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Abstract The solar-wind magnetosphere interaction primarily occurs at altitudes where the

dipole component of Earth’s magnetic field is dominating. The disturbances that are created

in this interaction propagate along magnetic field lines and interact with the ionosphere–

thermosphere system. At ionospheric altitudes, the Earth’s field deviates significantly from

a dipole. North–South asymmetries in the magnetic field imply that the magnetosphere–

ionosphere–thermosphere (M–I–T) coupling is different in the two hemispheres. In this

paper we review the primary differences in the magnetic field at polar latitudes, and the

consequences that these have for the M–I–T coupling. We focus on two interhemispheric

differences which are thought to have the strongest effects: 1) A difference in the offset

between magnetic and geographic poles in the Northern and Southern Hemispheres, and

2) differences in the magnetic field strength at magnetically conjugate regions. These asym-

KML, SEM, SH, and JPR were supported by the Research Council of Norway/CoE under contract
223252/F50. IC was supported by a fellowship of the Natural Environment Research Council, grant
number NE/J018058/1. NP was supported by the U.S. National Science Foundation AGS-1522830. JCC
was funded by Natural Environment Research Council (NERC) grant NE/L007177/1. We acknowledge
the International Space Science Institute for support for our international team on
“Magnetosphere–ionosphere–thermosphere coupling: differences and similarities between the two
hemispheres.”

B K.M. Laundal
karl.laundal@ift.uib.no

1 Birkeland Centre for Space Science, University of Bergen, Bergen, Norway

2 Teknova AS, Kristiansand, Norway

3 British Antarctic Survey, Cambridge, UK

4 University of Leicester, Leicester, UK

5 Max-Planck Institute for Solar Systems Research, Göttingen, Germany

6 Department of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17
1BJ, UK

7 COSMIC Program Office, University Corporation for Atmospheric Research, Boulder, CO, USA

8 German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11214-016-0273-0&domain=pdf
http://orcid.org/0000-0001-5028-4943
mailto:karl.laundal@ift.uib.no


226 K.M. Laundal et al.

metries lead to differences in plasma convection, neutral winds, total electron content, ion

outflow, ionospheric currents and auroral precipitation.

Keywords North–South magnetic field asymmetries · Plasma convection · Thermospheric

wind · Total electron content · Ion outflow · Ionospheric currents · Aurora

1 Introduction

There are significant differences between the Earth’s magnetic field in the Northern and

Southern polar regions, even when seen in a magnetic field-aligned coordinate system. The

magnetic flux density at magnetically conjugate points can differ by up to a factor of 2 at

50◦ magnetic latitude, and the absolute inclination angle by more than 10◦. In addition,

the magnetic apex pole is more than 8.5◦ farther from the geographic pole in the Southern

Hemisphere (SH) compared to the Northern Hemisphere (NH), which means that the polar

region in the South experiences a larger daily variation in sunlight as the Earth rotates. The

longitudinal variation in magnetic flux density and field inclination is also much larger in the

SH. These asymmetries between the hemispheres lead to differences in ionospheric plasma

convection, auroral intensity, thermospheric wind, total electron content, and magnetic field

perturbations and associated currents. In this paper we review the differences in the magnetic

field at polar latitudes in the two hemispheres, and describe in detail how they may lead to

differences in geospace activity.

The degree of inter-hemispheric symmetry depends on the reference frame which is used.

A number of magnetic coordinate systems exist, taking into account the structure of Earth’s

magnetic field at different levels of detail. The most advanced magnetic coordinate systems,

the corrected geomagnetic (CGM) coordinates (e.g., Baker and Wing 1989) and apex coordi-

nates (Richmond 1995b), are based on tracing along magnetic field lines in the International

Geomagnetic Reference Field (IGRF) model (Thébault et al. 2015) at full resolution. They

are designed such that points that belong to the same field line are at the same coordinate,

with a change of sign in latitude between hemispheres. A map of Modified Magnetic Apex

coordinates is shown in Fig. 1. Note that the coordinate grid is nonorthogonal. This is an

Fig. 1 Modified apex coordinates (Richmond 1995b; Emmert et al. 2010), with reference height equal to 0.
Adapted from Laundal and Gjerloev (2014)
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effect of the non-dipole terms of the IGRF; if they were zero and the Earth spherical, apex
coordinates would be equal to the simpler centered dipole coordinate system. We use apex
or CGM coordinates, which are similar at high latitudes, throughout this paper, since the
field-aligned property implies that disturbances created by solar wind-magnetosphere inter-
action or magnetotail processes most often appear at the same magnetic coordinate in the
two hemispheres, since the coupling between the ionosphere and magnetosphere is largely
field-aligned.

The IGRF can be seen as a ground state of the magnetic field in the magnetosphere,
which in reality is never reached at high altitudes: the solar wind-magnetosphere interaction
compresses the magnetosphere on the day-side and creates the magnetotail on the night-side.
Ono (1987) showed that this effect, during geomagnetic quiet times, creates a daily variation
in the location of magnetically conjugate points at high latitudes. The variation at the Syowa
station (at ≈−66◦ CGM latitude) was approximately 100 km during solstices, and much
less at equinox. In addition, the interaction of the magnetosphere with the solar wind and
the ionosphere–thermosphere system is often asymmetrical between hemispheres, twisting
the magnetosphere such that magnetically conjugate phenomena appear shifted in longitude
and/or latitude. Such shifts, which have been observed to reach ≈2 hours of magnetic local
time (Østgaard et al. 2011), have been extensively studied, and we will not go into details
in this paper. When we talk about asymmetries in the magnetic field at conjugate points, we
refer to their position according to the IGRF.

The two features of the asymmetric magnetic field which are probably most important for
geospace phenomena are the field strength asymmetries at conjugate points and the differ-
ences in offset between the magnetic and geographic grids. The differences in offset between
magnetic and geographic coordinates imply that the interaction between magnetically and
geographically organized phenomena will be different in the two hemispheres. The latter
includes the exposure to sunlight, which largely determines the ionospheric conductivity
on the day-side, and consequently also the strength of thermosphere–ionosphere coupling.
A given point in the SH will in general experience larger variations in sunlight throughout a
day compared to its conjugate point in the NH.

Differences in field strength mean that the mirror height of trapped charged particles will
be different. Where the field is weak, the mirror height is lower, suggesting that more par-
ticles will interact with the atmosphere there and create ionization and auroral emissions.
However, the area over which the precipitating particles are distributed will be larger at re-
gions with lower flux density, and thus the intensity will be lower. Whether or not the mirror
height effect and the differences in area balance depends on the pitch angle distribution of
the particles (Stenbaek-Nielsen et al. 1973). This will be treated in more detail in Sect. 8.
Differences in magnetic flux density also affect the ionospheric conductance, which is in-
versely related to the magnetic field strength (Richmond 1995a; Cnossen et al. 2011, 2012a).
This may have important effects on ionospheric currents and associated magnetic field dis-
turbances, as well as the plasma flow (Cnossen et al. 2011, 2012a). The response of the
ionosphere to magnetospheric driving depends on the Pedersen conductance (e.g. Scholer
1970), or ionospheric mass (Tu et al. 2014), suggesting that the magnetosphere–ionosphere
coupling may be different in the two hemispheres and at different longitudes. Modeling by
Förster and Cnossen (2013) has indeed shown that the asymmetric features in the Earth’s
field introduces differences in plasma convection and thermospheric winds at high latitudes.

In Sect. 2 we present a detailed description of the asymmetric features in the magnetic
field in the two hemispheres. The subsequent sections explore the effects of these asymme-
tries on plasma drift (Sect. 3), thermospheric wind (Sect. 4), total electron content (Sect. 5),
ion outflow (Sect. 6), currents and magnetic field perturbations (Sect. 7), and the aurora
(Sect. 8). Section 9 concludes the paper.
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Fig. 2 Magnetic field strength (left column) and absolute inclination (right column) in apex coordinates in
NH (top), SH (middle) and the difference between the hemispheres (bottom). The inter-hemispheric difference
in field strength is shown relative to strongest field among the two footpoints. IGRF-12 values for 2015 were
used, at 1 Earth radius

2 North–South Magnetic Field Asymmetries at High Latitudes

2.1 Magnetic Field Strength Differences at Conjugate Points

Figure 2 shows the ground magnetic field strength (left column) and absolute inclination

angle (right column) in the NH (top) and SH (middle), in the apex quasi-dipole (QD) coor-

dinate system. The bottom row shows the inter-hemispheric difference in these quantities.

The difference in magnetic field strength is quantified as the hemispheric difference divided

by the flux density at the footpoint with the strongest field. Positive values signify stronger

field values in the NH. The asymmetry in field inclination at conjugate points is quantified

as the difference between the angles, positive where the field is closest to vertical in the NH.
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We see that the flux density is more uniform in the NH than the SH. The field in the NH

has two maxima, located in the Canadian and Siberian sectors (around −30◦ and 180◦ mag-

netic longitude, respectively). In the SH the field has only one maximum, off the apex pole

towards Australia (at ≈−135◦ longitude), and decreases significantly towards the South At-

lantic region. The difference at conjugate points at Atlantic longitudes is up to a factor of 2.

In the polar cap region poleward of ≈±80◦, the field is stronger in the SH by approxi-

mately 7%. Equatorward of this, the field is strongest in the NH everywhere except for the

quadrant between −90◦ and 180◦ magnetic longitude.

