −2.809 0.060 0.975 −0.613 1.840 0.013

Note: The first column indicates the optimal lag length for each price pair, determined by minimizing the AIC. ρ̂ is the estimated root. The test statistic τμ

denotes t-ratios for (ρ̂ − 1) and corresponds to the case where the estimated model includes an intercept but no trend. Columns headed p-value record

approximate p-value’s based on B = 999 bootstrap simulations. In every instance involving a nonlinear alternative, the transition variable, st , used is a rolling

average of the five most recent log price pairs, that is, st = 1
5

∑5
j=1 yt−j . As well, a fourth-order approximation to the transition function is used in estimation

and hypothesis testing.

unit root (i.e., ADF) tests applied to the price
pairs. We then discuss the results for the tests
of the linear unit root model versus a nonlinear
and (possibly locally) stationary alternative.
Finally, we present results for estimated STAR
models for the six OSB price pairs.

ADF Test Results

ADF tests were performed for each unique
ln(pit/pjt) where we focus exclusively on the
case where the null model is a random walk
with drift similar to equation (10) (i.e., the
τμ test). The first nineteen observations are
retained to determine the optimal lag length
by using the AIC, as well as for conduct-
ing further diagnostic analyses. The result is
that after first-differencing, we have a usable
sample of 747 weekly observations for each
market pair.

The ADF test results, including empirical
p-values,obtained in each case by boostrapping
the respective null model B = 999 times, are
reported in the left-hand panel of table 3.
Overall there is little support for the unit root
hypothesis in these data, at least when tested
against linear alternatives.Among other things,
the implication is that ln(pit) − ln(pjt) may be
thought of as a cointegrating relationship for
all i and j.15

Results of testing the unit root hypothe-
sis against stationary but nonlinear alterna-
tives are presented in the right-hand panel
of table 3 for each market pair. As indicated
previously, the candidate transition variable,

15 Given that log relative prices are the basic unit of analysis, it
follows that in this case the ADF test is equivalent to a test that β =
(0, 1) is a cointegrating vector in the log-linear price relationship
ln(pit) − β0 − β1ln(pjt).

st , in each case is the average of the log price
ratio for the previous five weeks as defined
in equation (4). Again, empirical p-values are
constructed by using 999 non-parametric boot-
strap draws of the null model’s residuals.
Results in table 3 indicate that the null of
a unit root and linearity may be rejected in
every case at conventional significance levels.
Indeed, for four of the six price pairs the
minimal p-value (0.001) is obtained. Given
the results of the standard ADF tests, it
seems reasonable to conclude that the results
for the joint unit root and nonlinearity tests
provide strong evidence in favor of nonlinear-
ity in the data generating processes for each
price pair, and most notably nonlinearity that
is potentially consistent with a GESTAR or
QSTAR specification.

TV-STAR Estimates

As specified, both the GESTAR model given
by equations (3) and (6) and the QSTAR model
given by equations (3) and (7) are nonlinear
in parameters: nonlinear estimation methods
are called for. Additional details regarding
estimation may be found in the study by van
Dijk, Teräsvirta, and Franses (2002). Optimal
lag lengths are determined by applying the
AIC to the linear model (Teräsvirta 1994).
Finally, the choice between the GESTAR and
QSTAR specifications is determined by care-
fully examining the results of each model’s fit
statistics as well as various diagnostic tests. As
well, Eitrheim and Teräsvirta’s (1996) tests for
parameter nonconstancy are applied to the ini-
tial STAR model estimates; in every instance
there is evidence of structural change. Con-
sequently, the STAR model with structural
change described in equation (8) is employed.
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The choice of the form of Gj(.) as well as
the number of structural change transition
functions, τ , were also determined on the basis
of overall model fit criterion and model diag-
nostics. The parameter estimates along with
a variety of model diagnostics are reported
in table 4 for each of the six final model
specifications. Plots of the estimated transition
functions are reported in figure 4.

