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[1] North Atlantic variability in general, and the North Atlantic Oscillation (NAO) in
particular, is a long-studied, very important but still not well-understood problem in
climatology. The recent trend to a higher wintertime NAO index was accompanied by an
additional increase in the Azores High not coupled to changes in the Icelandic Low,
as shown by a self-organizing maps (SOMs) analysis of monthly mean DJF mean sea level
pressure data from 1957 to 2002. SOMs are a nonlinear tool to optimally extract a
user-specified number of patterns or icons from an input data set and to uniquely relate any
input data field to an icon, allowing analyses of occurrence frequencies and transitions
complementary to principal component analysis (PCA). SOMs analysis of ERA-40 data
finds a North Atlantic ‘‘monopole’’ roughly colocated with the mean position of the
Azores High, as well as the well-known NAO dipole involving the Icelandic Low and the
subtropical high. Little trend is shown in December, but the Azores High increased along
with the NAO in January and February over the study interval, with implications for
storminess in northwestern Europe. In short, our SOM-based analyses of winter MSLP
have both confirmed prior knowledge and expanded it through the relative ease of use and
power with nonlinear systems of the SOM-based approach to climatological analysis.
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1. Introduction

[2] Synoptic climatology has developed many techniques
useful for extracting patterns from large data sets such as
daily mean sea level pressures in some region [e.g., Barry
and Carleton, 2001]. It may prove useful and informative,
for example, to note that the data field for a particular day
has strong loadings on the first two principal components of
the data set. A human observer wishing to summarize such a
data set might also notice similarities between particular
fields and historical events. That is, it may be instructive to
note that a pattern is very similar to the (hypothetical)
‘‘Great Blizzard of ’95,’’ which serves as an icon to which
other data fields can be compared. However, particular data
fields are unlikely to be unique enough to be an optimal
icon (extreme events are by definition exceptional). Self-
organizing map (SOM [Kohonen, 2001]) analysis provides
an objective way to optimally extract a user-specified
number of icons or SOM states from an input data set, such
that each element of the data set is uniquely most similar to

one of the SOM states, and the total mismatch between
elements of the data set and the SOM states is minimized.
The analysis returns the icons or SOM states in a grid or
‘‘map,’’ with similar states near each other and the most
extreme states at the corners. Often, the states at the ends of
one diagonal are similar to the positive and negative phases
of the first principal component of the input data, with the
second principal component correspondingly at the ends of
the other diagonal; however, this is not required and rarely
exact. Because each input data element maps uniquely to
one SOM state, SOM analysis easily allows characterization
of time trends in frequency of occurrence, preferred tran-
sitions, and hysteresis of preferred patterns.
[3] North Atlantic climate variability arises from diverse

sources over broad spatial and temporal scales [Marshall et
al., 2001] and has been a rich field of study for many years.
Despite decades of research and identification of many
important properties and behaviors, additional important
questions remain unanswered. Some of these questions arise
from the limitations of the linear tools generally used in
climate studies. The nonlinear aspects known to exist in the
climate system are thus often only approximated, or some-
times ignored altogether, in the purely linear approach, to
the detriment of our understanding. New tools with the
ability to handle nonlinear behavior are thus potentially of
great value to our study of climate.
[4] The North Atlantic Oscillation (NAO) is an area of

particular interest to the study of North Atlantic variability
[e.g., Wallace and Gutzler, 1981; Rogers, 1984; Hurrell,
1995; Appenzeller et al., 1998; Cullen et al., 2001; Ogi et
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al., 2003; Cassou et al., 2004]. As the only year-round
teleconnection pattern in the northern hemisphere [Barnston
and Livezey, 1987], the NAO has a widespread climatic
influence from eastern North America to western Europe
(and beyond) and has been widely studied in recent decades.
The large-scale alternation of atmospheric mass between
surface pressure centers near the Azores (high) and Iceland
(low) alters circulation patterns in the North Atlantic on
multiple timescales. Modified storm tracks and temperature
and precipitation patterns result throughout the region
(along with numerous other effects on the climate system
[e.g., Wanner et al., 2001]). Given the nonlinearities known
to exist in the climate system in general [e.g., Stocker,
1999], and the NAO in particular [Lamb and Peppler,
1987], it is essential to explore nonlinear analysis tech-
niques so as to better understand these aspects.
[5] Self-organizing maps [Kohonen, 2001] are a tool from

the field of artificial neural networks with characteristics
well suited to such problems. SOMs provide an alternative
to more traditional techniques, such as principal component
analysis (PCA), that is less complex, more robust and less
subjective while also accommodating nonlinear relation-
ships in the data. They also provide a powerful visualization
approach for studying structure in large, complex data sets.
A SOM analysis produces a set of generalized patterns from
the input data that, taken together, describe the multidimen-
sional distribution function of the data [Kohonen, 2001;
Hewitson and Crane, 2002]. In the case of atmospheric
circulation data, such as in this study, these patterns capture
the full range of synoptic conditions while also treating the
data as a continuum, unlike, for example, cluster analysis.
SOM-based analysis has been applied to such problems as
climate downscaling [Crane and Hewitson, 1998], climate
classification [Cavazos, 1999, 2000; Cavazos et al., 2002;
Cassano et al., 2006a], climate changes over time [Hewitson
and Crane, 2002; Cassano et al., 2006b; Lynch et al., 2006],
area-average regridding of precipitation data [Hewitson and
Crane, 2005], physical oceanography [Liu and Weisberg,
2005; Liu et al., 2006a], and reconstruction of past climate
from ice core-based climate proxies [Reusch et al., 2005b].
As discussed further below (and by Reusch et al. [2005a] and
Liu et al. [2006b]), SOM-based analysis differs from more
traditional linear analysis in a number of ways that provide
additional power over nonlinear data sets. SOM-based
analysis thus complements linear techniques without replac-
ing them.
[6] Given the long history of NAO studies, we are clearly

not the first to study this problem or to apply novel analysis
techniques to relevant data sets. For example, Hurrell et al.
[2003], Thompson et al. [2003] and Wanner et al. [2001]
each provide thorough reviews of prior work and the open
questions. Among the latter is whether the NAO is truly
distinct from the Arctic Oscillation (AO, also known as the

Northern Hemisphere Annular Mode, or NAM) or whether it
is an artifact of the analysis used. Numerous studies have
addressed this particular aspect [e.g.,Deser, 2000; Thompson
and Wallace, 2000, 2001;Wallace, 2000] but without unam-
biguously defining the answer. This ambiguity is just one
aspect of the larger problem of identifying stable weather
regimes and circulation patterns. It is beyond the scope of this
work to comprehensively review prior work on these topics
and we refer the reader to the literature for more details
including other (nonlinear) approaches [e.g.,Michelangeli et
al., 1995; Cassou et al., 2004] to studying Northern Hemi-
sphere variability.
[7] The next two sections describe our data and method-

ologies and present results from the SOM and PCA analyses.
We follow with a discussion of temporal variability in the
generalized patterns, the additional benefits of the SOM
patterns versus just using an NAO index, and a brief
comparison of SOM-based versus PCA-based NAO analysis.