The Hall and Pedersen conductivities depend on the magnetic field strength directly

and via its effect on electron and ion gyro frequencies (Richmond 1995a). The height in-

tegrated dayside conductances were reported by Richmond (1995a) to scale with B−1.3

(Hall) and B−1.6 (Pedersen). Later modeling results, investigating the change on the cou-

pled magnetosphere–ionosphere–thermosphere system associated with a changing dipole

moment, have shown larger scaling factors: Cnossen et al. (2011) found scaling factors of

approximately B−1.7 (Hall) and B−1.5 (Pedersen) on the dayside. They also found a varia-

tion with B on the nightside, but significantly smaller. In a later study Cnossen et al. (2012a)

found that the variation of the Pedersen conductance with magnetic field strength is stronger

when the solar EUV flux is higher.

Using the comparatively moderate scaling parameters from Richmond (1995a), we find

that a relative difference of ±20% in magnetic flux density amounts to a relative difference

in Hall conductance of approximately ∓25% (notice the change in sign) and Pedersen con-

ductance of approximately ∓30%. Differences of this magnitude or larger occur up to 70◦

magnetic latitude in the 0◦–90◦ longitude quadrant.

The inclination or dip angle of the magnetic field is also different in the two hemispheres.

The hemispheric difference follows approximately the same pattern as for the magnetic

field strength, with the field lines in the NH more vertical in the regions where the field is

strongest. The asymmetry reaches a peak in the 0◦–90◦ longitude sector, where the differ-

ence reaches more than 10◦ at latitudes just poleward of ±65◦.

Figure 3 illustrates the longitudinal variation of the magnetic field in both hemispheres.

The left part shows the relative difference between the strongest and weakest field values

along circles of constant magnetic latitude (maximum divided by minimum), given on the x

axis. The dashed and dotted curves show the corresponding relative differences in Pedersen

and Hall conductances, assuming that they scale as B−1.6 and B−1.3, respectively. We see

that in the SH, the magnetic flux density varies by more than a factor of 2 at 55◦ latitude. The

corresponding variation in daytime Pedersen conductance is approximately a factor of 3.5

and Hall conductance close to 3. In the NH, the magnetic field is much more uniform, the rel-

ative longitudinal variation in flux density at >50◦ being approximately 1.25 at most. These

inter-hemispheric differences, together with larger daily variation in solar illumination, are

likely to produce larger diurnal variations in geomagnetic activity in the SH compared to the

NH.

The right part of Fig. 3 shows the longitudinal variation in magnetic inclination angle.

In this figure we show the absolute variation rather than relative variation. The difference

in the inclination angle along a circle of latitude reaches 7◦ in the NH and 18◦ in the

SH.

2.2 Differences in Pole Offsets

Figure 4 illustrates the variation in sunlight exposure on the magnetic grids in the two hemi-

spheres. The upper part of the figure shows apex quasi-dipole circles of latitude at ±60◦,
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Fig. 3 Left: Relative variation in B , �H and �P (assuming they scale as B−1.3 and B−1.6, respectively
(Richmond 1995a)) in both hemispheres. The relative variation is quantified as the maximum value divided
by the minimum value along a contour of constant magnetic latitude, given at the x axis. Right: Longitudinal
variation in magnetic inclination as a function of magnetic latitude. IGRF-12 values for 2015 were used

±70◦ and ±80◦ in both hemispheres projected on a geographic grid in the NH. In addi-

tion, magnetic meridians separated by 90◦ are shown, with the 0◦ meridians in bold. Blue

color corresponds to the NH and red to the SH. The markers signify conjugate points at

which magnetometer stations are located (to be discussed in Sect. 7). The offset between

the magnetic and geographic poles is clearly seen. Due to the offset between geographic

and magnetic poles, there will be certain universal times when one hemisphere (in mag-

netic coordinates) is more sunlit than the other. The panel in Fig. 4 shows this UT vari-

ation, quantified in terms of the fraction of the region poleward of ±60◦ which is sunlit.

Positive hemispheric differences mean that the NH is more sunlit than the SH. This figure

corresponds to equinox conditions, but the general UT variation will be similar in other

seasons.

The lower plot illustrates how the exposure to sunlight varies throughout the year in the

regions poleward of 60◦ magnetic latitude. The curves, blue for the NH and red for the SH,

show the daily minimum and maximum fraction of the region poleward of 60◦ which is

sunlit. Since the distance between these curves is larger in the South than in the North, the

daily variation is always largest in the South. Notice that the polar circle (black dashes in

the top left plot), which is tangent to the sunlight terminator at solstice, is equatorward of

the −60◦ QD latitude contour. That means that at certain UTs, the region at < − 60◦ will be

entirely dark (sunlit) close to Southern winter (summer), so that the sunlit fraction envelope

curve saturates at 0 (1).

At solstice, there is naturally a large difference in solar illumination between the summer

and winter hemispheres. To eliminate North–South differences arising simply from this ef-

fect, it can be helpful to compare the two hemispheres in the same local season (e.g., winter

or summer). Even then though, there are small differences in the amount of solar radiation

received by the Northern and Southern Hemispheres. This is partly due to the different off-

sets between the geographic and magnetic poles, which result in differences in solar zenith

angle and length of day, and partly due to the elliptical shape of the Earth’s orbit around

the Sun, which results in variations in Sun–Earth distance over the course of the year. The
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Fig. 4 Top: Magnetic QD grids from both hemispheres (red is South, blue is North) shown in geographic
coordinates, projected to the NH. The ±60◦ , ±70◦ and ±80◦ circles of latitude are shown. The 0◦ magnetic
meridian is shown in bold. The circles and triangles mark conjugate magnetometers, discussed in Sect. 7.
The polar circle at 66.6◦ is shown in black dashes. Middle: The hemispheric difference in the fraction of
the region poleward of ±60◦ QD latitude which is sunlit. The curve represents equinox conditions. Positive
values mean that the NH is more sunlit than the SH. Bottom: The minimum and maximum fractions of the
region poleward of 60◦ which is sunlit as a function of days since the last local winter equinox

Earth is about 5 · 106 km closer to the Sun in early January (perihelion) than in early July

(aphelion), causing a difference in illumination of about 6–7%.

Figure 5 shows the mean daily insolation at the apex magnetic poles in the Northern and

Southern Hemisphere as a function of days since winter solstice, both with and without the

effect of the variation in Sun–Earth distance. While the higher geographic latitude of the

apex magnetic pole in the NH results in a larger solar zenith angle, the day is also longer in
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Fig. 5 Mean daily solar insolation at the locations of the apex magnetic poles in the Northern (blue)
and Southern (red) Hemisphere as a function of days since winter solstice, assuming a solar constant of

1361 W/m2. Left: not including the effect of variation in Sun–Earth distance; right: including the effect of
variation in Sun–Earth distance

summer, so that the effect of the difference in offset between the magnetic and geographic

poles is to result in greater insolation at the Northern apex pole. However, the effect of the

variation in Sun–Earth distance is more important and reverses the asymmetry, so that on

balance, the Southern apex pole receives more sunlight during most local seasons (except

for a period of about a month in spring).

3 Asymmetry Effects on Ionospheric Plasma Convection

When the interplanetary magnetic field (IMF), embedded in the solar wind plasma has a

southward component, magnetic reconnection on the dayside magnetopause changes the

field topology such that the closed terrestrial field lines become connected to the Sun’s mag-

netic field, forming the polar caps. The polar caps are regions threaded by equal amounts

of open magnetic flux in the two hemispheres. Being connected to the solar wind, the open

field lines in the magnetosphere are transported anti-sunward, and folded into two so-called

lobes in the magnetotail. In this process, solar wind kinetic energy is converted to magnetic

energy which resides in the lobes until magnetic reconnection on the nightside creates new

closed field lines. As these newly closed field lines relax from their highly stretched config-

uration, the magnetic energy is converted back to kinetic energy and a large-scale sunward

plasma flow on closed field lines takes place. Eventually the field lines will end up on the

dayside, where reconnection with the IMF starts a new cycle of plasma and magnetic flux

circulation.

The footprint of this circulation, which is called the Dungey cycle (Dungey 1961), can be

observed in the ionosphere as a two-cell flow pattern of ionospheric plasma. The ionospheric

plasma flow is anti-sunward across the polar cap. The plasma then leaves the polar cap

through the segment of its boundary that maps to the nightside reconnection region, before

turning sunward on the dawn and dusk flanks, and eventually re-entering the polar cap in

the region that maps to dayside reconnection.

While this description accounts for the dominating large-scale circulation of plasma and

magnetic flux in the ionosphere and magnetosphere, large variations are observed in the

global morphology of ionospheric convection. Statistical studies of ground- and space-based
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measurements have shown that the average patterns strongly depend on the orientation of

the IMF (Heppner and Maynard 1987; Weimer 2005; Ruohoniemi and Greenwald 2005;

Pettigrew et al. 2010; Haaland et al. 2007). During northward IMF, the two-cell convection

pattern on average reduces, and one or two small cells appear additionally at high latitudes

on the dayside (Förster et al. 2008a). The convection pattern also rotates in a systematic

way with changes in the IMF Geocentric Solar Magnetic (GSM) y component. The sense

of the rotation depends on the sign of the IMF By component, and is opposite between

hemispheres. These effects can be explained in terms of different dayside magnetic field

geometries (Cowley 1981), assuming that reconnection primarily occurs at the points where

the IMF and the magnetosphere are most strongly anti-parallel.