As indicated in table 4, all price pairs save
for pair (F), that is, between the Southeast
and Southwest, employ a QSTAR to model
nonlinearity due to transactions costs: for pair
(F), nonlinearity is modeled using a GES-
TAR. Structural change is also modeled as
either an LSTAR, GESTAR, or some com-
bination of the two (see figure 4); pairs (A),
(C), and (D) are found to have multiple struc-
tural change features, while the remaining
pairs are associated with a single structural
change transition. As reported in table 4, for
every price pair, the estimated standard error
for the TV-STAR model is smaller than that
for the respective linear model. Although not
reported in order to conserve space, in every
case the respective TV-STAR model has a
lower AIC than its linear counterpart. In this
regard the estimated TV-STAR models rep-
resent an improvement in fit relative to their
respective linear analogues. Results in table 4
also indicate that there is no evidence of
skewness in each model’s residuals, although
in each case there is substantial evidence of
excess kurtosis. Of course, such results are
not surprising given that weekly price data
are being employed. For these reasons the
Lomnicki–Jarque–Bera test overwhelmingly
rejects the null hypothesis of normality of the
estimated residuals in each case (table 4). Cor-
respondingly, diagnostic test results also reveal
that there is considerable evidence of autore-
gressive conditional type heteroskedasticity in
most instances.

The diagnostic tests developed by Eitrheim
and Teräsvirta (1996) were also employed
to test for any remaining autocorrelation as
well as remaining nonlinearity and/or param-
eter nonconstancy. These tests are imple-
mented as F-test versions of the respective
Lagrange multiplier (LM) tests. The results,
also reported in table 4, indicate that in
each case there is little evidence of remain-
ing autocorrelation and virtually no evidence
of remaining nonlinearity. For pairs (A) and
(C) there is some evidence of additional
parameter nonconstancy, although attempts to
fit additional structural change features were

not successful.16 Finally, the plots in figure 4
indicate that for pairs (A)–(D) the estimated
STAR models approach a SETAR. Alterna-
tively, for pairs (E) and (F) the transition
functions for st are smooth, implying that there
are no unique transactions cost bands.

Model Dynamics

While the model fit and diagnostic results indi-
cate that the estimated TV-STAR models for
the regional OSB price relationships do a rea-
sonable job of explaining the data, additional
questions remain. In particular, what are the
implications of the estimated nonlinear models
for the dynamics of price linkages in each case?
To obtain additional insights into the behav-
ior of the estimated STAR models, we perform
stochastic forward simulations of the models
by using a bootstrap routine similar to that
suggested by Clements and Smith (1997) for
use in SETAR models. In essence bootstrap-
ping is used to perform numerical integration
in order to obtain estimates of expected values
of forward iterations once stochastic shocks
are introduced. A representative draw (out of
1,000 draws) for each price pair, iterated ahead
for 400 weeks beginning with October 16, 2009,
is recorded along with the actual observa-
tions from February 3, 1995 through October
9, 2009 in figure 3. As well, the approximate
transactions cost bands are reported as dashed
horizontal lines in figure 3.17 In every instance
it appears that the fitted TV-STAR models do
a reasonable job of replicating the salient fea-
tures of the data, including long swings in the
price relationships.18 Based on these results it
seems reasonable to further assess the dynamic
properties of the estimated models by exam-
ining each model’s regime-dependent half-
lives and by developing generalized impulse
response functions.

We first consider regime-dependent half-
lives, which are computed by evaluating
ln(0.5)/ln(ρ̂), where 1 − ρ̂ is the coefficient on
the lagged dependent variable in the (regime-
dependent) regression. Imputed half-lives in

16 Specifically,attempts to add additional structural change com-
ponents in these instances did not yield models withAIC values that
were lower than those for the models reported here.

17 In particular, the bands are approximate in panels (E) and
(F) in that the underlying models in these cases are associated
with smooth transition from one regime to another, as opposed
to discrete transition.