2. Data and Methodology

2.1. Gridded Meteorological Data

[8] The European Centre for Medium-Range Weather
Forecasts’ (ECMWF) reanalysis ERA-40 is our source for
GCM-scale meteorological data at 2.5� horizontal resolution
for the period 1957–2002 [Gibson et al., 1999]. The spatial
domain (20–85�N, 85�W to 25�E, Figure 1) was selected to
capture both action centers of the NAO and adjacent areas
known to feel its effects (e.g., Scandinavia). Mean sea level
pressure (MSLP) was extracted for our spatial domain,
regridded, averaged and standardized for the SOM-based
analyses reported here. Ongoing and future work includes
other surface and upper air variables (e.g., 500 mbar geo-
potential height) to examine further aspects of atmospheric
variability in this region. Resampling the ERA-40 2.5� data
to an equal area, 819 point grid (a 250 km version of the
National Snow and Ice Data Center EASE-Grid [Armstrong
and Brodzik, 1995]) was done to provide uniform spatial
sampling density over the full domain. Monthly means and
standard deviations were calculated from the 6-hourly
regridded data. As the last step before SOM analysis, the
data were normalized to the 1971–2000 baseline mean and
standard deviation. This step is not essential when using just
one variable, but such normalization aids future comparison
with other variables that may have widely different mean
values and variances (and puts all data into units of standard
deviations, which simplifies visual tests of statistical signif-
icance). It is also useful to use a baseline widely used in the
research community (i.e., 1971–2000). To highlight differ-
ences from the mean state in the SOM results, anomalies
were calculated at each grid point by subtracting the grid
point mean over the full series. Because the NAO has its
strongest expression during boreal winter, we have focused

Figure 1. Generalized SOM patterns for (a) monthly mean of MSLP and (b) monthly standard deviation of MSLP. To the
upper left of each pattern is the pattern index number. To the upper right of each pattern in Figure 1a is the frequency of
occurrence (%) of the pattern in the full (DJF) 135 month data set (1957–2002). This number is in bold (italic) if it is at
least 50% more (4.95%) or less (1.65%) than the expected value (3.3%) from a uniform distribution of the 135 months on
the 30 SOM patterns. Map boundaries are 20 to 85�N and 80�W to 25�E. Grid spacing is 15� north-south and 30� east-west.
Here and in subsequent figures with SOM patterns, the values are shown as grid point anomalies (the mean over the 30
patterns has been subtracted from each grid point) to better show the differences between patterns. Data were initially
standardized to the 1971–2000 baseline mean and standard deviation.
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exclusively on the months of December, January and
February (DJF). As such, the MSLP data consist of a total
of 135 months (each defined at 819 grid points) from 1957
to 2002.

2.2. Self-Organizing Maps

[9] Self-organizing maps [Kohonen, 2001] are an analysis
tool from the field of artificial neural networks. SOMs
support analysis of variability in large, multivariate and/or
multidimensional data sets through the creation of a spa-
tially organized set of generalized patterns of variability
from the data. The technique provides a complementary,
nonlinear alternative to more frequently used but linear tools
such as principal component analysis (PCA). (See Reusch et
al. [2005a] and Liu et al. [2006b] for detailed comparisons
of PCA and SOMs.) SOMs have a number of advantages
including readily handling nonlinear behavior and robust
interpolation into areas of the input space not present in the
available training input. SOMs also have the benefit of
being a completely independent uniformitarian analysis
pathway and thus provide independent results for compar-
ison with more traditional techniques. (The sense of ‘‘uni-
formitarian’’ used here relates to the practice of calibration of
a proxy to a (sometimes short) observational record, fol-
lowed by extrapolation deeper into time (or space) using the
proxy alone. Alley and Cuffey [2001] discuss this approach
further.) SOMs have previously been used quite successfully
in studies of synoptic-scale circulation in temperate latitudes
[e.g., Hewitson and Crane, 2002; Tennant, 2004] and the
polar regions [e.g., Reusch et al., 2005b; Cassano et al.,
2006b; Lynch et al., 2006]. SOMs support development of
synoptic climatologies with an arbitrary number of smoothly
transitioning climate states, in contrast to traditional synoptic
classification techniques.
[10] When applied to atmospheric data, a SOM analysis

yields a nonlinear classification of the continuum of atmo-
spheric conditions. Training of the SOM (the analysis)
effectively projects multidimensional data onto a two-
dimensional array of nodes (representative states), each of
which retains the full dimensionality of the original data
through an associated reference vector representing the
state’s generalized pattern. The size of the grid (number of
states) directly influences the amount of generalization:
smaller (larger) node arrays have fewer (more) available
states to characterize the n-dimensional data space, so the
final states developed during training will tend to do more
(less) generalization of the input. For mathematical reasons,
namely stability during the learning process, the SOM grid
normally has asymmetric dimensions rather than being
square. Ideally, the grid dimensions match well with the
shape of the two-dimensional projection of the input data
set’s probability density function (PDF [Kohonen, 2001]),
but this is not always known in advance and is not normally
a significant issue.
[11] The generalized patterns in a SOM grid are normally

identified either by an (x, y) coordinate or a sequence
number within the two-dimensional array of nodes. Using
the row,column coordinate (e.g., 2,3 is row 2, column 3)
identifies patterns consistently across different grid sizes.
Sequence numbers (counting by row from 1 in the upper left
to the maximum value, e.g., 12 for a 4 � 3 SOM, in the
lower right) are easier to compare but not consistent across