The main governing mechanism behind convection takes place at high altitudes, where

the Earth’s field is largely dipolar, and therefore symmetrical between hemispheres. There is

however evidence that the ionospheric and magnetospheric convection is modified by iono-

spheric conductivity (e.g., Ruohoniemi and Greenwald 2005; Pettigrew et al. 2010; Ridley

et al. 2004), which has some dependence on field asymmetries (see Sect. 2). Field asym-

metries have indeed been shown to modify ionospheric convection (Förster and Cnossen

2013), as does the magnitude of the Earth’s dipole moment (Cnossen et al. 2011, 2012a).

However, since the literature on this topic is sparse, we focus mainly on results regard-

ing variations in the convection related to differences in conductivity. Such variations are

observed both in statistical average convection patterns, which must be interpreted as repre-

sentative of a quasi-steady state, and in the dynamic response of the ionosphere to changes in

magnetospheric convection. We also discuss how asymmetries in the magnetic field at low

altitudes introduce asymmetries in the convection when observed in a geographic reference

frame.

3.1 Conductivity Influence on Average Convection Morphology

In the context of the present review, it is relevant to look at differences in average convection

patterns related to seasonal differences. Such differences may be due to 1) effects related

to reconnection geometries, which are independent of field asymmetries at low altitudes,

and/or 2) effects related to ionospheric conductivity differences, which do depend on the

differences summarized in Sect. 2 (e.g., Cnossen et al. 2012b). It is the latter effects that are

of interest here.

When IMF By is small, the two-cell convection pattern is not entirely symmetrical;

the flow across the polar cap is slightly skewed towards dusk (e.g., Haaland et al. 2007),

and the dusk cell is slightly larger. This dawn–dusk asymmetry is often attributed to iono-

spheric feedback associated with the Hall conductance gradients (Tanaka 2001; Lotko et al.

2014), which perturbs the magnetosphere such that the nightside reconnection region ap-

pears duskward of the Sun–Earth axis. Statistical studies of convection measurements from

the Super Dual Auroral Radar Network (SuperDARN) have shown that the dawn–dusk

asymmetries that appear when the IMF By is strong are either reduced or enhanced de-

pending on the dipole tilt angle. Ruohoniemi and Greenwald (2005) found that the asym-

metries are larger for the combination By > 0/summer and By < 0/winter. They argued

that these results were consistent with the Hall conductance gradient effect (Tanaka 2001).

Similar results were obtained by Pettigrew et al. (2010), who also used SuperDARN mea-

surements.

Dynamical modeling of the magnetosphere–ionosphere–thermosphere (M–I–T) interac-

tion by Song et al. (2009) and Tu et al. (2014) has also shown that the dynamical Hall

effect creates a component in the ionospheric flow which is perpendicular to the magneto-

spheric flow that drives it. For an anti-sunward flow, the dynamical Hall effect would create
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a duskward component, consistent with empirical convection patterns. The effect is stronger

when the conductivity is low. The conductivity differences associated with asymmetries in

the main field may therefore lead to differences in ionospheric convection even when the

magnetospheric driver is symmetrical. The modeling by Tu et al. (2014) was comprehensive

in the sense that it was based on a fully dynamic description of the M–I–T coupling. Their

approach differs from the standard technique used in MHD models, where field-aligned

currents at the ionospheric boundary are used to solve for an electrostatic potential in the

ionosphere, which then is used as a boundary condition for the magnetosphere (e.g., Ridley

et al. 2004). However, Tu et al. (2014) only looked at a 1D-case, solving for all electrody-

namic quantities along a single vertical field line. Consequently, the dynamical Hall effect

is independent of horizontal gradients in the conductivity, which are essential in the global

MHD results by e.g., Lotko et al. (2014).

3.2 Conductivity Influence on Dynamic Response to Changes in Magnetospheric

Convection

In the statistical studies of ionospheric convection cited above, the assumption has been

made that B is static, so that the electric field is a potential field, and the magnetospheric

electric field maps exactly along magnetic field lines to the ionosphere. In reality the iono-

sphere responds to changes in magnetospheric convection in a finite time (e.g., Song et al.

2009; Tu et al. 2014), since the magnetosphere must overcome the inertia of the iono-

sphere/thermosphere system before a steady state is reached. The inertia may well be dif-

ferent between hemispheres, due to both seasonal variations and differences in the Earth’s

magnetic field as discussed in Sect. 2 (see Sect. 5).

The Dungey cycle described above is not a steady circulation. Dayside and nightside

reconnection tend to happen in bursts and not simultaneously, expanding and contracting

the polar cap. This view is known as the expanding-contracting polar cap paradigm (Cowley

and Lockwood 1992; Siscoe and Huang 1985; Milan et al. 2003; Milan 2015). In sum,

the convection pattern depends both on the dayside reconnection, which can be seen as

directly driven by the IMF, and on nightside reconnection. Grocott et al. (2009) showed that

convection excited by nightside reconnection is much less ordered by the IMF orientation

than what might be expected from the statistical studies cited above.

Each burst of reconnection is followed by a change in magnetospheric convection, to

which the ionosphere takes some time to adapt. The strongest nightside reconnection events

occur during substorms (Milan et al. 2007). Since substorms are also associated with a strong

increase in auroral particle precipitation, the conductivity on the nightside changes dramati-

cally. It has been shown that this conductivity enhancement is associated with a suppression

of the convection (e.g., Provan et al. 2004), and that the stagnation is more prominent when

the aurora is more intense (Grocott et al. 2009). The suppression is understood as an effect

of enhanced friction between the charged and neutral particles as the collision frequency in-

creases with conductivity. Indirect evidence of a seasonal difference in convection response

to substorms was presented by Laundal et al. (2010a,b), who found that the substorm bulge,

the footprint of newly closed field lines, was more pronounced in winter than in summer.

This suggests that the ionospheric convection is more suppressed in the bulge, thus main-

taining its shape, during the winter season when precipitation is on average stronger (e.g.,

Newell et al. 2010).

Based on the above results, it should be expected that conductivity-dependent differ-

ences in response times are also observed on the dayside. However, as far as we know,
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conjugate observations of the convection response to IMF changes have not provided con-

clusive evidence of this, as hemispheric differences in response time can also be interpreted

in terms of reconnection geometry (e.g., Ambrosino et al. 2009; Chisham et al. 2000). If the

conductivity does play a role in modulating ionospheric response times, we would expect

a UT-dependent asymmetry in convection patterns between hemispheres due to the field

asymmetries shown in Fig. 2 and pole offset differences illustrated in Fig. 4.

3.3 Cross Polar Cap Convection Asymmetries

The overall flux transport across the polar cap can be quantified in terms of the cross polar

cap potential (CPCP), measured as the maximum electric potential difference in the polar

regions. Several statistical studies have found that the CPCP is on average slightly stronger

in the SH compared to the NH. Pettigrew et al. (2010), who used SuperDARN radars from

both hemispheres, found a difference of 6.5%. Papitashvili and Rich (2002), who used mea-

surements from the Defense Meteorological Satellite Program (DMSP), found a difference

of 10%. Förster and Haaland (2015), who used Cluster electric field measurements mapped

to the ionosphere, found differences of ∼5%–7%. All these authors cite the differences in

the geomagnetic field as a possible cause for the asymmetries.

A higher CPCP in the South does not imply that the convection velocity is higher there,

since the drift velocity depends on both the electric and magnetic field: v = E × B/B2,

which is proportional to E/B . The study by Förster and Cnossen (2013) is one of few

that looks specifically at the effect of asymmetries in the field on ionospheric convection.

They presented model runs, using the Coupled Magnetosphere–Ionosphere–Thermosphere

model (Wiltberger et al. 2004; Wang et al. 2004), of an interval near equinox, using both a

dipole field and the IGRF. They found predominantly stronger convection velocities in the

NH at high latitudes (>80◦) with the IGRF, and symmetrical values using the dipole. This

region is representative of the cross polar cap flow. They argued that the differences could

be explained by field strength asymmetries (Cnossen et al. 2011) and differences in offset

between the magnetic and geographic poles (Cnossen and Richmond 2012).

Even if the CPCP is the same, the flows will be different when observed in a geographic

coordinate system due to the field asymmetries. In the following we calculate mean convec-

tion velocities along the dawn–dusk meridian for an electric potential which is symmetrical

between hemispheres in modified apex coordinates. We define the convection electric poten-

tial � such that |∂�/∂λm| is constant along the dawn dusk meridian poleward of modified

apex latitude λm = ±80◦ with reference height 400 km. The total CPCP is 100 kV. Us-

ing Eqs. 4.9 and 4.18 in Richmond (1995b), we calculate the corresponding drift velocity,

and convert this to geographic coordinates using the software published by Emmert et al.