18 Indeed, perhaps the only feature not adequately captured by
the estimated TV-STAR models and, as noted above, is the fat tail
feature of regional price pair distributions.
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Table 4. STAR Model Estimates for the Weekly OSB Regional Price Relationships

Panel A, yt = ln(p1t/p2t)

�yt = [0.044
(0.039)

�yt−1 − 0.119
(0.035)

�yt−2 − 0.034
(0.036)

�yt−3 − 0.124
(0.035)

�yt−4] × [1 − G1(st ; η1, c1, c2)] + [− 7.668
(0.880)

+ 0.253
(0.093)

�yt−1 + 0.249
(0.129)

�yt−2 − 0.113
(0.156)

�yt−3 + 0.214
(0.160)

�yt−4

− 0.538
(0.058)

yt−1 + 7.940
(1.131)

G2(t
∗; η2, c3) − 3.915

(1.048)
G3(t

∗; η3, c4)] × G1(st ; η1, c1, c2) + ε̂t ; G1(st ; η1, c1, c2) = [1 + exp{− exp(7.740
(9.630)

)(st + 12.651
(1.193)

)(st − 2.538
(1.378)

)/σ̂ 2
st
}]−1;

G2(t
∗; η2, c3) = 1 − exp{− exp(− 0.124

(0.785)
)(t∗ − 0.380

(0.020)
)10/σ̂ 10

t∗ }; G3(t
∗; η3, c4) = [1 + exp{− exp( 9.156

(180.387)
)(t∗ − 0.893

(0.089)
)/σ̂t∗ }]

−1

R2 = 0.175, σ̂NL = 2.093, σ̂NL/σ̂L = 0.946, AIC = 1.528, SBC = 1.814, LJB = 123.11 (1.85 × 10−27), LMSC(4) = 0.723 (0.576), LMARCH (4) = 2.399 (0.049),
LMNL(st−1) = 0.510 (0.728), LMNL(st−2) = 1.805 (0.228), LMNL(st−3) = 1.925 (0.158), LMNL(st−4) = 1.334 (0.658), LMC = 2.540 (0.009).

Panel B, yt = ln(p1t/p3t)

�yt = [0.129
(0.084)

�yt−1 + 0.056
(0.085)

�yt−2 − 0.152
(0.083)

�yt−3 + 0.039
(0.080)

�yt−4] × [1 − G1(st ; η1, c1, c2)] + [2.343
(0.961)

− 0.029
(0.041)

�yt−1 − 0.138
(0.041)

�yt−2 − 0.072
(0.041)

�yt−3

− 0.071
(0.042)

�yt−4 − 0.092
(0.018)

yt−1 − 3.209
(0.962)

G2(t
∗; η2, c3)] × G1(st ; η1, c1, c2) + ε̂t ; G1(st ; η1, c1, c2) = [1 + exp{− exp(4.982

(2.939)
)(st + 1.591

(0.072)
)(st − 15.949

(0.183)
)/σ̂ 2

st
}]−1;

G2(t
∗; η2, c3) = 1 − exp{− exp(4.068

(0.519)
)(t∗ − 0.599

(0.009)
)2/σ̂ 2

t∗ }.

R2 = 0.098, σ̂NL = 2.920, σ̂NL/σ̂L = 0.973, AIC = 2.186, SBC = 2.427, LJB = 184.70 (7.81 × 10−41), LMSC(4) = 1.221 (0.300), LMARCH (4) = 8.521 (1.00 × 10−6),
LMNL(st−1) = 1.550 (0.440), LMNL(st−2) = 1.512 (0.477), LMNL(st−3) = 1.765 (0.256), LMNL(st−4) = 1.953 (0.144), LMC = 2.050 (0.089).

Panel C, yt = ln(p1t/p4t)

�yt = [0.340
(0.088)

�yt−1] × [1 − G1(st ; η1, c1, c2)] + [− 1.787
(0.963)

+ 0.147
(0.040)

�yt−1 − 0.191
(0.021)

yt−1 + 9.834
(2.461)

G2(t
∗; η2, c3) − 8.538

(2.061)
G3(t

∗; η3, c4)] × G1(st ; η1, c1, c2) + ε̂t ;

G1(st ; η1, c1, c2) = [1 + exp{− exp( 8.440
(544.333)

)(st + 0.287
(0.123)

)(st − 6.105
(0.236)

)/σ̂ 2
st
}]−1; G2(t

∗; η2, c3) = [1 + exp{− exp(1.155
(0.163)

)(t∗ − 0.245
(0.027)

)/σ̂t∗ }]
−1;

G3(t
∗; η3, c4) = [1 + exp{− exp(2.916

(0.298)
)(t∗ − 0.201

(0.010)
)3/σ̂ 3

t∗ }]
−1.

