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Abstract

Herein, we evaluated the concordance of population inferences and conclusions resulting

from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleo-

tide sequences) versus complete mitogenome sequences for 53 bobwhites representing

six ecoregions across TX and OK (USA). Median joining (MJ) haplotype networks demon-

strated that analyses performed using small mitochondrial fragments were insufficient for

estimating the true (i.e., complete) mitogenome haplotype structure, corresponding levels

of divergence, and maternal population history of our samples. Notably, discordant demo-

graphic inferences were observed when mismatch distributions of partial (i.e., partial D-

Loop) versus complete mitogenome sequences were compared, with the reduction in mito-

chondrial genomic information content observed to encourage spurious inferences in our

samples. A probabilistic approach to variant prediction for the complete bobwhite mitogen-

omes revealed 344 segregating sites corresponding to 347 total mutations, including 49

putative nonsynonymous single nucleotide variants (SNVs) distributed across 12 protein

coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of

the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network

and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two

divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05), thereby supporting the

potential for two putative subspecies. However, the diverged lineage (n = 103 variants)

almost exclusively involved bobwhites geographically classified as Colinus virginianus texa-

nus, which is discordant with the expectations of previous geographic subspecies
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designations. Tests of adaptive evolution for functional divergence (MKT), frequency distri-

bution tests (D, FS) and phylogenetic analyses (RAxML) provide no evidence for positive

selection or hybridization with the sympatric scaled quail (Callipepla squamata) as being

explanatory factors for the two bobwhite maternal lineages observed. Instead, our analyses

support the supposition that two diverged maternal lineages have survived from pre-expan-

sion to post-expansion population(s), with the segregation of some slightly deleterious non-

synonymous mutations.

Introduction

The northern bobwhite (Colinus virginianus; hereafter bobwhite) is one of 32 species belonging

to the family Odontophoridae (NewWorld quail), with wild populations historically ranging

throughout the United States of America (i.e., USA, U.S.), Mexico and parts of the Caribbean

[1, 2]. To date, more than 19 bobwhite subspecies have been named based on variation in size

(decreasing from north to south) and male plumage [1, 2], with females displaying more simi-

lar plumage regardless of putative subspecies classification or geographic distribution [1, 2].

Relevant to wild bobwhite populations in the southern U.S. and northern Mexico, four subspe-

cies have been recognized west of the Mississippi River, which include the eastern (C. v. virgi-

nianus), plains (C. v. taylori), Texas (C. v. texanus), and masked bobwhite (C. v. ridgwayi) [2,

3]. Among these, the male masked bobwhite is unequivocally the most phenotypically and geo-

graphically distinct (i.e., black head; Sonora, Mexico); with the eastern, plains, and Texas bob-

whites exhibiting more subtle variation in male plumage and body size [2, 3].

The natural abundance of wild bobwhites in the U.S. has historically been observed to follow

a boom-bust pattern, often with substantial annual variation observed [4–7]. Previous studies

utilizing either breeding bird surveys or Christmas bird count data reported bobwhite declines

more than 20 years ago [8–13], which is a range-wide population trend in the U.S. that remains

ongoing today [14, 15]. The precise reasons for these broad-scale declines are likely complex,

and have previously been attributed to variation in annual rainfall [4–6], changes in land use or

scale, along with the decline of suitable habitats [4, 7, 12, 13, 16], thermal tolerances of develop-

ing embryos during a period of global warming [17, 18], harvest intensity by humans [19–21],

especially during drought conditions [6, 16], sensitivity to ecotoxins [22, 23], red imported fire

ants (Solenopsis invicta) [24, 25], and most recently, parasitic eyeworms [26–28]. However, it

should also be noted that the same species of parasitic eyeworm (Oxyspirura petrowi) detected

in wild bobwhites has also been detected in songbird species (i.e., Northern Mockingbird,

Mimus polyglottos; Curve-billed Thrasher, Toxostoma curvirostre) [29] which have not been

reported to be experiencing similar broad-scale population declines (http://www.iucnredlist.

org). The desire to mitigate U.S. bobwhite population declines has prompted both the translo-

cation of wild bobwhites to fragmented regions of their historic range as well as attempts at

restocking or population supplementation using pen-raised bobwhites. To date, neither of

these approaches has been documented to be highly successful in regions where modern abun-

dance is low [30–35]. At present, a need exists to examine the genetic relationships and overall

levels of divergence within and between putative bobwhite subspecies as well as their extant U.