grid sizes. We use sequence numbers here for notational
simplicity. We also follow the convention of showing the
generalized patterns on a regularly spaced grid of nodes. In
reality, the relative distance between nodes in data space is
variable as a function of the information content and
distribution of the raw data. Sammon maps [Sammon,
1969] are often used to visualize these relative distances
(e.g., Figure 2). Sammon mapping projects multidimensional
vectors into a 2-D space thereby simplifying visualization of
the relationships between the vectors. Here the reference
vectors for each generalized SOM pattern are projected
allowing the SOM nodes to be plotted on the basis of
relative neighbor-to-neighbor similarity, rather than the
simpler, but less informative regularly spaced grid format
normally used. However, for the purposes of displaying
relative frequencies and related attributes of each node, it is
adequate to treat the nodes as a regular grid.
[12] Details on SOM training are readily available in the

literature [e.g., Kohonen, 2001; Hewitson and Crane, 2002;
Reusch et al., 2005a, 2005b; Cassano et al., 2006b].
(However, because the application of this technique is still
relatively new to climatology, we recommend reviewing
multiple sources for their perspectives on best practices.)
Briefly, an iterative and unsupervised process is used to
adjust the reference vectors representing each SOM node on
the basis of differences between the reference vectors and
each input record. A learning rate (positive, typically less
than 0.1) determines how much of the difference is applied
in each adjustment. The node reference vectors are first
initialized with values based on a two-dimensional subspace
defined by the first two eigenvectors of the training data
(rather than randomly) being most efficient (the eigenvec-
tors serve as a first approximation of the data set) [Kohonen,
2001]. Training then consists of multiple iterations of
reference vector adjustment until stable values are reached.
In each iteration, the best matching reference vector is found
for each input record (on the basis of the Euclidean distance
between the input and the reference vectors) and updated to
be more like the input data. Neighboring reference vectors
of each best match are also updated (to a lesser degree)
resulting in adjacent nodes having the strongest similarity
and similarity decreasing with increasing internode dis-
tance. This training process ultimately produces reference
vectors that each represent a distinct portion, or subspace, of
the multidimensional input space.
[13] Once the SOM is trained, groups of similar input

records can be created by matching to the final reference
vectors, thereby producing a classification of the input data.
Input records with patterns in common will map to the same
generalized patterns of the SOM. (Note, however, that since
SOM patterns are intended to be generalizations of the input
data, the input data samples are not expected to match
exactly with generalized patterns [Kohonen, 2001].) This
basic classification procedure is the basis of an important
additional analysis tool: frequency maps. Instead of looking
at the individual data records in each group, a frequency
map simply tracks how often a generalized pattern appears
in a given subset of the input data (which may include the
entire data set). Subsets may be temporal (e.g., by season),
based on an external index (e.g., the NAO), or some other
criteria found to be useful. Frequency maps based on such
data stratification help to identify temporal changes and
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relationships with other aspects of the climate system. For
example (see below), we have used the NAO index to
identify which SOM patterns are associated with high/low
values of the index and to determine the statistics of the
NAO index for each generalized pattern.
[14] As mentioned above, the size of the SOM directly

affects the amount of generalization of the input in the final
SOM patterns. Since the SOM grid size (the total number of
patterns) is a subjective choice, it is standard practice to do
the analyses using multiple grid sizes. Grid sizes normally
range from 3 � 2 up to a value consistent with the amount
of data available for training (having more patterns than
input may not always be useful). For our 135-record
monthly data set, we tested 3 � 2, 4 � 3, 5 � 3, 5 � 4
and 6 � 5 SOMs. We will be focusing on results from the
largest grid but will also compare results between grids. All
of our analyses were run on the complete data set
(135 months x 819 grid points) using the freely available
SOM-PAK software [Kohonen, 2001].

2.3. Principal Component Analysis

[15] Principal component analysis (PCA) is a well-known,
well-documented statistical technique widely used in clima-
tology to identify dominant patterns of variability and/or
reduce the dimensionality of climate data [e.g., Lorenz,
1956; Kutzbach, 1967; Walsh, 1978; Cohen, 1983; Smith
et al., 1996]. Briefly, standard PCA creates a set of new

orthogonal (hence uncorrelated) variables that most closely
and efficiently (in a statistical sense) represent the variance
in a data set [e.g., Jolliffe, 2002]. In theory, the new variables
provide a simpler and more easily interpretable version of
the original data, in part through dimensionality reduction
since generally only the first few components are significant.
Used in this manner, PCA has been widely and successfully
applied to help understand, interpret, and reconstruct large,
multivariate climate data sets. We refer the reader to the
literature for further details [e.g., Jolliffe, 2002] and to
Reusch et al. [2005a] and Liu et al. [2006b] for comparisons
with SOMs in pattern identification. Because of mathemat-
ical requirements (a valid PCA requires more rows than
columns in the input), the input grid was subsampled (every
third row/column) to a 91-point grid for the PCA analysis.
We have no reason to believe PCA results would change
significantly using the full grid. The 135 � 91 data matrix
was then the input for an unrotated S-mode [Cattell, 1952]
PCA using Matlab. Time series for each PC were created by
scaling the principal component coefficients into data space
using the standardized input data.

3. Results

[16] In this section we describe results from the SOM-
and PCA-based analyses of the MSLP monthly mean and
standard deviation data.