R2 = 0.121, σ̂NL = 2.817, σ̂NL/σ̂L = 0.969, AIC = 2.106, SBC = 2.302, LJB = 169.47 (1.59 × 10−37), LMSC(4) = 0.610 (0.656), LMARCH (4) = 17.305 (1.39 × 10−13),
LMNL(st−1) = 1.360 (0.545), LMNL(st−2) = 0.993 (0.855), LMNL(st−3) = 0.824 (0.937), LMNL(st−4) = 0.813 (0.941), LMC = 2.431 (0.052).

Panel D, yt = ln(p2t/p3t)

�yt = [− 0.012
(0.044)

�yt−1 − 0.150
(0.045)

�yt−2 − 0.071
(0.044)

�yt−3] × [1 − G1(st ; η1, c1, c2)] + [− 0.262
(0.309)

− 0.038
(0.065)

�yt−1 + 0.008
(0.064)

�yt−1 − 0.011
(0.063)

�yt−1 − 0.114
(0.021)

yt−1

+ 7.200
(1.607)

G2(t
∗; η2, c3) − 5.399

(1.652)
G3(t

∗; η3, c4)] × G1(st ; η1, c1, c2) + ε̂t ; G1(st ; η1, c1, c2) = [1 + exp{− exp(14.185
(2.971)

)(st + 6.685
(0.001)

)(st − 5.651
(0.135)

)/σ̂ 2
st
}]−1;

G2(t
∗; η2, c3) = [1 + exp{− exp(13.758

(3.045)
)(t∗ − 0.555

(0.001)
)/σ̂t∗ }]

−1; G3(t
∗; η3, c4) = [1 + exp{− exp(7.348

(4.455)
)(t∗ − 0.674

(0.002)
)/σ̂t∗ }]

−1.

R2 = 0.102, σ̂NL = 2.820, σ̂NL/σ̂L = 0.968, AIC = 2.119, SBC = 2.374, LJB = 55.81 (7.62 × 10−13), LMSC(4) = 0.392 (0.815), LMARCH (4) = 4.153 (0.002),
LMNL(st−1) = 2.188 (0.079), LMNL(st−2) = 2.144 (0.091), LMNL(st−3) = 1.982 (0.150), LMNL(st−4) = 2.020 (0.115), LMC = 2.540 (0.015).

Panel E, yt = ln(p2t/p4t)

�yt = [0.272
(0.106)

�yt−1] × [1 − G1(st ; η1, c1, c2)] + [− 1.393
(0.479)

+ 0.127
(0.072)

�yt−1 − 0.323
(0.062)

yt−1 + 1.702
(0.614)

G2(t
∗; η2, c3)] × G1(st ; η1, c1, c2) + ε̂t ;

Continued
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turn represent the amount of time in weeks
for one-half of a shock resulting in a move-
ment away from equilibrium to dissipate. For
the TV-STAR models, these are constructed
for the regime corresponding to G(st ; γ , c) =
1, since this regime corresponds to the one
where log price differentials lie outside of the
transactions cost band. The results for each
OSB market/price pair are reported in table 5.
For purposes of comparison, half-lives from
the corresponding linear autoregressive model
are reported as well. For all six market pairs
the half-lives obtained from the TV-STAR
model are less than those from the corre-
sponding linear model, and in several instances
substantially so. For example, and as may be
inferred from table 5, half-lives for the linear
model vis-á-vis those for the TV-STAR models
(when G(st ; γ , c) = 1) imply that for the latter
the time necessary for one-half of the shock
to dissipate varies anywhere from two (for
pair (c)) to nearly seven (for pair (A)) weeks
faster relative to the former. In short, these
findings correspond to a faster adjustment
back to spatial equilibrium following a shock
that moves price linkages away from equilib-
rium. As well, our finding that half-lives are
smaller when nonlinearities are considered is
consistent with the presence of unobserved
transactions costs, which in turn may inhibit
adjustments to smaller price shocks.