S. populations; to enable informed management and restoration efforts. A recent bobwhite

mitochondrial DNA (mtDNA) study for representatives of the four putative subspecies

described west of the Mississippi River revealed a general lack of distinct phylogeographic

structure, evidence for demographic expansion following the Pleistocene, and an apparent
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discordance between patterns of mtDNA diversity and subspecies designations; with all infer-

ences based on the analysis of a 353 bp fragment of the bobwhite mitochondrial control region

[3]. Given the availability of a draft nuclear and mitochondrial genome assembly for the bob-

white [36], large-scale genetic studies are both possible and warranted, especially considering

the apparent decline of wild bobwhite populations across the majority of their historic U.S.

range [8, 9, 12–15].

We generated complete mitochondrial genome (mitogenome) sequences for 51 bobwhites

sampled from six discrete ecoregions across Texas and Oklahoma (USA), which included rep-

resentative samples from two putative bobwhite subspecies (C. v. texanus; C. v. taylori). There-

after, we evaluated whether small mitochondrial fragments (i.e., partial or complete D-loop)

could accurately resolve and predict the true haplotype structure and relationships among our

samples, as compared to using complete mitogenome sequences to perform the same analyses.

We further tested this same hypothesis with respect to accurately inferring historical patterns

of demography, signatures of population substructure, and whether or not partial or complete

mitogenomic data would support the presence of two or more putative bobwhite subspecies.

The results of this study provide new insights regarding the demographic history and diversity

of bobwhite maternal lineages west of the Mississippi River, but also clearly underscore the

need for large-scale genomic studies in declining wildlife species.

Results and Discussion

Bobwhite Mitogenome Sequencing, Reference Mapping, and Variant
Detection

Herein, we generated complete mitogenome sequences for 51 bobwhites representing two U.S.

states (TX, OK) and 6 discrete ecoregions using standard Illumina paired-end (PE) sequencing

technologies (i.e., TruSeq PE 2 x 100 bp; Illumina HiSeq2500; see Methods). Thereafter, we used

these sequences and one additional bobwhite mitogenome (GenBank KJ914548.1) obtained

from a phylogenetic study of the Odontophoridae (NewWorld quail) [37] to predict single

nucleotide variants (SNVs) and insertion-deletion mutations (indels) via reference mapping

and alignment to an updated bobwhite mitogenome reference sequence [36] (n = 53 total bob-

white mitogenomes; see Methods). Using a probabilistic variant detection algorithm previously

described [36] (see Methods), we predicted 344 segregating sites corresponding to 347 total

mutations (n = 338 SNVs, 8 indels, and 1 multi-nucleotide variant, MNV), which included 49

putative nonsynonymous SNVs distributed across 12 protein coding genes. The majority of the

nonsynonymous SNVs (i.e., 80%) were predicted at relatively low frequencies (i.e.,< 0.10), and

ND4L was the only mitochondrial protein coding gene for which no nonsynonymous variation

was predicted. However, eight of the nonsynonymous SNVs were predicted at moderate fre-

quencies (i.e.,> 0.10) in our samples, with corresponding amino acid replacements predicted in

five other mitochondrial protein coding genes (i.e., CYTB, COX1, ATP6, COX3,ND5). Summary

data for all bobwhite mitogenome variants, including their genomic positions, average coverage,

frequency distribution, average quality scores, and putative functional consequences (i.e., pre-

dicted amino acid replacements) are described in S1 Table. Similar to several previous avian and

reptile studies, we also found an unambiguous ND3 single nucleotide insertion (i.e., frameshift)

in all bobwhite mitogenome sequences that were generated during this study (for review see

[37–45]). Moreover, we also compared all predicted variants and their proximal flanking

sequences to the known galliform nuclear mitochondrial sequences (numts) previously

described [46], which included those identified in the first-generation draft genome assembly

for the bobwhite [36]. With the exception of ND3 [37–45], no indels or premature stop codons

were observed in any bobwhite mitochondrial protein coding genes. However, two discrete
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SNVs were observed which could not be unequivocally excluded as potential numts (S1 Table),

and therefore, we excluded these from all subsequent analyses.