(2010). Figure 6 (left) shows the mean convection velocity along the dawn–dusk meridian

in both hemispheres as a function of UT. The maps to the right show the ±80◦ magnetic

circles of latitude, with the dawn–dusk meridian at 00 UT in bold, and the noon meridian

dashed. The diurnal variation is larger in the NH compared to the SH. The velocity in the

NH peaks around 06 and 18 UT, when the orientation of the Earth is such that the ma-

jor axis in the elliptical 80◦ contour aligns with the Sun–Earth axis. In the SH, the −80◦

contour is more circular, so that the diurnal variation is smaller. The interhemispheric dif-

ference in convection speed is smallest just after 00 and 12 UT, in good agreement with

the modeling results by Förster and Cnossen (2013). These calculations show that even if

the flux transport is the same in the two hemispheres and at all UTs, there will be a diur-

nal variation and a hemispheric asymmetry in convection velocities as seen in geographic

coordinates.
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Fig. 6 Left: Diurnal variation in mean convection velocities at the dawn–dusk meridian poleward of ±80◦

modified apex latitude. A total CPCP of 100 kV has been used, which is constant along the dawn–dusk
meridian and symmetrical between hemispheres. The panels to the right show the ±80◦ modified apex mag-
netic latitude contours in both hemispheres, as well as the dawn–dusk meridian at 00:00 UT (bold) and the
noon meridian at the same time (dashed). The calculations were done for 1 January 2015, but it is largely
representative also for other times

4 Thermospheric Winds

4.1 Theoretical Considerations

High-latitude neutral winds in the thermosphere arise from a closely coupled combination

of solar radiative forcing, interactions of the solar wind with the Earth’s magnetosphere–

ionosphere system, and ion-neutral coupling processes within the upper atmosphere. Both

North–South asymmetries in plasma convection (see Sect. 3) and solar extreme ultravio-

let (EUV) irradiation (see Sect. 2) can contribute to asymmetries in neutral winds, enter-

ing the momentum budget of the thermosphere via the ”ion drag” and pressure gradient

forces.

The ion drag force describes the momentum exchange between charged and neutral par-

ticles due to collisions between them. At high latitudes, the neutral species are usually ac-

celerated by the (generally stronger) plasma flows driven by magnetospheric convection.

The magnitude of the ion drag force depends on the difference between the ion and neutral

velocities, so that North–South differences in plasma convection, as described in Sect. 3,

are a first source of hemispheric asymmetry in neutral winds. However, the extent to which

the ion velocities are able to influence the neutral winds also depends on the strength of

the ion-neutral coupling, described by the Hall and Pedersen ion drag coefficients. In the

upper thermosphere (>∼150 km) the Pedersen ion drag coefficient is much larger than the

Hall ion drag coefficient and roughly proportional to the electron density (e.g., Richmond

1995a). Since solar EUV radiation plays an important role in ion and electron production,

solar illumination influences the magnitude of the ion drag force to a degree.

Solar illumination is also an important factor in the pressure gradient force. Non-uniform

heating due to absorption of solar EUV radiation leads to a pressure gradient directed away

from the day-side equatorial region, and therefore in an anti-sunward direction across the

polar region (e.g., Dickinson et al. 1981). Other processes that affect the thermospheric

temperature distribution also contribute to the pressure gradient force and can modify this.

At high latitudes, Joule heating is an important source of energy, especially during disturbed

geomagnetic conditions. This acts to reduce the solar EUV-driven pressure gradient on the
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dayside, but can add to it on the nightside. The magnitude of Joule heating is dependent on

both the neutral and plasma velocities, as well as the ionospheric conductivity.

Because of the role of solar radiation in both the ion drag force and pressure gradient

force, differences in the amount of solar radiation received by the two hemispheres are a

second source of North–South asymmetry in neutral winds. Seasonal variations associated

with the tilt of the Earth’s geographic axis with respect to the Sun–Earth line cause strong

differences in solar illumination around solstice, when it is winter in one hemisphere and

summer in the other. However, those summer–winter differences in solar illumination are

not really what we are interested in here. Therefore we will compare the two hemispheres

during the same local season, e.g., compare June in the NH to December in the SH. Still,

even then there are differences in the average amount of illumination, as well as in spatial

and diurnal variations, as explained in Sect. 2.

Hemispheric differences in the offset between the magnetic and geographic reference

frames create one further source of asymmetry. Because some of the forces acting on the

neutral wind are best organized in a geographic reference frame, such as the solar EUV-

driven part of the pressure gradient, or the Coriolis force, while others are best organized in a

magnetic reference frame, such as the ion drag force, the degree to which these two reference

frames match each other influences how the different types of forcing balance and interact

with each other. Consider, for example, the ion drag force and the EUV-driven pressure

gradient force across the polar cap. Both are oriented in an anti-sunward direction, but the

ion drag force is anti-sunward in a magnetic reference frame, while the EUV-driven pressure

gradient force is anti-sunward in a geographic reference frame. The directions therefore do

not match perfectly, and the discrepancy between the two is larger in the SH. In general, the

greater offset between the magnetic and geographic poles in the SH leads to greater spatial

differences between the two references frames and greater variations over the course of a

day. These factors could therefore lead to greater variability in the SH high-latitude neutral

winds, in addition to the solar illumination effect already described (see also Förster et al.

2008b; Förster and Cnossen 2013).

4.2 Observational and Modeling Studies

Observations made by various satellite missions and by ground-based Fabry–Pérot Inter-

ferometers (FPIs) have shown that the high-latitude neutral wind pattern exhibits a clear

imprint of the ionospheric convection pattern (e.g., Thayer and Killeen 1991, 1993; Killeen

et al. 1995; Emmert et al. 2006; Förster et al. 2008b, 2011) indicating the importance of the

ion drag force in the thermospheric high-latitude momentum budget. For southward IMF,

the neutral winds more or less follow the classic two-cell convection pattern, though with

some modifications due to inertia and due to other forces acting on the neutral winds. The

solar EUV-driven pressure gradient force tends to enhance anti-sunward flow across the po-

lar cap, while inhibiting sunward return flows at lower latitudes in the dawn and dusk sectors

(e.g., Thayer and Killeen 1993). Further, the neutral wind vortex on the dusk side is gen-

erally stronger than the one on the dawn side, because the Coriolis force and momentum

advection term more or less balance each other on the dusk side, while they act in the same

direction on the dawn side, in competition with the ion drag force (e.g., Killeen and Roble

1984; Kwak and Richmond 2007).

Förster et al. (2008b) noted systematic differences in the neutral wind patterns in the

Northern and Southern polar caps, based on a statistical analysis of CHAMP data for the full

year of 2003 (averaging all seasons together). In agreement with our theoretical predictions

above, they found greater neutral wind variability in the SH than in the NH; standard devi-

ations of the neutral winds in the South were about 20–40% higher than in the North. The



238 K.M. Laundal et al.

Fig. 7 Left: 91-day averages of the mean neutral wind speed in the polar cap (>80◦ magnetic latitude) for
the NH (blue) and the SH (red) based on CHAMP data from Jan. 2002 to Dec. 2008. Error bars represent
the 95% confidence intervals on the means. Right: 91-day running averages of the maxima and minima of the
high-latitude neutral wind vorticity in the same format. It was not possible to calculate the 95% confidence
intervals in this case, so no error bars are shown. See Cnossen and Förster (2015) for further details

mean neutral wind speeds in the two hemispheres were about the same (Cnossen and Förster

2015). However, further analysis of the neutral wind vertical vorticity by Förster et al. (2011)

did reveal noticeable differences in magnitude. The vertical vorticity of the neutral wind iso-

lates the rotational (non-divergent) part of the horizontal neutral wind, which is primarily as-

sociated with the ion drag force (e.g., Kwak and Richmond 2014), and is therefore expected

to be more strongly influenced by plasma convection than the total wind field. The neutral

wind vorticity maximum can be used as an indicator for the strength of the dawn cell, and the

vorticity minimum as an indicator for the strength of the dusk cell. Using CHAMP data from

two full years (2002–2003), Förster et al. (2011) showed that the magnitudes of the vorticity

maximum and minimum are systematically larger in the NH, consistent with the larger ion

velocities in the NH. Förster and Cnossen (2013) reproduced these North–South differences

in simulations with the Coupled Magnetosphere–Ionosphere–Thermosphere (CMIT) model

and demonstrated that they are associated with asymmetry in the Earth’s magnetic field.

Cnossen and Förster (2015) studied the dependence of the North–South asymmetries in

neutral winds on seasonal and solar cycle variations in solar illumination. A new statistical

analysis of CHAMP observations from 2002–2008 showed that neutral wind speeds are

always larger in the summer hemisphere, indicating the importance of solar radiative forcing

on the neutral winds. However, when both hemispheres are compared for the same local

season, as shown in Fig. 7, a North–South difference emerges during the winter season, with

wind speeds being significantly larger in the NH. This is perhaps even clearer in the neutral

wind vorticity maxima and minima, also shown in Fig. 7, suggesting that the asymmetries

are forced by the North–South asymmetry in plasma convection.

The fact that the asymmetry disappears during summer might be due to North–South

differences in solar radiation counter-acting the effect of the asymmetry in plasma convec-

tion. As shown in Fig. 5 the SH receives more sunlight than the NH. Since high-latitude

neutral winds become notably stronger when solar irradiance is higher (e.g., Emmert et al.

2006), the larger amount of sunlight in the SH polar region opposes the effect of the larger

ion velocities in the NH polar region more strongly in summer, reducing the North–South

asymmetry in neutral wind speeds and vorticity, while in winter the asymmetry in solar

radiative forcing is much less important.

Cnossen and Förster (2015) explored the seasonal variations in North–South asymmetry

also using simulations with the CMIT model. However, the model showed generally larger
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neutral wind speeds and absolute vorticity values in the NH, almost regardless of the season.