Figure 2. A Sammon map for the SOM in Figure 1 showing the relative position of each SOM pattern
in the 2-D projection of the SOM’s reference vectors (i.e., an estimate of the data’s probability density
function). Axis values are arbitrary (but based on distances between SOM node reference vectors).
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3.1. SOM-Based Analysis of Monthly MSLP

[17] The generalized patterns (Figure 1) from the 6 � 5
SOM analysis of monthly MSLP mean and standard devi-
ation, analyzed jointly, capture multiple aspects of the
variability of this climate field. Complexity is readily seen
in the variety of locations, extents and magnitudes of anoma-
lies present in the patterns of mean MSLP (Figure 1a). Note
that while two variables (mean and standard deviation of
MSLP) were analyzed, only one SOM grid is produced and
each SOM node contains both variables. The mean and
standard deviation patterns are shown separately for clarity.
Figure 1a includes results from a frequency mapping of the
complete data set, i.e., the values (% frequency) to the
upper right of each pattern. Given a uniform distribution of
135 months over 30 available patterns, the expected fre-
quency of occurrence of any given pattern is 3.3%. Thresh-
olds of 50% more (4.95%) or less (1.65%) may be used to
(subjectively) identify patterns that occur more or less
frequently than expected. With these criteria, Figure 1a
shows a total of six patterns occurring more (patterns 1
and 25) or less (patterns 5, 7, 9 and 11) frequently than
might be expected. We will return to pattern frequency as a
measure of temporal variability below. Overall, the two
main features of the generalized patterns are seen at each
end of the two diagonals (i.e., the sets of opposite corners): a
north-south dipole suggestive of the NAO (patterns 25 and 6)
and amid-NorthAtlantic ‘‘center of action’’ (patterns 1 and 30).
[18] Before discussing the patterns further, we briefly

explore the similarity relationships of the MSLP patterns
via the Sammon map of the SOM reference vectors
(Figure 2), which shows only modest distortion of the
overall SOM grid. The lower left/upper right diagonal is
moderately longer than the upper left/lower right diagonal
(�5:4 ratio of lengths), indicating relatively less similarity
between the end patterns of the former diagonal. Patterns
with relatively greater similarity can be seen in the upper
and lower left corners (nodes 1, 2, 7 and 8, and nodes 19,
20, 25 and 26, respectively). There are also some areas of
relatively larger differences between patterns, e.g., 9, 10, 15
and 16. It also appears that the lower left patterns are more
closely related to each other than their counterparts in the
opposite corner.

3.2. Leading Patterns of Variability:
Evidence for the NAO

[19] Patterns characteristic of the variability of MSLP in
the NAO [Hurrell et al., 2003] appear in the lower left and
upper right corners of Figure 1. Negative anomalies in the
Icelandic Low and positive anomalies in the Azores High
(Figure 1a, lower left corner patterns) are associated with
higher standard deviations across western Europe and
Scandinavia (Figure 1b), a reflection of the increased storm
activity associated with positive-mode NAO periods. Con-
versely, positive Icelandic Low anomalies and negative
Azores High anomalies (Figure 1a, upper right corner
patterns) are associated with an increased storminess in
Greenland and a reduction in Scandinavia (Figure 1b). Thus
the patterns on the lower left–upper right diagonal capture
both the meridional seesaw of pressure changes in the
Icelandic Low and Azores High and the horizontal changes
over time in the centers and extent of these two pressure

Figure 3. Transects in the North Atlantic basin. Grid
points closest to a great circle through Ponta Delgada,
Azores (37.7�N, 25.7�W), and Akureyri, Iceland (65.7�N,
18.1�W), are shown for the four corner patterns of Figure 1a:
(a) high and lowNAOpatterns from lower left and upper right
and (b) high and low central North Atlantic patterns from
upper left and lower right. These locations were used in the
NAO index of Lamb and Peppler [1987] and are indicated by
the dashed lines with labels A and I, respectively. Values are
grid point anomalies as in Figure 1.

D02104 REUSCH ET AL.: NORTH ATLANTIC CLIMATE VARIABILITY

7 of 20

D02104



systems. A transect through two NAO index locations
(Ponta Delgada, Azores and Akureyri, Iceland, from the
index of Lamb and Peppler [1987]) provides an alternative,
one-dimensional view of the changes between these two
patterns (Figure 3a). The SOM patterns clearly capture the
changes in the Azores High and Icelandic Low between
high and low NAO index conditions. Minima and maxima
in the transect are also very close to the NAO index
latitudes, indicating that the two-dimensional SOM gener-
alization has incorporated the one-dimensional NAO index
metric.
[20] Quantitative evidence (and confirmation) that these

patterns represent the NAO comes from stratification of the
input data using high and low values (absolute values
greater than 3) of the CRU NAO index [Jones et al.,
1997]. The 15 highest NAO index months (Table 1) map
to five patterns at the lower left (13, 19, 20, 25 and 26).
Similarly, the ten lowest NAO index months (Table 1) map
primarily to the upper right corner patterns (5, 6, 12 and 17)
(one month, January 1996, matches a more intermediate
pattern (16)). These high (low) index patterns account for
�21% (�14%) of the input data. Note that storminess
(positive anomalies in the standard deviation of MSLP,
Figure 1b) over Scandinavia is not exclusively associated
with the NAO extreme periods. Positive (7, 8, 14) and
negative (18, 23, 24, 30) anomalies of the standard devia-
tion are also seen in patterns with less extreme NAO index
values (Figure 1b).
[21] Figure 4 graphically summarizes statistics for the

CRU NAO index versus the SOM patterns, i.e., match
count, the mean NAO index and its standard deviation is
shown for each SOM node. Within each subplot, each
representing one SOM pattern, the mean and standard
deviation are plotted as a cross on an axis centered on each
position of the SOM grid. This cross is located at the mean
value of the NAO index. The horizontal arms of the cross
are scaled to ±1 standard deviation of the NAO index values
of the months mapping to a given pattern, a measure of
variability of the mean value. This format readily shows that
the highest (lowest) average index values are found among
the lower left (upper right) patterns, as seen in the index-
based stratification of the MSLP data. Also, roughly 1/3 of
the patterns have mean NAO index values (possibly)
indistinguishable from zero (i.e., the range of the mean ±
the standard deviation includes zero). Considering average
index values between ±1 as neutral (13 patterns), there are
ten positive (7, 9, 13–14, 19–21, 25–27) and seven

negative (5–6, 12, 16–18, 30) patterns, collectively ac-
counting for approximately 33% and 21% of the input data,
respectively. These frequency values are in line with the
relative frequency of positive and negative values in the
original index series (51 and 35 months, or 38 and 26%,
respectively). Apart from a few relatively low values,
standard deviations of the NAO index values are compara-
ble between patterns. Further aspects of the NAO as seen
through the SOM analysis will be discussed below.