Bobwhite Mitogenome Heteroplasmy

The ability to generate bobwhite mitogenomes with deep coverage using Illumina PE sequenc-

ing technologies provided an opportunity to investigate the potential for heteroplasmy [47, 48]

(see S1 Table), which has been reported in several avian species [44, 49–54], with one study

indicating that paternal leakage may be a key factor in the emergence of some avian heteroplas-

mies [50]. Microheteroplasmy, which is defined by rare (i.e., independent) mutations found

among 1–2% of all intra-individual mitogenomes, is common among adult humans, and has

led some researchers to postulate whether this mutational burden may be linked to aging as

well as age-related diseases [55–58]. However, microheteroplasmy can be differentiated from

gross heteroplasmy by the presence of moderate to high frequency (i.e., common) mutations

observed among the mitogenomes recovered from a single individual and/or a discrete tissue

[55–58]. We detected evidence for gross mitochondrial heteroplasmy in 13 of the 51 surveyed

bobwhites (i.e., 25%), which is similar to the heteroplasmy rates (i.e., 24%) reported for a survey

of five human populations [47], and those reported for the Crested ibis (Nipponia nippon) (i.e.,

22%) [54]. Specifically, in 13 of the 51 surveyed bobwhites, we identified 16 moderate to high

frequency heteroplasmies (i.e., heterozygous mitochondrial sites) with minor allele frequencies

ranging from 22% to 46.6% (S1 Table). All 16 detected heteroplasmies involved single nucleo-

tide variants (SNVs) possessing average quality scores> 32, with 14 of the 16 (87.5%) observed

as singletons among our population samples. Ten of the 13 bobwhites were predicted to possess

only one heteroplasmic SNV (i.e., two unambiguous mtDNA haplotypes), whereas the other

three heteroplasmies involved two unambiguous (n = 3 bobwhites) intra-individual heteroplas-

mic SNVs. Two of the 16 detected heteroplasmic SNV sites (i.e., 2216 and 2418; S1 Table) were

also individually observed as homozygous SNVs (i.e., on one or two different mtDNA haplo-

types) in a second bobwhite sequenced during our population survey. The distribution of the

16 heteroplasmic sites included both coding and noncoding regions (i.e., tRNA-Val, D-Loop,

12S, COX2, ATP6, CYTB, ND1, COX1, and COX3), with 8 SNVs that were predicted to encode

amino acid substitutions (S1 Table). As previously described, four plausible biological mecha-

nisms may facilitate heteroplasmy including: 1) Paternal leakage; 2) Maternal transmission/

inheritance of heteroplasmic variants; 3) De novomutations that occur during embryonic

development; and 4) Somatic aging, with age-related accumulation of heteroplasmic variants

[47, 48, 50, 55, 57, 58]. In the absence of bobwhite samples of known pedigree, we could not

unequivocally attribute the observed heteroplasmies to either paternal leakage or maternal

inheritance of heteroplasmic sites. However, an evaluation of all the bobwhite mtDNA haplo-

types generated in this study provides sufficient information (i.e., via variable sites) to predict

the expected signatures of DNA contamination (i.e., the expected heterozygous mtDNA sites

resulting from mixed samples). No evidence of contamination was observed. We also examined

the distribution of ages among all of the heteroplasmic bobwhites observed in this study, and

found nearly equal proportions of both juveniles and adults, indicating that somatic aging is

unlikely to explain the observed heteroplasmies. Additionally, heteroplasmy was detected for

bobwhites representing both putative subspecies [1–3] (C. v. taylori, n = 7; C. v. texanus, n = 6;

S1 Table) sampled from five ecoregions and two U.S. states (i.e., Southwestern Tablelands of

TX and OK, Western Gulf Coastal Plain of TX, Central Great Plains of TX and OK, Southern

Texas Plains of TX, High Plains of TX and OK). Summary data for all detected heteroplasmies

are described in S1 Table. Notably, most instances of bobwhite heteroplasmy detected in this

study (i.e., 10 / 13 = 76.9%) relates to the presence of two intra-individual mtDNA haplotypes
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that differ by one SNV, which most likely arose via paternal leakage, maternal transmission, or

de novomutation during embryonic development. Future studies that include larger sample

sizes of known pedigree are needed to deduce the biological mechanism(s) underlying

instances of gross heteroplasmy in the bobwhite.

Bobwhite Population Structure, Phylogeography, and Historical
Demography

Herein, we conducted a series of comparative analyses to determine whether similar population

inferences or conclusions could be deduced from partial (i.e., partial or complete D-loop) and

complete mitogenome nucleotide sequence data for 53 bobwhites (n = 6 ecoregions across TX

and OK). As expected, haplotype diversity increases with the inclusion of increasing levels of

mitogenomic sequence data, and nucleotide diversity decreases, the latter being due to the fact

that nucleotide diversity is directly impacted by localized hyper-variability within short frag-

ments of the mitochondria that are commonly targeted for population analyses (i.e., partial or

complete D-Loop; See Table 1) (for review see [3, 59–63]). Median joining haplotype networks

[64] constructed for partial bobwhite mitogenome sequences demonstrated an overt lack of

resolution for drawing phylogenetic or population inferences in the bobwhite, as compared to

networks constructed using complete mitogenome sequence data (Figs 1 and 2). Moreover, for

analyses which utilized partial sequences, the reduction in mitochondrial genomic information

content was observed to encourage spurious inferences in our samples (Table 1, Figs 1 and 2).

