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[1] The prevailing wet climate in the western Amazon is not
favorable to the natural occurrence of fires. Nevertheless, the
current process of clearing of humid forests for agriculture
and cattle ranching has increased the vulnerability of the
region to the spread of fires. Using meteorological stations
precipitation and the Moderate Resolution Spectroradi-
ometer (MODIS) Active‐Fires (AF) during 2000–2009, we
show that fire anomalies vary closely with July‐August‐
September (JAS) precipitation variability as measured by
the Standardized Precipitation Index (SPI). The precipitation
variability is, in turn, greatly determined by sea surface tem-
perature (SST) anomalies in the North Tropical Atlantic
(NTA). We develop a linear regression model to relate local
fire activity to an index of the NTA‐SST. By using seasonal
forecasts of SST from a coupled model, we are able to predict
anomalous JAS fire activity as early as April. We applied
the method to predict the severe 2010 JAS season, which
indicated strongly positive seasonal fire anomalies within
the 95% prediction confidence intervals in most western
Amazon. The spatial distribution of predicted SPI was also
in accordance with observed precipitation anomalies. This
three months lead time precipitation and fire prediction
product in the western Amazon could help local decision
makers to establish an early warning systems or other
appropriate course of action before the fire season begins.
Citation: Fernandes, K., et al. (2011), North Tropical Atlantic
influence on western Amazon fire season variability, Geophys.
Res. Lett., 38, L12701, doi:10.1029/2011GL047392.

1. Introduction

[2] Increases in fire incidence in the Amazonian regions
reflect shifts in many aspects of development, including
logging, land use change, infrastructural development,
demographic and social change and climate variability
[Aragão and Shimabukuro, 2010; Cochrane and Laurance,
2008; Morton et al., 2008; van der Werf et al., 2008]. In the

western Amazon the wetter climate is less conducive to fires
[Bush et al., 2007] when compared to eastern and southern
Amazon, where far more research has been conducted
[Alencar et al., 2006; Ray et al., 2005]. Nevertheless, the
drought of 2005 set in motion conflagrations that burned
more than 300,000 ha of forests in the western Amazon state
of Acre and it was averred “a disaster never previously
experienced by modern societies in this part of Amazonia”
[Brown et al., 2006]. The severity of the 2005 drought was
even more intriguing given that the usual suspect, the
El Niño Southern Oscillation (ENSO) known to affect the
Amazonian climate [Ropelewski and Halpert, 1987; Zeng,
1999], was neutral during most of 2005 [Climate Prediction
Center, 2011]. On the other hand, the North Tropical
Atlantic (NTA) was unusually warm and it has been shown
to impact the Amazon dry season precipitation anomalies
[Fu et al., 2001; Marengo et al., 2008; Yoon and Zeng,
2010; Zeng et al., 2008].
[3] We investigate further the extent to which NTA‐SST

fluctuations affect the dry season fire anomalies in the
western Amazon through the impact on the regional climate.
We compare the JAS Standardized Precipitation Index (SPI)
[McKee et al., 1993] against the MODIS‐AF product
[Justice et al., 2002] to determine the relationship between
fire and climate. We further explore the forecasts from a
coupled ocean‐atmosphere general circulation model (GCM)
for sea surface temperature (SST) as possible predictors of
JAS droughts and fire anomalies. We show that the seasonal
SST forecasts, made in April, can predict western Amazon
JAS fire and precipitation anomalies.