3.3. Evidence for Other North Atlantic Variability

[22] As with the NAO and North Atlantic climate vari-
ability, the NAO-related patterns represent only a portion of
the generalized patterns extracted by the SOM. In fact, the
most frequent single pattern in the SOM, pattern one
(8.1%), is unrelated to the NAO; that is, it only involves
one of the centers of action associated with standard NAO
indices. This pattern, and its approximate complement
(pattern 30), represent extremes of a northward shifted
Azores High (or, more generally, a central North Atlantic
anomaly) associated with approximately neutral NAO index
values. In the positive mode (patterns 1, 2, 7 and 8), the
subpolar low has migrated well away from the climatolog-
ical position near Iceland and is generally weak. Higher
pressure extends northward over Greenland in the most
frequent of the positive mode patterns, although this feature
may be an artifact of reducing the high-elevation surface
pressure over the ice sheet to sea level (areas of central
Greenland exceed 2300 m asl). The four positive patterns
account for nearly 17% of the input data. Patterns from the
negative mode (24, 28–30) have a below normal Azores
High with, again, a near neutral/slightly positive anomaly
subpolar low (closer to its normal position near Iceland) and
account for 14% of the input data. The NAO index-based
transect through the corner patterns (1 and 30, Figure 3b)
shows that the region to the north of the Azores is the main
area of change between the two extremes with variability
nearly twice that seen in the NAO transects (Figure 3a).
Also of note is the greatly reduced variability in the highest
latitudes (‘‘Icelandic’’) versus the NAO transects.
[23] In short, the climate states extracted from MSLP

mean and standard deviation partition the input into NAO
positive (32%; 9, 13–14, 19–21, 25–27), NAO negative
(18%; 5–6, 12, 16–18), above normal Azores High (17%;
1–2, 7–8) and below normal Azores High (14%; 24, 28–
30) modes. The balance of the data (19%) is found among
the suite of intermediate (transitional) patterns, which may

Table 1. Extreme Values of the CRU Monthly NAO Index [Jones et al., 1997] With Associated Month of Occurrence, in Chronological

Order From 1957 to 2002, and Best Matching SOM Pattern

Highest (x � 4) High (3 � x < 4) Low (�4 < x � �3) Lowest (x � �4)

Date NAO SOM Date NAO SOM Date NAO SOM Date NAO SOM

Feb 1961 4.06 20 Jan 1974 3.75 26 Dec 1963 �3.09 17 Jan 1963 �4.09 6
Jan 1983 4.82 19 Dec 1974 3.06 19 Feb 1965 �3.03 5 Feb 1986 �4.02 12
Feb 1990 5.11 25 Dec 1986 3.42 20 Feb 1969 �3.16 6 Dec 1996 �4.70 6
Feb 1997 5.26 25 Jan 1989 3.53 13 Dec 1976 �3.63 17
Feb 2000 4.37 13 Feb 1989 3.61 25 Jan 1979 �3.22 6

Jan 1990 3.50 26 Dec 1995 �3.33 12
Feb 1992 3.18 13 Jan 1996 �3.27 16
Jan 1993 3.91 19
Feb 1995 3.13 25
Feb 2002 3.01 25
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represent nonlinear combinations of these modes (and
potentially other, less common behaviors). Note that the
Sammon map of the SOM (Figure 2) indicates that the NAO
is the best, simple (i.e., first-order) way to classify the data
since the NAO patterns fall on the longer diagonal (lower
left/upper right). The relative lengths of the two diagonals
(�5:4) suggests that the central North Atlantic/Azores High
patterns should also explain substantial variability (as they
do). Thus the overlapping spatial extent of the leading

modes of variability in the data has not prevented the
SOM from successfully extracting patterns that capture this
complex variability.

3.4. SOM Grid Size and Pattern Generalization

[24] SOM analyses were run on a number of different grid
sizes (complete pattern sets not shown) to examine how
generalization varied as the number of available patterns
increased. Here we focus on the 3� 2, 4� 3, 5� 4 and 6� 5

Figure 5. Comparison of high NAO index patterns from different size SOM grids, ordered by frequency count: (a) 3 � 2
grid, 6 total patterns; (b) 4 � 3 grid, 12 total patterns; (c) 5 � 4 grid, 20 total patterns; and (d) 6 � 5 grid, 30 total patterns.
To the upper left of each pattern is its grid index (not directly comparable between grid sizes because of changing number of
patterns). To the upper right of each pattern is the frequency count (number of high NAO index months mapping to the
pattern). There are a total of 15 months with index > 3 (Table 1).

Figure 4. Statistics of the CRU monthly NAO index [Jones et al., 1997] versus the SOM, shown as
plots of mean and standard deviation centered on each position of the SOM grid. For each pattern plot, a
solid cross is located at the mean of the NAO index values of the months mapping to the pattern (shown
above each plot). The horizontal arms of the cross are scaled to ±1 standard deviation of the NAO index
values (shown below each plot, but omitted for patterns with three or fewer matches), a measure of
variability of the mean value. Where the range of mean ± standard deviation includes zero (the y axis of
the light shaded cross), the mean may not strictly be distinguishable from zero. The number of months
matching each pattern is shown at the left or right of each plot. The dashed line separates positive and
negative index values. Note that height is not significant in these plots.
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grids and just the patterns associated with the 15 high NAO
index (CRU index > 3) months (Figure 5). Generalization by
the SOM can be seen in a number of characteristics. First, as
seen in the color bar scales, the full SOM is capturing more of
the variability in the data as the number of patterns increases,
roughly doubling from the smaller to the larger grids. This
reflects the denser coverage of the input data’s PDF by the
SOM through the growing number of available patterns,
which lets each individual pattern get closer to the original
data, but also reduces generalization. Second, all of the grids
split the 15 high-index months across at least two patterns
with more subgroups appearing as more patterns become
available (patterns are ordered by frequency in Figure 5).
[25] The smallest grid (Figure 5a) has split the input into

two groups based primarily on the strength of the Azores
High. This is not, however, a direct stratification of the high
(3 < index < 4) and highest (index > 4) months as there are
months from both index ranges associated with each pattern
(not shown). The two intermediate size grids (Figures 5b
and 5c) each split the high NAO index months over three
patterns, two of which resemble those of the 3 � 2 grid.
Comparing the two leading patterns from each grid, we see
moderate refinement of the shape, position and depth of the
centers of action as the grid size increases.
[26] At the largest grid size, the 15 months are distributed

nearly uniformly (5, 3, 3, 2, 2) across the patterns in contrast
to the smallest grid which was quite asymmetric (10, 5). The
five patterns of the 6 � 5 grid (Figure 5d) include those seen
in the smaller grids plus two transitional (intermediate)

patterns not seen before (13 and 20). The character of these
new patterns shows that they are capturing more of the
spatial variability to be found in high NAO index condi-
tions. In fact, the fourth and fifth highest index months
(February 2000 and March 1961, each with index greater
than four) both map to these new patterns. This is an
excellent example of the additional insight the SOM
approach brings to understanding the NAO. It is well
known that using a two-points-in-space NAO index does
not readily reveal the high spatial variability of the system.
In combination with the SOM approach, however, the full
range of variability is easily seen.