To further investigate the implications of
transactions costs for regional OSB price rela-
tionships we now turn to an imputation of
the generalized impulse response functions
(GIRFs). GIRFs are obtained by simulating
the model ahead both with and without a shock
and for different histories. The basic methodol-
ogy for obtaining GIRFs is developed in detail
by Koop,Pesaran,and Potter (1996). In particu-
lar, let δ denote a specific shock,that is, let δ = εt

for the initial period t = 0. As well, let a given
history of data associated with time t be given
by �t−1 = ωt−1. The GIRF for time period (i.e.,
history) t at forward iteration n is then given by

GIRF�y(n, δ, ωt−1)(13)

= E[�yt+n|εt = δ, �t−1 = ωt−1]

− E[�yt+n|εt = 0, �t−1 = ωt−1]

where the histories are determined as follows.
We randomly draw (with replacement) 187 his-
tories (i.e., ωt−1 values) from the 747 available
histories, or approximately one-quarter of the
available histories, for each price pair. We then
use normalized shocks taking on a range of
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Figure 4. Transition functions versus the respective transition variable, st =
1
5

∑5
i=1 yt−i, (left-

hand column) and time-varying transition functions over time (right-hand column) for six OSB
regional price pairs

values given by δ/σ̂ε = 3.0, 2.8, . . . , 0.2, where
σ̂ε denotes the estimated standard deviation
of the residuals from the relevant TV-STAR
model. For each combination of history and
initial shock we compute GIRF�y(n, δ, ωt−1)
for n = 0, 1, . . . , 78, or 1.5 years. The expecta-
tions in equation (13) are computed, both with
and without the shock, by using 800 bootstrap
draws of the model’s estimated residuals. As
well, all GIRFs are conditional in the sense
that it was assumed that any structural change

component was complete, that is, that Gj(t
∗) =

1 for all j and t, j = 1, . . . , τ . Finally, impulse
responses for the log levels of the price pairs are
obtained by simply summing those obtained
for the first differences, that is, by

GIRF(n, δ, ωt−1)(14)

=

n∑

i=0

GIRF�y(n, δ, ωt−1).
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Figure 4. (Continued)

Finally, because the estimated QSTAR and
GESTAR functions are not necessarily
symmetric around zero we also consider
regime-dependent shocks (i.e., shocks initi-
ated when either G1(st) ≥ 0.5 or G1(st) < 0.5)
and we delineate between positive and neg-
ative shocks. The GIRFs associated with
negative shocks are rescaled by multiplying
by −1 in order to facilitate comparisons with
those obtained for positive shocks.

Estimated GIRFs for each TV-STAR model
are illustrated in figure 5. There are several

noteworthy results. To begin, in each case the
effects of a shock eventually dissipate, with
the GIRFs eventually returning to zero, albeit
at differing rates. There is also evidence that
at least in some instances, initial conditions
matter. For example, when considering the
relationship between prices in East Canada
and the U.S. Southeast, it is clear that negative
shocks which occur when prices are initially
within the transactions cost band dissipate
more slowly than do the remaining shocks.
In general this result is consistent with the
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Figure 5. Estimated generalized impulse response functions for six regional OSB price
relationships

findings reported in table 5, where the half-life
for the TV-STAR model associated with pair
(B) is largest overall. Regarding the relation-
ship between prices in East Canada and the
U.S. Southwest, figure 5 shows that there are
substantively different rates of adjustment
back to equilibrium levels depending on
whether the initial shocks are positive or
negative, with positive shocks resulting in

much quicker adjustments to equilibrium
overall. The GIRFs for pair (D), the price
relationship between U.S. North Central
and U.S. Southeast, also reveal considerable
nonlinearities. In particular it seems that the
effect of a positive shock associated with the
initial state being within the transactions cost
band vanishes much more slowly than shocks
of other signs and in other initial states.
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Table 5. Estimated Half-lives for the Esti-
mated Autoregression (AR) and Smooth and
Smooth Transition Autoregression (STAR)
Models for Regional Oriented Strand Board
Price Relationships