For example, the total number of unique mitochondrial haplotypes and haplotype diversity

were highly underestimated (i.e., collapsed) when partial mitogenome sequences were utilized,

and therefore, some bobwhites wrongly appear to possess identical mitochondrial haplotypes

(Table 1, Figs 1 and 2). This problem should be expected in many studies which utilize small

mitogenome fragments, rather than complete mitogenome sequences. A comparative sum-

mary of all bobwhite mitochondrial analyses of diversity are presented in Table 1. Moreover,

the true degree of mitogenome divergence and population structure among our sampled bob-

whites was not detectable when popular mitogenome fragments (i.e., partial or complete

D-Loop) (for review see [3, 59–63]) were analyzed (Figs 1 and 2). Nevertheless, similar to a pre-

vious bobwhite mitochondrial study [3], we did not observe strong phylogeographical cluster-

ing among the six surveyed U.S. Environmental Protection Agency (EPA) level III ecoregions

(http://archive.epa.gov/wed/ecoregions/web/html/level_iii_iv-2.html; Fig 2). However, it

should be noted that among the two discrete mitogenome haplotype groups detected (Figs 1

and 2), many of the diverged individuals (i.e., Group 2, Fig 2) originated from one ecoregion

Table 1. Bobwhite Mitochondrial Analyses of Diversity.

Partial Complete Complete
Summary Data* D-Loop D-Loop Mitogenome

Sample size (haplotypes) 54 55 66

Size of analyzed region (bp) 353 bp 1,152 bp 16,702 bp

Total variable sites 19 31 335

Total number of mutations 20 33 338

Total unique haplotypes 22 34 62

Haplotype diversity (Hd) 0.860 0.966 0.998

Nucleotide diversity (π) 0.00868 0.00435 0.00354

* Includes heteroplasmic minor allele haplotypes, excluding gaps.

doi:10.1371/journal.pone.0144913.t001
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(n = 8 / 17, or 47%, Southern Texas Plains). The precise origin of this previously undetected

diverged lineage [3], which represents approximately 25% of the total bobwhites surveyed in

this study, is currently unknown.

Considering partial or complete bobwhite mitogenome sequences, we observed little sup-

port for the previously described geographic subspecies designations [1–3] across the six inves-

tigated ecoregions. However, complete mitogenome sequence analyses did reveal a modern

bobwhite population structure that may potentially be comprised of at least two putative sub-

species (FST = 0.849; P< 0.05; Figs 1 and 2); with the divergence between these two groups

Fig 1. Median joining (MJ) haplotype networks [64] constructed for partial and complete bobwhite mitogenome sequences, with heteroplasmic
minor allele haplotypes, and color-coded geographic subspecies designations [1–3]. (A) MJ haplotype network for 353 bp of the mitochondrial D-Loop
[3] (n = 54, including 1 heteroplasmic minor allele haplotype). (B) MJ haplotype network for the complete D-Loop (1,152 bp; n = 55, including 2 heteroplasmic
minor allele haplotypes). (C) MJ haplotype network for the complete mitogenome (16,709 bp including gaps; n = 66, including 13 heteroplasmic minor allele
haplotypes). Default weights for SNPs and indels were used (10 and 20, respectively), with node sizes proportional to haplotype frequency, and branch
lengths drawn to scale. Red dots indicate median vectors. The complete mitogenome haplotypes were observed to form two divergent clusters (i.e., Group 1,
Group 2; n = 103 variants). Pairwise FST values (below diagonal) with standard errors (above diagonal) were computed to assess genetic differentiation
between the two clusters, with the asterisk (*) indicating a significant FST value (P < 0.05). Fig 1C includes three complete mitogenome haplotypes for
bobwhites lawfully harvested from active surrogating pastures (i.e., pen release sites = S), and one haplotype from a lawfully harvested pen-released
bobwhite (P). (R) designates the reference mitogenome [36].