3.5. PCA of Monthly Mean MSLP

[27] Figure 6 shows the three leading principal compo-
nents (PCs) and associated variance patterns from a PCA of
monthly mean MSLP. (Unlike the SOM analysis, standard
deviation was not included in the PCA). For simplicity, we
did not attempt any rotations of the PCs, although this extra
step is often found in the literature [e.g., Richman, 1981,
1986]. PC1 represents the traditional, PCA-based version of
the NAO and resembles NAO patterns found throughout the
literature (although it does not necessarily exactly reproduce
any single one). It accounts for 39% of the variance of the
monthly MSLP data. Differences from previously published
studies of the NAO [e.g., Hurrell et al., 2003] are attributed
to minor differences in methodology, e.g., our specific
spatial domain and time period used. Note that both the
high and low NAO index states are present in PC1 because

Figure 6. (top) Leading patterns from a principal component analysis of monthly mean MSLP with
(bottom) corresponding variance. Patterns are shown as the loading of each grid point on the principal
component.
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of the symmetry of PCA analysis. The center of action in
the central North Atlantic seen in PC2 is suggestive of the
variability seen in patterns 1 and 30 of the SOM analysis.
PC3 represents localized variability only over portions of
northwest Europe.

4. Discussion

[28] Temporal variability in the generalized SOM pat-
terns, the additional benefits of the SOM patterns versus just
using an NAO index, and a brief comparison of SOM-based
versus PCA-based NAO analysis are covered in this section.

4.1. Temporal Variability

[29] Frequency maps for the full record and each month
are shown in Figure 7. As noted previously (Figure 1), the
most frequent patterns in the full record reflect a high NAO
index (lower left) and a high central North Atlantic anomaly
(upper left). Monthly frequency maps show how the fre-
quency of occurrence of each SOM pattern changes from
month to month (although the sample size (45) is relatively
small compared to the number of possible states (30)).
Comparing each month (Figures 7b–7d) with the full record

(Figure 7a) shows how each month contributes to the full
set of patterns. The monthly maps show some notable
differences between the three months (e.g., the upper left
corner peak in December and the lower left corner peak in
February). Patterns are not distributed uniformly and each
month has five or six patterns that do not occur during that
month over the 45 year record. However, no pattern exceeds
�11% and each month is characterized by multiple peaks in
frequency. December tends to favor more neutral NAO
index conditions with the strongest peak in the upper left
corner (high central North Atlantic mean anomaly). How-
ever, high NAO index patterns (13, 19, 20, 25 and 26) also
occur eight times. January also has a secondary peak (3) in
the upper left corner but includes more high (12) and low
(nine; patterns 5, 6, 12, 16 and 17) NAO index patterns.
February has a relatively strong peak (five) on the highest
NAO index pattern (26) but includes a secondary peak on
pattern 15. The latter shows high (northwest Europe) and
low (Greenland) mean subpolar anomalies with close to
neutral values in the subtropics.
[30] To simplify visual comparisons and better highlight

month-to-month differences, frequency counts can be

Figure 7. Frequency map for the SOM patterns of Figure 1 based on (a) the complete record and
(b) December, (c) January, and (d) February. Numbers in each square are the number of times that pattern
is the best match for an input record. The highest count has a near-black background and the second-
highest count has a gray background. With 135 and 45 months per interval, for the full record and
monthly plots, respectively, and 30 SOM patterns per plot, the expected average frequency counts are 4.5
and 1.5 per pattern (or 3.3% in relative terms).
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grouped to show larger patterns in the SOM grid. Here we
group the corners and upper/lower rows in 2 � 2 sections
(Figure 8). The upper/lower left differences between De-
cember and January are now more distinct. December also
has a more obvious peak in the lower right corner, indicat-
ing that the central North Atlantic anomaly ‘‘monopole’’
appears to be the strongest influence in this month (along
with the positive NAO mode). January’s variability is more
obviously centered on the positive NAO mode. In contrast,
February does not appear to have any particularly dominant
pattern (or set of patterns).
[31] Further subdividing the time series into 15-year

periods (reducing each frequency map to 15 input records)
shows how the pattern frequencies have changed over time
within each month (Figure 9) and highlights temporal
variability. February in particular shows a trend from having
no dominant pattern at all in the early (1957–1972) record
to a more clear structure with one NAO high pattern (26)
most common in the late (1987–2002) record. The latter is
an expression of the generally higher frequency of high
NAO index values that began in the 1970s, which also
appears (to lesser degree) in the other months. Changes in
January show a shift from negative NAO and central North
Atlantic anomalies to a focus on positive NAO patterns,
similar to February but more spread out. To better under-

stand the temporal changes, Figure 9 includes the mean x,y
position for the time slice being mapped in each frequency
map and a summary of how the mean position changes over
the three time intervals (the trajectories). (It is important to
remember that these coordinates are further abstractions of
the SOM results that do not represent particular SOM
patterns. One could conceivably weight the SOM patterns
according to the coordinate values to create a ‘‘mean
pattern,’’ but it is unclear whether this brings any value.)
On the basis of this further summarization of the data,
December has changed relatively little over the ERA-40
period while the remaining months have both shifted more
toward patterns reflecting a mix of positive NAO and a high
central North Atlantic anomaly conditions. From this per-
spective, January has shifted more strongly toward positive
NAO than February. This shift occurred earlier in January
than February, starting from approximately the same posi-
tion. These results show that the increase in high NAO
index months has not been a simple matter of across-the-
board change but that there has also been subseasonal
variability (including changes in occurrence of the central
North Atlantic patterns).
[32] Altogether, these frequency maps show that while

the winter months are known to carry the strongest expres-
sion of the NAO, the spatial characteristics of that expres-