Price Pair Parameter AR TV-STAR

ln(p1/p2) 1 − ρ̂ −0.105 −0.538
Half-life: 6.248 0.898

ln(p1/p3) 1 − ρ̂ −0.040 −0.092
Half-life: 17.099 7.161

ln(p1/p4) 1 − ρ̂ −0.098 −0.191
Half-life: 6.736 3.263

ln(p2/p3) 1 − ρ̂ −0.048 −0.114
Half-life: 14.051 5.753

ln(p2/p4) 1 − ρ̂ −0.135 −0.323
Half-life: 4.789 1.777

ln(p3/p4) 1 − ρ̂ −0.039 −0.160
Half-life: 17.638 3.987

Note: 1 − ρ̂ is the estimated coefficient on the lagged level term in the

respective model. Half-lives for STAR models are constructed by using

the estimated 1 − ρ̂ coefficient corresponding to the regime implied when

G1(st ; η, c) = 1. Half-lives are the weeks required for one-half of the deviation

from equilibrium to be eliminated.

In the remaining cases, strong evidence is
lacking that GIRFs are substantively influ-
enced by either the initial state or the sign of the
shock. Overall, the results of the GIRF analy-
sis indicate that the effects of market shocks
do eventually dissipate, signaling spatial mar-
ket equilibrium, but apparently at a slower
rate, at least within the transactions cost band,
than would be implied by models that do not
account for these costs.

Summary and Conclusions

We have reviewed and evaluated nonlinear
STAR models that can advance our
understanding of spatial market integra-
tion in OSB markets. We consider spatial
price linkages among several important North
American regional markets. Our results
show that all tested price pairs for OSB
in North America create stationary linear
combinations, or cointegrated price pairs, and
that these pairs also exhibit nonlinearities
in the data-generating process. Moreover,
the nonlinearities in the price relationships
support the application of QSTAR and
ESTAR models to evaluate whether the
nonlinearities derive from transactions costs,
and therefore the threshold parameters in the
data-generating process.

Over the sample period (1995–2005) there
were a number of events that impacted

OSB prices, and possibly regional OSB price
relationships. These include, for example, new
capacity that came online in 1996–1997 in
Canada and in 2006–2007 in the U.S. Southeast.
As well, a price-fixing scheme among many
leading OSB manufacturers was apparently
in operation during much of the 2002–2006
period. For these reasons the basic smooth
transition framework was augmented, where
appropriate, with time-varying features that
allowed for either permanent or transitory
changes in regional price relationships. The
result is that for each price pair considered, a
variant of a TV-STAR model was ultimately
fitted to the data. By using several measures
of goodness-of-fit and model performance, we
find that the TV-STAR models do a supe-
rior job of explaining relative price movements
compared with their linear counterparts. Aside
from providing confirmation that the LOP—
augmented to account for transactions costs
bands—holds for OSB markets in NorthAmer-
ica, the TV-STAR results imply that market
shocks are more persistent than linear models
would suggest.

The primary implication of these findings
is that market models that ignore the exis-
tence of transactions cost bands would tend to
overestimate the rate of adjustment to market
shocks brought about by catastrophic events
or regional housing market shifts. For exam-
ple, small shocks to local or regional housing
markets would likely not transmit quickly to
distant markets, but large shocks could regis-
ter quickly, through a spatial arbitrage process.
Another implication of our findings is that
transmission of market shocks depends on ini-
tial price differentials, yielding rapid responses
when prices are far apart but slow ones when
they are not.

There are, of course, a number of limita-
tions to the present study. Future research
might focus, for example, on more direct ways
of incorporating transactions costs into the
estimation framework. As well, it might be
useful to explore regional price relationships
among all panel products, including plywood.
It would be potentially useful to expand the
modeling framework to include a post sample
forecasting exercise in an attempt to deter-
mine the extent to which modeling nonlinear-
ities induced by transactions costs in a STAR
framework could lead to improved predictive
performance. Finally, future research should
focus on identifying the role of transactions
costs in a multivariate STAR-model setting
(i.e., all prices modeled together as part of
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a system), possibly in a manner consistent
with the framework employed by, for example,
Rothman, van Dijk, and Franses (2001). These
remain, however, as important issues for future
investigation.
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