The model thus does not appear to reproduce the interactive balance between solar radiative

effects and plasma convection effects on the neutral winds correctly, apparently placing too

much emphasis on the latter. Cnossen and Förster (2015) ascribed this to a problem with the

seasonal variation in electron density in the model, leading to errors in the strength of the

ion-neutral coupling. The reason for the incorrect seasonal variation in electron density is

still under investigation, but is likely to be complex, as the electron density distribution at

high latitudes is affected by many different processes (solar EUV, energetic particle precip-

itation, transport by neutral winds, E × B drifts, etc.), which also interact with each other.

This illustrates the need to better understand both the seasonal cycle and any North–South

asymmetries in electron density that may be present, as discussed in Sect. 5.

5 Asymmetries in Total Electron Content

At F-region altitudes, production and loss of ions and electrons are governed by solar EUV

radiation along with the thermosphere composition. In particular, photoionization of atomic

oxygen (O) is the primary source of O+, which dominates the F-region plasma population.

The loss of O+ is due to ion exchange reactions with molecular nitrogen (N2) and molecular

oxygen (O2). Spatial and temporal variability in either the EUV radiation or thermosphere

composition will therefore have a direct impact on the F-region electron density. Though

not discussed here, neutral winds and ionosphere electric fields additionally contribute to

the ionosphere variability through the redistribution of plasma to regions of increased or

decreased production and loss.

Asymmetries between the geomagnetic field in the Northern and Southern Hemispheres

(Sect. 2) introduce an asymmetry in the solar EUV radiation and the neutral composition,

leading to hemispheric differences in the F-region electron density. This is primarily due to

the offset between the magnetic and geographic poles. As shown in Figs. 4 and 5, there are

considerable differences in the solar illumination of high magnetic latitudes in the Northern

and Southern Hemispheres. North–South asymmetry in the magnetic field, together with

variations in the Sun–Earth distance, result in the SH high latitude ionosphere experiencing

greater exposure to EUV radiation compared to the NH. Additionally, energy inputs at high

latitudes and changes in the (horizontal and vertical) transport modifies [O/N2]. As the

energy input is related to the geomagnetic field geometry, the thermosphere composition,

and its impact on production and loss of ions and electrons, will be impacted by hemispheric

asymmetries in the geomagnetic field.

To illustrate the differences between the ionospheres in the Northern and Southern Hemi-

spheres, Figs. 8 and 9 show the nighttime (00 MLT) and daytime (12 MLT) total electron

content (TEC) from the Constellation Observing System for Meteorology, Ionosphere, and

Climate (COSMIC) Global Positioning System (GPS) radio occultation observations (An-

thes et al. 2008) under equinox, winter, and summer conditions. The COSMIC TEC obser-

vations are the integrated electron density up to ∼800 km, and are thus dominated by the

electron density at F-region altitudes. Note that the results in Figs. 8 and 9 are presented in

terms of magnetic apex latitude and longitude, and are based on geomagnetic quiet (Kp < 3)

observations during the solar minimum years of 2007–2009. Differences in the NH and SH

TEC are clearly apparent. First, one can see that during March equinox, the average TEC

poleward of 60◦ is slightly larger in the SH compared to the NH. Notably larger values

of TEC also occur in the SH during local summer (i.e., December solstice in the SH and

June solstice in the NH). However, during local winter, the NH TEC is greater than the SH
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Fig. 8 COSMIC TEC at 0000
MLT in the NH (left panels) and
SH (right panels) for March
equinox (top panels), local winter
solstice (middle panels), and
local summer solstice (bottom

panels). Results are presented in
Apex latitude and longitude, and
are the average of
geomagnetically quiet days for
2007–2009. The geographic pole
positions are marked by crosses

TEC. The 2007–2009 average F10.7 cm solar flux during December and June solstice is

nearly equivalent, and the hemispheric differences during local winter and summer are thus

unrelated to changes in solar activity between December and June solstices.

Differences in the longitudinal distribution of the TEC between the two hemispheres are

also evident in Figs. 8 and 9. In particular, during the daytime (12 MLT, shown in Fig. 9),

the TEC is preferentially larger in the magnetic apex longitude sectors that are furthest from

the geographic pole, which is marked by crosses. Longitude sectors far from the geographic

pole are most sunlit, and thus the daytime TEC is larger near 0◦ apex longitude in the NH

and 180◦ longitude in the SH. The opposite occurs during the nighttime (00 MLT, shown in

Fig. 8), when the TEC is greater at longitudes which are closer to the geographic pole.

The hemispheric asymmetries that are present in Figs. 8 and 9 can largely be explained

by seasonal variations in the Sun–Earth distance, and hemispheric differences in the geo-

magnetic field. The change in solar radiation due to varying Sun–Earth distance between

the December and June solstices (see Fig. 5) results in greater winter electron densities in

the NH and larger electron densities in summer in the SH. This leads to an ∼7% difference

(Zeng et al. 2008), and explains a portion of the hemispheric asymmetry during solstice con-

ditions in Figs. 8 and 9. Variations in the Sun–Earth distance cannot, however, explain the

relatively larger TEC that occurs in the SH during March equinox. During March equinox,

the average nighttime (Fig. 8, upper panels) TEC is similar in both hemispheres, and is dom-
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Fig. 9 Same as Fig. 8, except for
the results are shown for 1200
MLT

inated by longitudinal variations that arise due to thermosphere composition, which will be

discussed later. During daytime (Fig. 9, upper panels), we attribute the larger TEC at March

equinox in the SH to the different offset between the geographic and magnetic poles in the

two hemispheres, which leads to solar EUV radiation occurring at higher magnetic lati-

tudes in the SH. We note that this mechanism also impacts the results during solstice time

periods; however, it is less evident in Figs. 8 and 9 due to the aforementioned impact of

variations in Earth–Sun distance. As explained by Zeng et al. (2008), the tilt of the geomag-

netic field also drives differences in the longitudinal variations in the Northern and Southern

Hemispheres. In particular, the tilt of the geomagnetic field leads to magnetic longitudes

further from the geographic poles receiving more solar EUV radiation during the daytime,

resulting in greater daytime TEC at these longitudes (Fig. 9). When solar EUV forcing is

largely absent, variations in thermosphere composition are thought to be responsible for

the different longitudinal variability in the Northern and Southern Hemispheres. Regions

of enhanced downwelling, which increases the [O/N2] ratio, tend to occur in the magnetic

longitude sector of the geographic pole (e.g., Rishbeth and Müller-Wodarg 1999), resulting

in the observed enhancement in night time TEC in longitude sectors near the geographic

pole compared to regions further away (Fig. 8). The longitudinal variations in the [O/N2]

ratio are driven by longitudinal variations in thermosphere circulation, which arise due to
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the influence of the geomagnetic field on the spatial distribution of the high latitude energy

input.

6 Asymmetries in Ion Outflow

The thermosphere continually loses matter in the form of ion outflow. Estimated loss rates

are about 1026 ions/sec from both hemispheres combined (e.g., Yau and Andre 1997). Al-

though observations pointing out North–South asymmetries in ion upflow and ion outflow

exists (e.g., Zhao et al. 2014, and references therein), this issue has not been extensively

addressed. Model and simulation results are also scarce, but a recent study by Barakat et al.

(2015) demonstrated that North–South asymmetries in outflow are reproduced if realistic

boundary conditions are used to parametrize models. To our knowledge, North–South asym-

metries are not explicitly built into large scale models of the magnetosphere either.

When discussing ion outflow, it is natural to divide the source areas of ionospheric out-

flow into two distinct regions, the auroral zone and the cusp region on one side and the

high latitude open polar cap on the other side. Processes and characteristics of the outflow

are very different between these regions, but there can be significant horizontal transport of

plasma between regions.

Two fundamental elements are necessary for ion outflow: first, ionization, which provides

a source of free ions, and second, acceleration processes able to give the ions sufficient

energy to escape the Earth’s gravitational potential. For the most relevant species for Earth,

H+ and O+, escape energies are of the order of 0.6 and 10 eV, respectively. North–South

asymmetries can exist in both ionization and transport.

6.1 Auroral Zone and the Cusp Region

On a large scale, the nightside auroral zone is characterized by enhanced outflow which

largely balances the electron precipitation responsible for auroral arcs. Ionization, at least

on the nightside where EUV illumination is absent, is primarily driven by the auroral pre-

cipitation (e.g Hultqvist et al. 1999). The outflow is mainly driven by strong field aligned

electric fields caused by anomalous resistivity, and both H+ and O+ can be extracted and

accelerated to escape energies. Furthermore, the nightside auroral zone is co-located with a

region of Birkeland (magnetic field-aligned) currents and strong flow shears which locally

tend to break up into vortices. Such small scale structures may provide an additional source

of energy for plasma escape.

Except for the study by Zhao et al. (2014), based on measurements from the Fast Auroral

Snapshot (FAST) satellite of H+ in the 1 eV–1.2 keV energy range for the years 2000–2005,

no systematic studies trying to quantify North–South asymmetries in ion outflow from the

auroral zone exists. Since the outflow is highly correlated with precipitation, however, much

of the asymmetries related to aurora, discussed in Sect. 8 are also relevant for ion outflow

from this region. Processes responsible for outflow from the cusp region are to some extent

comparable to those of the auroral zone; ionization occurs partly by sunlight and partly by

electromagnetic energy.

6.2 The Polar Cap

Poleward of the auroral zone, in the polar cap regions, there is little or no significant precipi-

tation, and consequently no electric field set up by anomalous resistivity. The outflow seems
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to be limited by ionization (André et al. 2015; Kitamura et al. 2015), and since ionization

is largely driven by EUV illumination, there are diurnal and seasonal variations and thus an

inherent North–South asymmetry. Observations of such asymmetries have been reported by

e.g., Kitamura et al. (2015) and are also corroborated by model results, e.g., Glocer et al.