Figure 8. Frequency maps by month with summation of 2 � 2 blocks in corners and along top and
bottom edges. Differences between months are more distinguishable in this format (e.g., upper/lower left
differences between December and January).
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Figure 9. Frequency maps (first, second, and third rows) and trajectories (fourth row) by 15-year period
and month. With 15 months per interval and 30 SOM patterns per plot, the expected average frequency
count is 0.5 per pattern. Frequency maps include the mean x,y coordinate for the subset plotted (indicated
by the cross). Highest-frequency patterns have a dark background. Trajectories summarize the change in
position of the mean coordinate for each month.
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sion are not the same month-to-month. Further, the SOM
captures the full range of variability: NAO patterns do not
particularly dominate in frequency of occurrence.

4.2. SOM Patterns Versus the NAO Index

[33] As discussed above, stratification of the input data
using high/low values of a monthly NAO index [Jones et
al., 1997] shows that similar extremes in the index can be
associated with quite different MSLP patterns from the
SOM analysis (Figure 4). This is not altogether surprising
given the linear, two-points-in-space nature of the NAO
index, but the SOM does have significant potential for
insights to these spatial characteristics. (As an historical
aside, the index used by Walker and Bliss in 1932 included
pressure and temperature records from nine sites around the
North Atlantic basin [Stephenson et al., 2003].)
[34] Table 2 shows the months for the highest (>3) and

lowest (<�3) values of the CRU NAO index [Hurrell,
1995; Jones et al., 1997] with their associated SOM patterns
(on the basis of matching each month’s data to the gener-
alized SOM patterns). Of the 135 months in the analysis, 15
(10) were in the highest (lowest) category, or approximately
11% (7%) of the 1957–2001 record. (Overall, approximately
1/3 of the months had absolute NAO index values > 2.)
[35] For the high patterns (Figure 1), the Icelandic Low

has moderate variability in depth, location and extent and
does not wander far from the Greenland/Iceland region. The
variability of the Azores High is much greater for all three
parameters as the anomaly sometimes stretches across the
whole North Atlantic basin. The storm tracks, as reflected in
MSLP standard deviation, are centered over Scandinavia
and northwest Europe primarily with reduced activity over
Greenland and southwest Europe.
[36] Four of the five MSLP mean patterns (excluding 16)

for the low NAO index values show the expected filling of
the Icelandic Low and reduced Azores High. The
corresponding MSLP standard deviation patterns generally
show the expected decrease of storminess in Scandinavia
with modest increases to the north and south. Notably,
storminess for pattern 17 is increased in a broad region
centered south of Greenland rather than in the eastern north
Atlantic. The remaining MSLP mean pattern (16) indicates
a state closer to neutral across the north Atlantic but with
increased storminess in a north-south band near 30�W. The
two-points-in-space nature of the NAO still produces a low
index value under these conditions. The SOM patterns thus
readily highlight the benefits of a full spatial analysis.

4.3. SOM and PCA Results Versus the Data

[37] Figure 10 compares the original monthly MSLP data
to the corresponding SOM- and PCA-based patterns for a
small number of months with high and low NAO index

values. Note that this subset is not meant to be representative
of the overall performance of either technique and none were
selected because of particularly good or bad results. Also, as
mentioned above, minor features over Greenland should be
treated with caution because of the high elevations there.
Different grid spacings (250 km for the SOMs, 750 km for
PCA) may also produce apparent differences between results
due to differences in contouring, for example.
[38] To a first approximation, the SOM and PCA patterns

do reasonably well in capturing the main features of the
high NAO index months and the first low NAO index
month (December 1995). Both the SOM and the PCA use
almost the same pattern for the two high NAO index
months, although there are more (small) differences
between the SOM patterns than the PCA patterns. For the
lowest NAO index month, the SOM pattern, while not as
good a match as the others, is distinctly better than the PCA
pattern. The latter uses much the same pattern as for the
previous low NAO index month and does not reflect the
changes of the spatial pattern between the two months.
[39] As an alternative appraisal of technique performance,

Figure 11 shows the residual difference between the data and
its corresponding SOM and PCA patterns. Residuals will be
negative (positive) in areas where the data are negative
(positive) and the SOM or PCA pattern underestimates
the data (and conversely in areas of overestimation). There
are a number of examples where both techniques ‘‘miss,’’
e.g., the small minima/maxima in the residuals for the two
low NAO index months. Overall, however, there tend to be
more differences than similarities in how each technique
performed.
[40] Root-mean-square (RMS) values are often used to

quantify predictive skill, e.g., when comparing model
forecast results to actual observations. This metric is not
ideal for spatial data, since it does not account for the spatial
variability of the residuals, but it still provides a useful
perspective for comparisons. Table 3 has summary statistics
for all the patterns that, overall, indicate that SOM residuals
are closer to the original data than the patterns produced
with PCA. (Note that we do not expect SOM patterns or
PCs to match exactly since they are generalizations and
orthogonal projections of the data, respectively.) The RMS
values for specific months shown in Figure 11 include cases
where the PC1 patterns do perform better than their SOM
counterparts (as suggested by the overlapping ranges of the
RMS values in Table 3), but these are the exception, not the
rule.