doi:10.1371/journal.pone.0144913.g001

Bobwhite Mitochondrial Population Genomics

PLOS ONE | DOI:10.1371/journal.pone.0144913 December 29, 2015 6 / 21



almost exclusively observed for a subset of bobwhites geographically classified as C. v. texanus

[1–3] (Fig 1). Additional analyses further demonstrated statistically significant mitogenome

differentiation and population subdivision between the two groups (i.e., KS, KS
�, Z, Z�,

P< 0.001 via permutation) [65]. The average number of nucleotide substitutions per site

between the two lineages (Group 1 versus Group 2; Figs 1 and 2) was 0.00731 (dXY) [66], indi-

cating that the average percent divergence was less than 1% (i.e., 0.7%). Collectively, 103 mito-

genome mutations defined the split between the two bobwhite lineages within a median

joining haplotype network (i.e., 101 SNVs, 2 Indels; Figs 1 and 2). Examination of all 103

Fig 2. Median joining (MJ) haplotype networks [64] constructed for partial and complete bobwhite mitogenome sequences, with heteroplasmic
minor allele haplotypes, and color-coded assignments to U.S. Environmental Protection Agency level III ecoregions (http://archive.epa.gov/wed/
ecoregions/web/html/level_iii_iv-2.html). (A) MJ haplotype network for 353 bp of the mitochondrial D-Loop [3] (n = 54, including 1 heteroplasmic minor
allele haplotype). (B) MJ haplotype network for the complete D-Loop (1,152 bp; n = 55, including 2 heteroplasmic minor allele haplotypes). (C) MJ haplotype
network for the complete mitogenome (16,709 bp including gaps; n = 66, including 13 heteroplasmic minor allele haplotypes). Default weights for SNPs and
indels were used (10 and 20, respectively), with node sizes proportional to haplotype frequency, and branch lengths drawn to scale. Red dots indicate
median vectors. The complete mitogenome haplotypes were observed to form two divergent clusters (i.e., Group 1, Group 2; n = 103 variants). Pairwise FST
values (below diagonal) with standard errors (above diagonal) were computed to assess genetic differentiation between the two clusters, with the asterisk (*)
indicating a significant FST value (P < 0.05). Fig 2C includes three complete mitogenome haplotypes for bobwhites harvested from active surrogating
pastures (i.e., pen release sites = S), and one haplotype from a lawfully harvested pen-released bobwhite (P). (R) designates the reference mitogenome [36].

doi:10.1371/journal.pone.0144913.g002

Bobwhite Mitochondrial Population Genomics

PLOS ONE | DOI:10.1371/journal.pone.0144913 December 29, 2015 7 / 21

http://archive.epa.gov/wed/ecoregions/web/html/level_iii_iv-2.html
http://archive.epa.gov/wed/ecoregions/web/html/level_iii_iv-2.html


network torso mutations revealed eight SNVs that were predicted to cause amino acid replace-

ments, and 50% of these localized to ND5 (S1 Table). No heteroplasmic variable sites were

present in the network torso. Similar to our median joining haplotype networks, complete

mitogenome divergence was also detected and visualized via mismatch distribution, where a

bimodal distribution becomes overtly apparent with the inclusion of increasing levels of mito-

genome sequence data (Fig 3). This bimodal distribution is in conflict with a previous bobwhite

study that reported a unimodal mismatch distribution (i.e., based on a 353 bp mitogenome

fragment), and corresponding inference suggesting a recent, rapid demographic expansion [3].

As shown in Fig 3, our analysis of the same 353 bp mitogenomic region produced a mismatch

distribution that was strikingly similar to that of Williford and colleagues [3]. However, the

true mismatch distribution corresponding to the extant maternal lineages sampled during this

study was very poorly estimated when only 353 bp (i.e., partial D-Loop) were analyzed,

Fig 3. Bobwhite Mismatch Distributions. (A) 353 bp of the mitochondrial D-Loop [3] (n = 54, including 1 heteroplasmic minor allele haplotype). (B)
Complete D-Loop (1,151 bp excluding gaps; n = 55, including 2 heteroplasmic minor allele haplotypes). (C) Complete mitogenome (16,698 bp excluding
gaps; n = 66, including 13 heteroplasmic minor allele haplotypes). The x-axis represents the number of pairwise differences (mismatches) and the y-axis
represents the frequency of these differences. The observed mismatch distribution (dashed line) is compared to the expected distribution (red line) for a
stable population (i.e., constant population size).