(2012)

The energy required to escape the gravitational potential comes from a combination of

thermal forces and an ambient electric field set up by charge exchange. The available energy

is lower than in the cusp and auroral zone, so outflow from the polar cap region is dominated

by cold (energies up to a few 10’s of eV) protons. In addition to the ambient electric field,

mirror forces and centrifugal acceleration can also provide parallel acceleration. The mirror

force depends on the magnetic field, and thus possesses a North–South asymmetry (see

Sect. 2). Likewise, the centrifugal acceleration is governed by the convection, which may be

North–South asymmetric (See Sect. 3).

Cold ions are notoriously difficult to measure in-situ, and have often been termed invis-

ible (e.g., Chappell et al. 1987, 2000; André and Cully 2012). Their low energy combined

with shielding effects due to spacecraft charging issues usually prevents detection with par-

ticle instruments, so alternative methods are needed. The first large scale survey of cold

ions (Engwall et al. 2009) was based on observations from the Cluster mission and a wake

detection technique (Engwall et al. 2006). North–South asymmetries in cold outflow were

reported by Li et al. (2012), but due to the orbit of Cluster, a quantitative assessment of the

asymmetry is difficult.

A recent simulation study by Barakat et al. (2015) discusses effects of the difference in

magnetic pole offset between the two hemispheres (see Sect. 2.2) and its consequence for

ionospheric outflow. Their simulation results are for a geomagnetic storm around equinox,

and show larger diurnal modulation in the southern hemisphere. They attribute the North–

South asymmetry to the offset difference, and suggest that the hemispherical asymmetry

and periodicity of the total ion outflow could influence the magnetospheric tail and perhaps

contribute to substorm triggering.

In addition to local ionization in the polar cap region, upwelling O+ions near the cleft can

form an ion fountain (Lockwood et al. 1985) where the upwelling ions can be transported

into the polar cap by anti-sunward convection.

7 Asymmetry in Ionospheric Currents and Magnetic Field Perturbations

In Sect. 2 we showed that the asymmetries in the Earth’s magnetic field lead to differences

in ionospheric conductivity, due to 1) a dependence on the field strength in the sunlight

induced conductances (Richmond 1995a) and 2) differences in offset between magnetic and

geographic poles, which lead to differences in diurnal variation in sunlight exposure in the

polar region, which have large implications for the conductivity (Robinson and Vondrak

1984; Moen and Brekke 1993).

The differences in conductivity between hemispheres naturally have implications for

differences in ionospheric currents and associated magnetic field perturbations. The rela-

tionship between the Hall and Pedersen conductance and the Hall, Pedersen and Birkeland

(field-aligned) currents can be described in terms of the ionospheric Ohm’s law. The hori-

zontal part of Ohm’s law is

J⊥ = �H B × E/B + �P E, (1)

where we have made the idealized assumption of zero neutral wind. E is the electric field

which appears because any large-scale electric field in the reference frame of the plasma
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is zero. It is therefore related to the plasma velocity (see Sect. 3) by E = −v × B. The

divergence of this equation, assuming current continuity, gives the Birkeland current:

j‖ = �P ∇ · E + E · ∇�P + (E × ∇�H ) · B/B (2)

where the ∇ operators act only horizontally. It is clear that the current magnitudes are highly

dependent on conductivity. The Hall current scales with the Hall conductance, and the Ped-

ersen current with the Pedersen conductance. The Birkeland currents are most strongly de-

pendent on the Pedersen conductance.

Ground magnetometers sense only what is called an equivalent current, which is not

necessarily equal to any of the current components described above. At high latitudes, the

equivalent currents are equal to the divergence-free component of the horizontal ionospheric

currents (e.g. Fukushima 1994; Vasyliunas 2007, and references therein). Which part of

the actual current system constitutes the divergence-free horizontal currents depends on the

conductivity. When the conductance gradients are zero, or perpendicular to electric equipo-

tential contours, the equivalent current is equal to the Hall current. Laundal et al. (2015)

showed that during sunlit conditions in the polar cap, the equivalent current typically aligns

with the overhead Hall current. In dark conditions, the equivalent current tends to align with

an overhead current which is anti-parallel to the horizontal closure of the Birkeland current

system. This is consistent with the actual current being approximately zero in the polar cap

in darkness. It is also consistent with observed differences in disturbance field morphology

between different seasons (Friis-Christensen and Wilhjelm 1975).

Both ionospheric currents and the associated magnetic disturbances depend on quantities

that are best organized in different coordinate systems: The ionospheric convection (and E),

as well as the conductance produced by auroral precipitation, are organized in magnetic

coordinates, while the component of the conductances that is produced by solar EUV flux

is best organized in geographic coordinates. Therefore the distribution of sunlight on mag-

netic apex/CGM grids in the two hemispheres is never symmetrical, and perfect hemispheric

symmetry in the current and magnetic disturbance fields can not be expected either.

To illustrate this point we look at the seasonal and diurnal variation in magnetic field

perturbations at two pairs of nearly conjugate magnetometers. Their locations are indicated

in the top left map in Fig. 4: The filled circles show the positions of the UMQ station (at

75.6◦ apex latitude, and 41.2◦ longitude in 2015) in blue and the B22 station (at −75.7◦

and 30.8◦) in red. The triangles mark the LYR station (at 75.4◦ and 109.2◦) in blue and

the DVS station (at −74.7◦ and 102.3◦) in red. They are all at nearly the same magnetic

latitude, but their locations relative to the geographic poles are different. Figure 10 shows the

mean magnetic perturbation at these magnetometer stations as a function of universal time

hour and month. The SuperMAG baseline subtraction has been used, which is designed

such that the remaining signal can be interpreted as being associated with external (solar

wind/magnetospheric) drivers (Gjerloev 2012). Diurnal variations associated with the solar

quiet (Sq) currents are removed. Conjugate pairs are shown in the same columns.

We see that the seasonal variation at the conjugate stations is approximately in antiphase,

due to the hemispheric difference in sunlight illumination. The contours mark the time when

the mean solar zenith angle is 90◦, i.e., the demarcation between the magnetometer being

predominantly sunlit or not. The largest average magnetic perturbations occur at times when

the magnetometer was sunlit. Comparing the two magnetometers in the SH, we see that there

is most often a stronger diurnal variation at the DVS station compared to B22. This can be

understood as an effect of the B22 station being much closer to the geographic pole (−86.5◦

geographic latitude) compared to DVS (−68.6◦), and thus experiencing less variation in
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Fig. 10 Mean magnetic field perturbations as a function of UT hour and month at two nearly conjugate
magnetometer pairs close to ±75◦ apex latitude. Contours of mean solar zenith angle 90◦ are also shown,
indicating the demarcation between sunlight and darkness at the different stations

sunlight during a day. Hence the more horizontal sunlight terminator contours at this loca-

tion. In the winter months, when both stations are in darkness, the diurnal variation has a

similar magnitude at B22 and DVS.

It is worth noting that at certain UTs, the difference between sunlit and dark conditions is

modest, and in some cases even opposite to the general picture (e.g. at 20–23 UT at the DVS

station). This indicates that solar illumination may be less important in certain magnetic lo-

cal times. At 20–23 UT, the DVS and LYR stations are close to magnetic midnight. Being at

relatively high latitudes, often inside the polar cap, the magnetic perturbations at these times

may be associated with substorm poleward expansions, during which intense precipitation

enhances the conductivity.

A number of previous studies have also investigated hemispheric differences and similar-

ities in ground magnetometer measurements (see review by Wescott (1966) and the work by

e.g., Viljanen and Tanskanen (2013), Weygand et al. (2014) and references therein). Most

of these studies have looked at time series, showing largely similar perturbations in the

two hemispheres, which indicates that changes in ionospheric convection, and consequently

currents, most often occur simultaneously in the two hemispheres (Yeoman et al. 1993).

Hajkowicz (2006) found a seasonal variation in the level of correspondence between time

series in conjugate magnetometers, consistent with a conductivity effect.

It has also been shown that the auroral electrojet indices (AE) exhibit a UT variation

which varies with seasons (Ahn et al. 2000; Singh et al. 2013). This variation is probably

due to variations in conductivity, as well as the non-uniform magnetometer coverage used

to derive the indices. Laundal and Gjerloev (2014) repeated the study by Singh et al. (2013),

using apex quasi-dipole magnetic field components instead of the standard H component (or

in this case, the SuperMAG N component, which is similar to H ). A significant fraction of

the UT variation was removed by this change, which indicates that the longitudinal variation

in the Earth’s magnetic field is contained in the UT variation of the traditional AE indices

(Gasda and Richmond 1998). These studies were based on magnetometer stations in the

NH. Since the longitudinal variation is different in the SH, and since the conductivity is

different, an AE index derived from SH magnetometer measurements would be different

from the standard index, even if the magnetometers were at conjugate points to those in the
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North. This was indeed shown by Weygand et al. (2014), who used SH magnetometers that

were close to the conjugate points of the NH AE stations.

The effect of magnetic field strength on conductance produced by sunlight (Richmond

1995a; Cnossen et al. 2011, 2012a) has to our knowledge not been directly detected in

studies of high latitude magnetic perturbations. The effect could of course be implicit in the

results showing longitudinal and hemispheric variations, which most often is explained in

terms of pole offsets.