4.4. PCA Results Versus the SOM

[41] Figure 12 summarizes PC1 values for each pattern of
the 6 � 5 SOM in the same style as our comparison of the
CRU NAO index in Figure 4. Comparison of Figures 12

Table 2. SOM Patterns With Associated High/Low Index Months From the CRU Monthly NAO Index [Jones

et al., 1997]

Pattern High NAO Index Months Pattern Low NAO Index Months

13 Jan 1989, Feb 1992, Feb 2000 5 Feb 1965
19 Dec 1974, Jan 1983, Jan 1993 6 Jan 1963, Feb 1969, Jan 1979, Dec 1996
20 Feb 1961, Dec 1986 12 Feb 1986, Dec 1995
25 Feb 1989, Feb 1990, Feb 1995, Feb 1997, Feb 2002 16 Jan 1996
26 Jan 1974, Jan 1990 17 Dec 1963, Dec 1976
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and 4 shows some similarities. For example, average PC1
values are high (low) in the lower left (upper right) corner.
This reflects (and supports) usage of PC1 in the literature as
a proxy NAO index. However, Figure 12 also has large

negative values for all patterns in the rightmost column of
the grid, not just the upper right corner. This suggests that
the orthogonal characteristics of the PCA may be blending
aspects of the NAO dipole with the variability in the Azores

Figure 10. Selected MSLP patterns based on high/low values of the CRU monthly NAO index [Jones
et al., 1997]. Columns show the original data (with date and NAO index value) (first column), the
corresponding SOM pattern (second column), and the corresponding PC1 pattern (third column). The
mean and standard deviation are approximately 1015 mbar and 6 mbar, respectively.
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High unrelated to the Icelandic Low (‘‘non-NAO variabil-
ity’’), at least for the below-normal anomalies of the latter.
In short, SOM results appear to more cleanly capture the
decoupling of the Azores High from the joint behavior with
the Icelandic Low (also seen in work with other tools such
as Cassou et al. [2004]) when compared to the PCA results.
It is beyond the scope of this paper to confirm this, but a

Figure 11. As in Figure 10 but showing residuals between data and analysis patterns. Columns are the
original data (first column), the difference between the data and its best matching generalized SOM
pattern (second column), and the difference between the data and its corresponding PC1 pattern (third
column). In addition, the RMS (root mean square) of the residual (in standard deviations) is shown to the
upper right of each pattern in each difference column.

Table 3. RMS Statistics for Residuals Between Data and

Corresponding SOM and PC1 Patterns

Minimum Maximum Mean Standard Deviation Range

SOM 0.22 0.87 0.50 0.12 0.64
PC1 0.27 1.1 0.65 0.18 0.83
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comprehensive comparison of SOMs and PCA on this data
set should include repeating the analyses with orthogonally
and/or obliquely rotated PCA. (Note that comparisons of
SOMs to PCA using synthetic data have recently been done
by Reusch et al. [2005a], in the North Atlantic domain used
here, and by Liu et al. [2006b], who also include observa-
tional oceanographic data.)

4.5. Other Nonlinear Studies

[42] It is not our intent to do a comprehensive comparison
with all other nonlinear-tool-based studies of North Atlantic
variability, but it is worth noting that, for example, the
cluster analysis of Cassou et al. [2004] reaches many
similar conclusions. For example, the RDG mode (a
strong anticyclonic ridge [Cassou et al., 2004, Figure 1c])
resembles the positive mode of the patterns we describe as
‘‘mid-North Atlantic-only’’ (pattern 1 in Figure 1). How-
ever, the below-normal ‘‘phase’’ of this pattern (pattern 30
in Figure 1) is not readily seen in the cluster analysis results.
However, the cluster analysis does capture, at least in part,
the changes in position and extent of the pressure systems
between positive and negative NAO conditions. Thus, while
cluster analysis is clearly useful for this data set, the SOM-
based approach has a number of advantages (including

reduced subjectivity) that make it more attractive from a
usability point of view [e.g., Hewitson and Crane, 2002].

5. Conclusion

[43] The SOM-based approach to studying North Atlantic
variability in general, and the NAO in particular, has great
promise. Results from this boreal winter, monthly MSLP
study readily identify both the canonical variability of the
NAO and some of the nonlinear aspects of its behavior.
Further work should lead to new calibrations of regional
climate proxies (e.g., Greenland ice cores) to the North
Atlantic climate record and a better understanding of the
climate in this important region.
[44] In particular, four main points can be drawn from this

work:
[45] 1. The SOM-based analysis of monthly MSLP

decomposes variability into patterns representing NAO
extrema, a ‘‘mid-North Atlantic-only’’ pattern reflecting
variability in the Azores High independent of the Icelandic
Low, and intermediate patterns reflecting smooth transitions
between these climate states.
[46] 2. Frequency analyses of the data grouped by month

show that the recent trend toward higher NAO index states

Figure 12. Statistics of PC1 for each SOM pattern. Description and values as in Figure 4 but for PC1.

D02104 REUSCH ET AL.: NORTH ATLANTIC CLIMATE VARIABILITY

18 of 20

D02104



is coming primarily from trends during January (since
1972–1987) and February (since 1987–2002). The fre-
quency maps also show notable differences in variability
patterns between the months.
[47] 3. High (low) NAO indices are associated with a

variety of high- (low-) state spatial patterns in the SOM.
Standard two-points-in-space indices are not expected to
capture such spatial variability but the SOM makes identi-
fying it much easier.
[48] 4. The PCA and SOM results both capture ‘‘North

Atlantic variability’’ but do so in different ways, leading to
different perspectives on the data. Comparison of PCA to
SOM results suggests that the orthogonality constraint of
standard PCA may be leading to a mixing of patterns that
the SOM is able to extract more readily. Further, the SOM-
based approach has a distinct advantage in its more readily
accessible visualization aspects (e.g., a SOM grid plot
summarizes all of a data set’s variability in a page).
[49] The work reported here has only involved MSLP but

preliminary work with other single-variable analyses has
shown similarly encouraging results. Further, we expect
additional insights when multiple variables are analyzed
together using the SOM-based methods. For example, our
analysis of the MSLP mean and standard deviation showed
how these aspects of the pressure field varied jointly.
Similarly, joint surface and upper air analyses will help to
show the broader behavior of the full atmosphere. This will
help with, for example, understanding variability in storm
tracks as seen in pressure, moisture and wind fields through-
out the atmosphere.
[50] Longer term, integration of our work on the atmo-

sphere with high-resolution ice core climate proxy records
(e.g., major ions, trace metals, accumulation) from Green-
land is an essential next step. Results will help improve our
understanding of the proxies (e.g., how they record climate)
and yield an extended record of climate in the North
Atlantic through artificial neural network-based calibration
[Reusch et al., 2005b] of the atmosphere to the ice core
records of past climate. Given the extensive body of work
on the NAO and North Atlantic variability, it is likely that
not all these results will be entirely novel. Even so, it is still
of interest that an independent analysis path was able to
confirm prior knowledge. That which is different will add to
our understanding of this system.
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