doi:10.1371/journal.pone.0144913.g003
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indicating that more sequence data are necessary to correctly infer aspects of bobwhite histori-

cal demography and/or population substructure (Fig 3). Bimodal or multimodal mitochondrial

mismatch distributions have not been uniformly interpreted in the literature; with some

authors suggesting that these distributions reflect stable, stationary populations (i.e., post

expansion) with or without spatial structuring [67–69], populations that are expanding spa-

tially via few outward migrants per generation [70], or populations with tangible substructure

and/or mutation rate heterogeneity (i.e., even while experiencing demographic expansions)

[71, 72]. Therefore, the true biological origin(s) of any bimodal mismatch distribution may be

complex. For example, factors such as biogeographical barriers [69], survival of some divergent

lineages from a pre-expansion to a post-expansion population [73], the occurrence of historic

population admixture [74], and even hybridization [75] have all been noted as likely origins. In

this study, a comparison of all bobwhites geographically classified as either C. v. texanus or C.

v. taylori [1–3] produced FST values that were statistically significant (P< 0.05; Table 2), which

is concordant with a recent study [3], but notably, these FST values are far smaller than those

obtained for a comparison of the two bobwhite mitogenome lineages elucidated by median

joining haplotype networks (See Figs 1C and 2C; Group 1 vs Group 2). Although little evidence

of strong phylogeographic clustering and corresponding subspecies distributions were

observed in this study, and/or during a previous study [3], the FST values obtained via compari-

son of bobwhites that were taxonomically classified based on geographic subspecies designa-

tions [1–3] (Table 2; C. v. texanus versus C. v. taylori) suggests that perhaps a more

pronounced substructure may have existed, historically, but has since been diluted. For exam-

ple, the composition of extant wild bobwhite populations may potentially be affected by varia-

tion in the rates and patterns of dispersal, and/or an agricultural practice that involves the

introduction of pen-reared lineages for restocking or supplementation [30, 33–35]. Herein we

show that at least some pen-raised lineages are indistinguishable at the mitogenome sequence

level from that of wild bobwhites (Figs 1C and 2C), while others have been distinguished using

nuclear microsatellite loci [35]. Interestingly, annual survival and breeding of pen-reared bob-

whites (pen-reared x pen-reared; pen-reared x wild) following release into suitable habitats has

often been considered low [30, 33, 34]. However, some previous studies actually demonstrate

either tangible annual survival rates [30, 35], and/or apparent reproduction (pen-reared x pen-

reared; pen-reared x wild) [35]. Moreover, a study which previously concluded low post-release

survival for pen-reared bobwhites, and subsequently discouraged their use for restocking, actu-

ally shows a basal survival rate that is greater than 20% across the entire observation period

(i.e., 22 weeks) at one of the two study sites evaluated [30]. Therefore, it is apparent that some

proportion of pen-reared bobwhites may successfully integrate into some wild populations [30,

35]. In this study, we produced complete mitogenome sequences for one hunter harvested pen-

reared bobwhite (i.e., marked by a leg-band), and two bobwhites that were hunter harvested in

a pasture routinely used for pen-reared releases. Complete mitogenome haplotypes corre-

sponding to these three bobwhites were observed in both of the two divergent mitogenome

Table 2. Pairwise FST Values between Geographically Designated Bobwhite Subspecies.

Partial D-Loop (353 bp) Complete D-Loop (1,152 bp) Mitogenome (16,709 bp)

C. v. texanus C. v. taylori C. v. texanus C. v. taylori C. v. texanus C. v. taylori

C. v. texanus � 0.0001 � 0.0001 �0.0001

C. v. taylori 0.25407* 0.18956* 0.31271*

* Significant (P < 0.05) FST values (below diagonal, with standard errors above diagonal).

doi:10.1371/journal.pone.0144913.t002
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clusters (n = 2 bobwhites in Group 1; n = 1 bobwhite in Group 2; Figs 1C and 2C), with the

known pen-reared bobwhite possessing a haplotype that was more closely related to the most

common wild bobwhite mitogenome sequences (i.e., Group 1; Figs 1C and 2C).

Since the majority of the diverged mitogenomes (i.e., Group 2, Figs 1C and 2C) were recov-

ered from bobwhites that occupied overlapping ranges with the scaled quail (Callipepla squa-

mata; also known as the blue quail), we investigated whether hybridization might be

explanatory for the observed divergence. This hypothesis was predicated on previous observa-

tions that bobwhites and scaled quail may hybridize, both in the wild and in captivity [76, 77].