7.1 Asymmetries in the Birkeland Currents

The asymmetries in the ionospheric conductivity (Sect. 2) also lead to asymmetries in the

Birkeland (field-aligned) currents, which electrodynamically link the ionosphere to the mag-

netopause and the partial ring current. Studies have shown that the Birkeland currents in-

crease in intensity during the summer (Fujii et al. 1981; Ohtani et al. 2005), and measure-

ments of the Birkeland currents have been used to quantify variations in the ionospheric

conductivity with solar zenith angle (Fujii and Iijima 1987).

Later studies have shown that the currents also exhibit a hemispherical asymmetry in

MHD modeling (Wiltberger et al. 2009). However, investigations of vorticity in the iono-

spheric convection have shown increased vorticity during summer, which may imply that the

hemispherical asymmetry in the Birkeland currents is not wholly due to variations in con-

ductance (Chisham et al. 2009). Some authors have suggested that only the dayside currents

become larger during the summer (Wang 2005), such that the hemispherical asymmetry is

limited to currents on the dayside.

More recently, Coxon et al. (2015) conducted a study of Birkeland currents measured

by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AM-

PERE) which showed that seasonal and diurnal variations in current magnitude in the North-

ern and Southern Hemispheres were consistent with changes in solar insolation. Figure 11

shows monthly averaged Birkeland currents in the two hemispheres for the 36 months of

2010 to 2012. In the NH there is a clear seasonal variation, with current magnitudes peak-

ing around NH summer months (red shading). For reasons that will be discussed below, the

seasonal variation in the SH current magnitudes, which are expected to maximize in SH

summer months (blue shading), is less pronounced.

Fig. 11 The monthly averaged Birkeland currents from January 2010 to December 2012. The NH is shown
in red and the SH is shown in blue; pink and light blue shading show summer in the Northern and Southern
Hemispheres respectively. Adapted from Coxon et al. (2015)
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Another variation was also discovered, in which both Northern and Southern currents

varied in sync: for instance see the similarity in behaviors in the two hemispheres between

days 800 and 950. Such variations are associated with changes in the monthly averaged

strength of solar wind-magnetosphere coupling, dependent on conditions in the solar wind.

When this is corrected for, using a model developed by Milan (2013), the expected seasonal

variations in the two hemispheres become readily apparent. The lack of a clear seasonal

variation in the winter hemisphere was due to a coincidental antiphase between changing

solar wind conditions and SH conductance levels.

Coxon et al. (2015) concluded that solar wind-magnetosphere coupling drives magneto-

sphere–ionosphere coupling currents in each hemisphere, but that the magnitude of these

currents depends on the seasonal variation in conductance in each polar ionosphere. One

last puzzle remains, however. Even when the solar wind variations are accounted for, the

current magnitudes in the NH are on average greater than the currents in the SH (as is

apparent in Fig. 11). It is not yet clear if this is a real effect or an artifact of the AMPERE

analysis technique.

8 Asymmetry in the Aurora

It is well established from statistical studies (Shue et al. 2001; Coumans et al. 2004; Newell

et al. 2010; Reistad et al. 2014) and from studies of conjugate images (Ohtani et al. 2009;

Laundal and Østgaard 2009; Reistad et al. 2013; Fillingim et al. 2005; Stenbaek-Nielsen and

Otto 1997; Sato et al. 1998) that the intensity of the aurora and the characteristics of particle

precipitation can be quite different at conjugate points. These differences are mainly related

to seasonal variations, and to asymmetric solar wind forcing on the magnetosphere, when

the IMF has a significant GSM y (and to a lesser degree x) component. The IMF effect on

the aurora is presumably independent of differences in the main field, since the Earth’s field

is largely a dipole at the altitudes where the solar wind-magnetosphere interaction happens.

The seasonal differences can likely be attributed to the orientation of the dipole axis with

respect to the Sun–Earth line, and to variations in ionospheric conductivity. The latter will

vary between hemispheres as described in Sect. 2.

The most comprehensive statistical study of the seasonal variation of particle precipita-

tion was done by Newell et al. (2010), who analyzed a large set of particle spectra measured

by instruments on the Defense Meteorological Satellite Program (DMSP) satellites. They

analyzed seasonal variations in the electron and ion energy flux and number flux for three

different types of precipitation, characterized by the spectrum: Monoenergetic, broadband

(only electrons) and diffuse precipitation (both ions and electrons). Monoenergetic electron

precipitation is believed to be accelerated by parallel electric fields, while broadband precip-

itation is accelerated by Alfvén waves. Diffuse precipitation, which makes up most of the

energy flux (Newell et al. 2009), consists of particles that are scattered into the loss cone and

not necessarily accelerated further. All types of electron aurora were found to be stronger on

the nightside during winter. The winter/summer ratio was much stronger for monoenergetic

precipitation (1.70) compared to broadband (1.26) and diffuse (1.30) precipitation. On the

dayside however, the winter/summer ratio was less than 1 for all types of aurora except dif-

fuse electron aurora during strong solar wind driving. The strong seasonal differences on the

nightside might be explained by a feedback mechanism (Lysak 1991), by which increased

ionization from precipitation leads to stronger currents and more precipitation (Ohtani et al.

2009). The differences on the dayside, which are in an opposite sense compared to the night-

side, may be explained by a combination of 1) a more favorable geometry during summer
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for direct ion entry from the magnetopause to the ionosphere in the cusp, and 2) stronger

field-aligned currents on the dayside in the summer (e.g. Green et al. 2009). The latter effect

is likely to depend on the conductivity at the ionospheric footpoints, which varies differently

in the two hemispheres due to asymmetries in the Earth’s magnetic field (Fig. 4).

Much less is known about the importance of differences in field strength at conjugate

footpoints. The most comprehensive study of this effect so far was based on data from a

series of 18 conjugate flights carrying calibrated all-sky cameras along the magnetic merid-

ian at College, Alaska between 1968 and 1971 (Belon et al. 1969; Stenbaek-Nielsen et al.

1973). These data showed that the aurora was brighter, more frequent, and more extended

in latitude in the NH, where the magnetic field was weakest. During very active times, and

at the highest latitudes, the differences were less systematic.

To explain and quantify the magnetic field control on auroral intensity, Stenbaek-Nielsen

et al. (1973) developed a model for three idealized cases of pitch angle distribution, cor-

responding to different degrees of scattering, and also allowing for parallel electric poten-

tials which may be different in the two hemispheres. The quantities derived in their paper

were representative of the magnetic field differences at College, Alaska and the conjugate

hemisphere. Here we briefly review their model, and present global maps of the expected

inter-hemispheric differences for the different pitch angle distributions.

Conservation of the first adiabatic invariant, mv2
⊥/2B , implies that the relationship be-

tween the pitch angle of a particle when it crosses the equatorial plane, αeq , the equatorial

magnetic field strength along its trajectory, Beq , and the magnetic field strength at which the

particle mirrors, Bm, is:

sin2 αeq = Beq/Bm. (3)

Assuming that all particles that mirror below some fixed height precipitate, and those that

mirror above this height escape back into the magnetosphere, the destiny of a particle can

be determined by its pitch angle in the equatorial plane. Particles that have pitch angles less

than a certain limit are within the loss cone, given by

αl ≈
√

Beq/Bm. (4)

We have used that sinα ≈ α, since the ratio in Eq. 3 is always small for particles that mirror

at ionospheric altitudes.

Consider an equatorial cross section of a flux tube with area Aeq . Assuming an isotropic

pitch angle distribution, the number flux of particles through this cross section that eventu-

ally precipitate can be expressed in terms of the directional particle flux, j , times the area

and the solid angle of the loss cone:

n ≈ Aeqπjα2
l , (5)

where the small loss cone angle assumption has been used.

Since the magnetic field strength may be different at conjugate points, the loss cone may

be different for the two hemispheres. The ratio between the loss cones in the two hemi-

spheres can be written (using Eq. 4):

Rαl
= αn

l /α
s
l =

√

Bs
m/Bn

m, (6)

where the superscripts denote the hemisphere. These equations imply that the number of

particles precipitating to each hemisphere is different when Bs
m 	= Bn

m. However, the area of

the flux tube at the two mirror points will also be different in that case, and this effect may

balance the number flux when considering the number of particles per area (the intensity).