2. Data and Methods

2.1. Rainfall Datasets and Standardized Precipitation
Index (SPI)

[4] We use a precipitation record, provided by the Peruvian
Meteorological Service (Servicio Nacional de Meteorologia
e Hidrologia‐SENAMHI) to develop a regional gridded rain
gauge‐only dataset. This dataset overcomes the limitation of
sparsely distributed rain gauges in the western Amazon in
publicly available rain‐gauge only datasets [Liebmann and
Allured, 2005; Silva et al., 2007] and inconsistent satellite‐
based precipitation estimates in the tropics [Juarez et al.,
2009]. We complemented our stations network from
SENAMHI with data obtained from the Brazilian Agência
Nacional de Águas (ANA) website. This dataset provided
a uniform daily average number of stations of about
400 reporting non‐missing values in the 1970s, 1990s and
2000s, with a reduction of about 12% in the 1980s. The data
were interpolated to 0.25° × 0.25° spatial resolution using
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Cressman’s [1959] method, which determines the average
distance between the available stations at each time step and
applies a multiplier factor to extend the radius of influence
of neighboring stations on the target station. The daily‐
interpolated precipitation is then averaged to monthly means,
but only for grid cells with 75% of the days reporting non‐
missing data. The monthly gridded precipitation data from
1970–2009 was used as the baseline period for the three
months SPI calculation.
[5] The SPI is the number of standard deviations that the

observed cumulative precipitation deviates from the clima-
tological average. A continuous period of at least 30 years
of monthly precipitation data is necessary to estimate the
appropriate probability density function. The associated
cumulative probability distribution is then estimated and
subsequently transformed to a normal distribution. Negative
(positive) SPI values indicate deficient precipitation, and
positive values indicate abundant precipitation.
[6] We also require rainfall data for verifying the forecast

made for 2010. Due to the delay in availability of the obser-
vational data described above, the 3B43v6 Tropical Rainfall
Measuring Mission (TRMM) [Huffman et al., 2007] is used
to obtain the 2010 precipitation anomaly at 0.25° × 0.25°
spatial resolution, relative to the 1998–2010 period of record
for this data. Qualitative comparison is then made between
the predicted SPI and observed precipitation anomaly.

2.2. Fire Dataset

[7] The active fire data from MODIS consists of gridded
fire pixels count at 1 km2 resolution aggregated to a 100 km2

grid and monthly time steps. The units are given as “hot
pixels” per 100 km2 per day [Justice et al., 2002]. The focus
of our study is the climate impact on the spread of large
fires, which are successfully detected in the MODIS active
fire product [Morisette et al., 2005; Schroeder et al., 2008].
We re‐gridded the data to 0.25° × 0.25° spatial resolution
and standardized by subtracting the JAS 2000–2009 mean
and dividing by standard deviation at each grid cell.

2.3. Study Area

[8] The relationship between western Amazon SPI and fire
anomalies is evaluated initially for a domain of coordinates
14°S–3°S and 76°W–70°W. This domain was defined to
avoid high Andean altitudes as well as Bolivia and
Colombia for which we do not have precipitation data. The

North Tropical Atlantic (NTA) SST index time series is
calculated for the domain 10°N–23°N and 75°W–35°W.

2.4. Seasonal Climate Forecast Data‐ECHAM‐GML
Model

[9] To explore the potential of using GCM seasonal
forecasts to predict dry season precipitation and fire
anomalies we used the thermodynamic ocean model (TOM)
coupled to the atmospheric model ECHAM4.5 [Lee and
Dewitt, 2009; Roeckner et al., 1996], hereafter referred to
as ECHAM‐GML [Lee and Dewitt, 2009; Roeckner et al.,
1996]. The ECHAM‐GML retrospective forecasts are avail-
able from the International Research Institute for Climate and
Society (IRI) Data Library for the period 1982 to present. It
was chosen for this study because of its high forecast skill of
tropical Atlantic SSTs compared to other statistical and
dynamical SST forecasts [Lee and Dewitt, 2009].

2.5. The Linear Regression Models

[10] The 2000–2009 time series of SST averaged over
the NTA domain were calculated from one‐month lead
ECHAM‐GML retrospective SST forecasts for May‐June‐
July (MJJ), June‐July‐August (JJA) and JAS (i.e., made in
April, May and June respectively). The MJJ, JJA and JAS
NTA‐SST forecast time series were regressed onto the
gridded values of the JAS SPI. The same procedure was
done between the NTA‐SST forecast and observed fire
anomalies. The regression models built using the 2000–
2009 data were used to predict the JAS 2010 SPI and fire
anomalies. The 2000–2009 data used to derive the linear
regression models were also tested for temporal indepen-
dence. The SPI and fire temporal autocorrelation (not
shown) is not statistically significant (P<0.1) in 98% of the
grid cells in both cases. The 95% prediction confidence
interval (CI) used to verify the JAS 2010 fire anomalies
prediction is given in equation (1):

CI ¼ ŷ ið Þ � 1:96 RMSEv ð1Þ

where ŷ(i) is model predicted values and RMSEv is the cross‐
validated root mean square of validation as in equation (2).