To address this question, we used standard Illumina PE sequencing technologies to produce a

complete mitogenome sequence (n = 16,701 bp; GenBank Accession KT722338; see Methods)

for a hunter harvested scaled quail that was obtained from the same ranch where multiple

diverged bobwhites were sampled (Group 2, Figs 1C and 2C). Comparison of the scaled quail

and bobwhite reference mitogenome revealed 1,215 mutational differences (n = 1,191 SNVs;

n = 24 Indels), or greater than 7% divergence, indicating that hybridization between these two

species is not explanatory for the two diverged bobwhite mitogenome haplotype groups (Figs

1C and 2C). Moreover, a maximum likelihood-based phylogeny constructed with expanded

taxon sampling demonstrated that the scaled quail is more closely related to the bobwhite than

the tawny-faced quail (Rhynchortyx cinctus) [78], and that both bobwhite haplotype groups

were equidistant from the scaled quail (Fig 4). Likewise, using the scaled quail as an outgroup;

Tajima’s relative rate test [79] revealed no significant rate heterogeneity between the two bob-

white lineages. These results are interesting because they suggest that neither bobwhite mito-

genome group is more ancestral (or more derived) than the other, which supports the

hypothesis that divergent maternal lineages have survived from a pre-expansion to a post-

expansion population [73]. To further address this question, we examined the individual mis-

match distributions for each bobwhite mitogenome group that was identified (i.e., Group 1,

Group 2; Figs 1C and 2C). Both groups individually fit a demographic model of population

growth-decline better than a model which assumed a stable, constant population size [80–82]

(Fig 5). This result was robust to using either the mismatch distribution (i.e., pairwise number

of differences) and/or the site frequency spectrum (i.e., segregating sites; not shown), and is

generally concordant with previous reports of range-wide declines for the bobwhite (Fig 5) [8–

14]. One final inference that could be drawn from our maximum likelihood-based phylogenies

pertained to the likely origin of the observed bobwhite heteroplasmies. Specifically, in all

instances of heteroplasmy, the two intra-individual mitogenome haplotypes were observed as

sister taxa within the phylogenetic tree, thereby suggesting that either maternal transmission

and/or developmental de novomutation(s) were the most likely origin(s).

Application of Tajima’s and Fu’s test (i.e., D, FS) [83, 84] to each bobwhite mitogenome

group (Figs 1C and 2C) revealed negative test statistics for both clusters (Group 1, n = 49, D =

-1.83, FS = -25.93; Group 2, n = 17, D = -1.25, FS = -4.24). However, these tests were only statis-

tically significant for Group 1 (i.e., via beta distribution and coalescent simulations; See Meth-

ods). Specifically, this result occurs due to an excess of rare variants and rare haplotypes in

Group 1, which is consistent with new (i.e., young) mutations resulting from demographic

expansion and/or natural selection (i.e., positive or purifying). Application of a multi-locus

McDonald-Kreitman test [85, 86] (MKT, including all 13 mitochondrial protein coding genes

and all haplotypes) to evaluate the possibility for functional divergence among the two bob-

white groups (Figs 1C and 2C) revealed no evidence for positive selection (P< 0.05; Overall

mean proportion of adaptive substitutions (α) = -1.159). Notably, in this scenario, a significant

multi-locus MKT results from the high proportion of polymorphism (including singleton het-

eroplasmic SNVs) as compared to the very low proportion of fixed (i.e., diverged) nucleotide

sites between the two bobwhite mitogenome lineages detected (Figs 1C and 2C). This
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interpretation can be further evidenced by simply removing all heteroplasmic haplotypes pos-

sessing minor alleles (the majority of which were singletons), and again computing the multi-

locus MKT, which revealed no evidence for selection (P> 0.05; (α) = -0.774). Likewise, stan-

dard MKT’s [85, 86] for all individual mitochondrial protein coding genes also revealed no

Fig 4. Maximum Likelihood-based Phylogeny Constructed with Expanded Taxon Sampling. Phylogeny of all bobwhite mitogenomes (n = 66, including
13 heteroplasmic minor allele haplotypes) in conjunction with mitogenomes for the scaled quail (Callipepla squamata), tawny-faced quail (Rhynchortyx
cinctus) [37], and stone partridge (Ptilopachus petrosus) [37]. The asterisk (*) denotes a pen-released (n = 1) origin, and ‘^’ denotes bobwhites sampled from
active surrogating pastures (i.e., pen release sites; n = 3). Terminal taxa noted with “H” and “L” refers to the high frequency (i.e., major) and low frequency
(i.e., minor) heteroplasmic haplotypes, respectively. Individual bobwhites are labeled with laboratory identifiers (Q, SQ, T), with REF indicating the bobwhite
reference sequence (GenBank Accession AWGT00000000.1), and KJ914548.1 indicating a bobwhite GenBank Accession [37] included in our analyses.
The maximum likelihood phylogeny was constructed with RAxML 7.2.8 [96] using a GTR+Γmodel of sequence evolution, with bootstrap support values
based on 1,000 pseudoreplicates.