Whether or not that happens depends on the pitch angle distribution and the geometry of the

light. Stenbaek-Nielsen et al. (1973) considered three different pitch angle distributions:
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Fig. 12 The three idealized pitch angle distributions considered by Stenbaek-Nielsen et al. (1973) in order
to estimate the inter-hemispheric asymmetries in particle precipitation and auroral luminosity due to differ-
ences in field strength. The vertical dashed bars denote the loss cones in the equatorial plane, which may be
different in the two hemispheres. The distribution outside the loss cones is isotropic, at the level shown by
the horizontal black line. See text for details

Fig. 13 Intensity ratios at conjugate points for two of the three cases of pitch angle distributions, considered
by Stenbaek-Nielsen et al. (1973) and illustrated in Fig. 12. For case 1, only the ratios for aurora which
appears in a thin sheet is shown. For the case that the aurora is spread over a large area, the ratio would be 1
everywhere. The maps for case 2 correspond to aurora distributed over an area (middle) and aurora which
appears in a thin sheet (right). Case 3 is not shown. See text for details

Case 1: Isotropic Distribution, Strong Diffusion The particles are strongly scattered, so

that the loss cone is constantly refilled at a rate which balances the loss to precipitation. The

pitch angle distribution is isotropic (See Fig. 12). In this case, the intensity ratio becomes

RI =
nnAs

m

An
mns

= 1, (7)

where we have used Eqs. 3 and 5, and magnetic flux conservation, Bn
mAn

m = Bs
mAs

m. The

area differences balance the difference in particle flux. However, if the aurora appears in a

thin sheet, it can be considered a two-dimensional structure. Then it might be more relevant

to consider the number of particles per unit length rather than area. Since the length scales

as the square root of the area, we get the intensity ratio:

RI,sheet =
nn

√

As
m

√

An
mns

=

√

Bs
m

Bn
m

(8)

which means that the intensity of thin auroral sheets may be different if the field strength is

different. A map of the ratio
√

Bs
m/Bn

m is shown in Fig. 13.
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Case 2: Anisotropic Distribution, Strong Diffusion The particles are strongly scattered,

and the loss cone is refilled at an equal rate everywhere, but not fast enough to balance the

loss to the atmosphere. This results in a step-like pitch angle distribution. Since the loss

of particles is approximately twice as fast inside both loss cones than it is at α between

min(αn
l , α

s
l ) and max(αn

l , α
s
l ), there will be a factor of 2 difference between the fluxes in

these regions (see Fig. 12).

Since the flux is isotropic within both these regions, we can use Eq. 5 to get the ratio

between the number of particles that precipitate per unit area to the two hemispheres per unit

time. For the case that the field is strongest in the SH, the number flux unit area becomes:

RI =
nnAs

m

An
mns

≈
As

m

An
m

Aeqπjαs
l

2 + 2Aeqπj (αn
l

2 − αs
l

2)

Aeqπjαs
l

2

=

(

2
Bs

m

Bn
m

− 1

)

As
m

An
m

= 2 −
Bn

m

Bs
m

. (9)

To get the number flux per length (intensity in the case of 1-dimensional, sheet-like aurora),

we use the square root of the area fraction in the last line:

RI,sheet =

(

2
Bs

m

Bn
m

− 1

)

√

As
m

An
m

=

(

2 −
Bn

m

Bs
m

)

√

Bs
m

Bn
m

. (10)

Since Bs
m > Bn

m in these equations, we see that the asymmetry in intensity is larger for

sheet-like auroras than for aurora which is distributed over a larger area. When the SH field

is weaker than in the NH, the equations above must be changed accordingly. Maps of RI

and RI,sheet for the case of strong scattering and anisotropic pitch angle distribution are also

shown in Fig. 13.

Case 3: Weak Diffusion The particles are only weakly scattered, and the time it takes to

refill the loss cone is larger than the bounce time. The particles predominantly precipitate to

the hemisphere with the weakest magnetic field (see Fig. 12). In this case, the ratio between

the intensities in the two hemispheres can be infinite.

The above ratios can be modified by any net difference in field-aligned electric potential.

In-situ measurements of particle precipitation accelerated by parallel electric fields have

shown that the electric fields are stronger and more frequent in darkness (Newell et al. 1996,

2010). Therefore net potential drops between hemispheres almost certainly exist, and partic-

ularly during solstices. Stenbaek-Nielsen et al. (1973) showed that a net inter-hemispheric

potential difference will lower or raise the mirror point, such that the intensity ratios above,

RI , are scaled by a factor of 1 + 2�W/Weq , where �W is the energy difference introduced

by the net potential difference (positive when the NH is at higher potential), and Weq is

the energy of the particles in the equatorial plane. A consequence of the dependence on

Weq is that the inter-hemispheric differences should be more pronounced for less energetic

particles.

The measurements from the conjugate flight campaigns arguably still remain the

strongest observational evidence of a relationship between the auroral intensity and the

strength of the Earth’s magnetic field. Frank and Sigwarth (2003) reported observations

from one single event of the aurora in both hemispheres observed from the Visible Imaging

Earth camera on board the Polar spacecraft, which was positioned such that both auroral

regions were visible. They found that the aurora was brighter in the NH compared to the SH

by tens of percent. This observation was made at ≈−150◦ magnetic longitude, where the

NH field is weaker. Thus it is consistent with the explanation in terms of field asymmetry
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described above. Note that in their manuscript they get the field asymmetry at the location of

the observations wrong, but they also get the mechanism by which field asymmetries work

wrong, resulting in the right conclusion with respect to the Stenbaek-Nielsen et al. (1973)

model.

If the mechanism outlined above is important for the overall intensity of the aurora,

it can be expected that this is also reflected in the longitudinal variation of its intensity.

A few studies have looked at the longitudinal variation. Stenbaek-Nielsen (1974) analyzed

data from ground all-sky imagers from the international geophysical year, when a substan-

tial number of such cameras were operated. They found that the occurrence rate of aurora

varied with longitude in a similar manner as the inter-hemispheric difference in magnetic

field strength at conjugate points at 65◦ latitude. They interpreted this as indication that the

magnetic field strength also controls discrete aurora, which was what the all-sky cameras

primarily observed. Indirect evidence of a similar longitudinal variation was presented by

Barth et al. (2002), who looked at observations of NO, produced by electron precipitation.

The NO distribution had a similar longitudinal variation as the field differences at conjugate

points.

The first study which included the longitudinal variation in auroral energy flux from

both hemispheres was conducted by Luan et al. (2011). They analyzed auroral power in the

21-03 MLT sector, based on data from the global ultraviolet imager (GUVI) onboard the

Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) spacecraft from

between 2002 and 2007. They did find a similar longitudinal pattern as those reported by

Stenbaek-Nielsen and Barth et al., at least during summer and equinox seasons. Surprisingly

however, they also found largely the same longitudinal variation in the opposite hemisphere.

This is not expected if field asymmetries control the longitudinal variation, since this would

produce an opposite pattern in the conjugate hemisphere. They found that the peak intensi-

ties coincide with the longitudes at which there is least sunlight. During local winters, when

the 21-03 MLT region is always in darkness, they found that the peak intensities coincide

with the darkest longitudes in the opposite hemisphere. The correlations with field strength

were small, suggesting that this only plays a minor role in generating longitudinal variations

in auroral intensity.

Based on Luan et al.’s work, it seems that sunlight, and consequently the effect of differ-

ences in the alignment between geographic and magnetic coordinates, is a more important

factor than field strength in controlling the distribution of auroral intensity. However, more

simultaneous measurements of the aurora in the two hemispheres are needed to draw firm

conclusions about this. So far, the only truly comparable instrumentation providing such

measurements were the ones reported on by Stenbaek-Nielsen et al. (1973) and Frank and

Sigwarth (2003). Other conjugate images of the aurora (e.g. Motoba et al. 2010) did not

come from calibrated cameras.

The effect of precipitating protons on auroral emissions and ionospheric ionization also

depends on the inclination of the magnetic field lines (e.g. Synnes et al. 1998; Gérard et al.

2001). Energetic precipitating protons charge exchange with the ambient atmosphere repeat-

edly as they descend. Due to the large gyro radius compared to electrons, and the decoupling

from the magnetic field as they pick up electrons to become neutral hydrogen, the energy

of the protons is deposited over a much larger area than that threaded by their original field

lines. The angle of incidence, the inclination angle of the magnetic field, partly determines

where this energy is deposited (Fang et al. 2005). Thus ionization and heating from pro-

ton precipitation will vary with field inclination. Doppler-shifted emissions from hydrogen,

which can be uniquely attributed to proton precipitation (Vegard 1939), also have some de-

pendence on the inclination, since the Doppler shift depends on the line of sight relative
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to the path of the hydrogen. Since the path of the hydrogen is predominantly along mag-
netic field lines, the spectrum from such emissions can also be expected to depend on the
inclination (Gérard et al. 2001). Although the inclination effect has been studied extensively
by modelers, we are not aware of any observational study showing a longitudinal or hemi-
spheric variation in the proton aurora which can be related to this effect. This may well be
because of the rather modest differences in inclination, as seen in Fig. 2.

9 Concluding Remarks

In Sect. 2 we quantified the differences in the Earth’s magnetic field between conjugate
points in the ionosphere, and also the differences in sunlight exposure in the two magnetic
hemispheres. We have shown that these differences, which can be significant, lead to asym-
metries in ionospheric convection, thermospheric winds, currents and magnetic field per-
turbations, ion outflow, electron density, and auroral emissions. Several of these differences
are not yet fully understood and should be a topic of research for years to come. As is
clear from the extensive list of references, considerable work has been devoted to topics for
which the field asymmetries are relevant, but only a minority directly address the asymmetry
effects.

Differences in field strength and solar irradiance at conjugate hemispheres lead to differ-
ent ionospheric manifestations of magnetospheric disturbances. Observations in both hemi-
spheres give two views of the same magnetospheric disturbance, propagated to the iono-
sphere under different conditions. Analysis of hemispheric differences can therefore poten-
tially elucidate the mechanisms involved in the magnetosphere–ionosphere–thermosphere
coupling. The hemispheric differences thus represent an opportunity to study aspects of
the magnetosphere–ionosphere coupling which would not be possible if the field was sym-
metrical. Fully exploiting this opportunity, and understanding the hemispheric differences
reviewed in this paper, requires good data coverage from both hemispheres, as well as new
approaches to analyze existing data, for example by novel data fusion techniques, and anal-
yses which accurately take into account the differences in main field geometry in the two
hemispheres.
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