RMSEv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PRESS

n

r

ð2Þ

where PRESS (equation (3)) is the prediction residual sum
of squares (PRESS). This is referred to as “leave‐one‐out”
cross validation method, where n is number of time steps
used in the regression.

PRESS ¼
X

n

i¼1

yi � ŷ ið Þ

� �2
ð3Þ

where yi and ŷ(i) are the observed and predicted values in
timestep i that was not used in fitting the model that gen-
erated ŷ(i) [Weisberg, 1985].

3. Results

3.1. Relationship Between Droughts and Fires

[11] The JAS SPI and fire anomalies, averaged over the
western Amazon domain, are highly correlated (R = −0.89,
P = 0.0006) during the period 2000–2009 (Figure 1). Six

Figure 1. Timeseries of the JAS standardized precipitation
index (SPI) and standardized fire anomalies averaged over
the western Amazon domain (14°S–3°S, 76°W–70°W).
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months SPI (April, May, June, July, August and September)
is also highly correlated to fire variability but less so (R =
−0.81, P = 0.0043), thus we focus our analysis on 3 months
JAS SPI. Nearly 80% of JAS fire variance is explained by
JAS SPI, indicating that the climate component is the main
driver of fire anomalies seasonally in the region, with con-
tributors such as land use and management likely accounting
for much of the remaining fraction.

3.2. Large Scale Forcing of Dry Season SPI and Fire
Variability

[12] SSTs fluctuations in the North Tropical Atlantic
determine to a large extent the western Amazon dry season
precipitation anomalies [Marengo et al., 2008; Yoon and
Zeng, 2010; Zeng et al., 2008]. We examine whether SST
forecast can be used for seasonal precipitation and fire
anomalies prediction in the region.
[13] The earliest ECHAM‐GML SST forecast season to

show a region of tropical North Atlantic correlating signif-

icantly to western Amazon domain averaged JAS SPI is MJJ
(Figure 2a). The relationship between domain JAS SPI and
the following seasons (JJA and JAS) SSTs, show very
similar patterns to those shown in Figure 2a, only the cor-
relations widen in area and become more significant (not
shown). The physical mechanism linking the North Tropical
Atlantic to reduced precipitation in the Amazon is related to
the northward displacement of the Intertropical Conver-
gence Zone (ITCZ) when the NTA‐SST is anomalously
warm [Marengo et al., 2008]. The ITCZ migration away
from South America’s northern coast results in net water
vapor divergence and anomalous subsidence in the Amazon
leading to reduced precipitation [Knight et al., 2006; Yoon
and Zeng, 2010]. Our results showing negative correlation
between domain JAS SPI and SST in the NTA sector during
the 2000s are in agreement with the expected response
linking warmer NTA‐SST and reduced precipitation in the
western Amazon, and oppositely for colder NTA‐SST. Not
surprisingly, the remote NTA SST relationship to western
Amazon JAS fire variability shows correlations of the
opposite sign (Figure 2b), indicating that over the region fire
season anomalies are strongly determined by the local cli-
mate response to the NTA large scale forcing. One impli-
cation of NTA‐SST leading the western Amazon local
response by a few months is that JAS SPI and fire anomalies
can be predicted from NTA‐SST forecast as early as April
each year.

3.3. Prediction of Dry Season SPI and Fire Anomalies

[14] Our empirical approach to predict fire anomalies
from the ECHAM‐GML NTA‐SST index time series is
based on the local climate response to the SSTs remote
forcing alone, not considering any land use change or socio‐
economic variables that may influence fire dynamics in the
region. Figure 3 shows locally the percentage of fire vari-
ance explained by the NTA‐SST, suggesting that factors
other than climate play an important role in determining the
interannual fire variability during the dry season.
[15] Nevertheless, it is clear that the regression model is

able to predict past fire activity in the region. The fire season
of 2010 was very active in the Amazon [de Melo and Gan,
2010], but this data did not contribute to the regression

Figure 2. Western Amazon domain averaged (a) JAS SPI
and (b) fire anomalies correlations with MJJ tropical SST
forecast (2000–2009). Only 90% significant correlations are
shown. The boxes show the western Amazon (14°S–3°S,
76°W–70°W) and the NTA‐SST index (10°N–23°N, 75°W–

35°W) domains.

Figure 3. Percentage of JAS fire variance explained at each grid point by the 1‐month lead time NTA‐SST index forecast
for (a) MJJ, (b) JJA and (c) JAS seasons.
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model. Thus, we can treat this extreme case as an inde-
pendent test of our prediction system. The linear regression
models used to predict fire anomalies (in units of standard
deviation), consistently show large, positive values in JAS
2010 predicted from MJJ, JJA and JAS NTA‐SST forecast
(Figure 4). The anomalies are mostly within the 95% con-
fidence interval of prediction marked in Figure 4 as dots.
[16] Similarly, the predicted 2010 JAS SPI using MJJ, JJA

and JAS NTA‐SST forecast indicates very dry conditions
(Figure 5). It should be noted that our gridded precipitation
data is derived from meteorological stations distributed over
Peru and northwestern Brazil, thus the interpolated precip-
itation does not extend over Colombia and Bolivia. More-
over, precipitation was not interpolated at grid cells where
the density of stations was insufficient, thus the patchy
character of predicted SPI. Due to delay in the availability of
the station data to derive our gridded precipitation data set,
the 2010 JAS SPI forecast was verified by qualitatively
comparing it to JAS precipitation standardized anomalies
derived from TRMM (Figure 5d). The widespread negative
anomalies during the 2010 dry season are in broad agree-
ment with our JAS SPI forecast (Figures 5a–5c) as well as
recently published results [Lewis et al., 2011]. In addition,
the Brazilian National Water Agency (ANA) reported record
low water levels in the Negro River near the city of Manaus
and Solimões River at Itapeuá, both in Brazil [Agência
Nacional de Águas, 2010]. The Negro and Solimões River

integrate precipitation over the northwest and west part of
the Amazon basin respectively.

4. Discussion and Conclusions

[17] Fire dynamics in humid tropical forests are complex
and involve a swath of socio‐economic aspects, including
replacement of forests by crops and pastures, fires for
agricultural maintenance, timber extraction and infrastruc-
ture development all of which result in greater vulnerability
of the natural system to fires. At fine spatial scales, patterns
of land use most likely explain where fires are most prev-
alent in the western Amazon, being the climate the main
driver of interannual fire variability during the dry season.
[18] Using real‐time SST forecasts for the north tropical

Atlantic sector we are able to predict precipitation and fire
anomalies during the dry season months. The 2010 positive
fire anomalies predicted by the 2010 seasonal forecasts for
MJJ, JJA, and JAS are in agreement with the negative
predicted 2010 JAS SPI and observed precipitation
anomalies estimated by TRMM. Our results show that
ECHAM‐GML MJJ SST can be used to predict western
Amazon JAS precipitation and fire anomalies as early as
April, information that can be regionally used as an early
warning product.
[19] Beyond the focus period of this study (the 2000s), the

relationship between precipitation and SSTs in the North

Figure 4. Predicted JAS 2010 fire anomalies, in units of standard deviation, based on 1‐month lead NTA‐SST forecasts
for (a) MJJ, (b) JJA, and (c) JAS. The dots mark gridcells where the observed values are within the 95% confidence interval
of validation.

Figure 5. Predicted JAS 2010 SPI, in units of standard deviation, from based on 1‐month lead SST forecasts for (a) MJJ,
(b) JJA, and (c) JAS; (d) the observed standardized precipitation anomalies from TRMM in JAS 2010.
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Atlantic sector weakens (1982–1999). Further research is
ongoing to examine to what extent this might be related to
the Atlantic Multi‐Decadal Oscillation (AMO) variability
[Schlesinger and Ramankutty, 1994], climate change trends
or some combination of the two.
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