doi:10.1371/journal.pone.0144913.g004

Bobwhite Mitochondrial Population Genomics

PLOS ONE | DOI:10.1371/journal.pone.0144913 December 29, 2015 11 / 21



evidence for positive selection and functional divergence (P> 0.05) regardless of the inclusion

or exclusion of heteroplasmic mitochondrial haplotypes. Fine scale analyses conducted using

Tajima’s test (D) via sliding window (i.e., 100 bp window, 25 bp step) also failed to produce

any statistically significant evidence for natural selection within the mitochondrial protein cod-

ing genes for members of the two bobwhite mitogenome haplotype clusters (i.e., individual

analyses for Group 1; Group 2). Similarly, application of Tajima’s and Fu’s Tests (D, FS) [83,

84] to the pooled set of all bobwhite mitogenome haplotypes (Group 1 + Group 2) also pro-

vided little support for strong selection, and less demographic insight relative to individual

analyses carried out for members of each haplotype cluster (i.e., D = -0.59, P> 0.05; FS =

-16.24, P< 0.01 by coalescent simulations). Significantly negative values observed for D and FS
[83, 84] in relation to the Group 1 bobwhites (Figs 1C and 2C) most likely reflects signatures of

demographic expansion in that lineage and/or purifying selection (i.e., perhaps detectable via

larger Group 1 sample size). Application of Tajima’s test (D) to the pooled bobwhite sample

(Group 1 + Group 2) using the sliding window method (i.e., 100 bp window, 25 bp step)

revealed one mitogenome window located in the ND5 gene (C-terminal region of NADH5;

Pfam NADH5_C Domain) which departed from the neutral expectation (D = -1.83, P< 0.05).

This result was driven by the occurrence of four singleton SNVs within the 100 bp window

(n = 3 nonsynonymous; n = 1 synonymous). The distribution of these four singleton SNVs

included haplotypes from both bobwhite mitogenome groups (Figs 1 and 2) identified by

Fig 5. Bobwhite Historical Demography Inferred FromComplete Mitogenome Sequences. (A) The observed mismatch distribution (dashed line) for
bobwhite Group 1 (n = 49) as compared to the expected distribution (red line) for a stable population (i.e., constant population size). (B) The observed
mismatch distribution (dashed line) for bobwhite Group 2 (n = 17) as compared to the expected distribution (red line) for a stable population (i.e., constant
population size). (C) The observed mismatch distribution (dashed line) for bobwhite Group 1 (n = 49) as compared to the expected distribution (red line) for a
growth-decline model. (D) The observed mismatch distribution (dashed line) for bobwhite Group 2 (n = 17) as compared to the expected distribution (red line)
for a growth-decline model.

doi:10.1371/journal.pone.0144913.g005
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network analyses (n = 2 nonsynonymous and 1 synonymous in Group 1; n = 1 nonsynon-

ymous in Group 2). Moreover, while the individual MKT [85, 86] for ND5 of bobwhite Group

1 versus Group 2 (Figs 1 and 2) included four nonsynonymous substitutions that were diverged

among the two mitogenome groups, that test was not statistically significant. Therefore, the

collective results from our analyses of these data (i.e., pooled and by individual groups) are

most concordant with the segregation of some slightly deleterious nonsynonymous mutations,

as further evidenced by the negative overall mean proportion of adaptive substitutions

(pooled), and the absence of statistical support for positive selection or functional divergence

between the two bobwhite mitogenome lineages [85–88].

Conclusions

For bobwhite samples included in the present study, utilization of small, popular mitochondrial

fragments [3, 59–63] were observed to be largely insufficient to elucidate the true mitogenome

haplotype structure and corresponding levels of divergence within a structured population.

Likewise, discordant demographic inferences and failure to detect the extent of population sub-

structure were also possible, as evidenced by small versus complete mitogenome sequence anal-

yses. Our analyses of complete mitogenome sequence data for 53 bobwhites from six

ecoregions across two U.S. states supported the potential for perhaps two putative subspecies

that did not adhere to prior geographic designations [1–3], with the molecular caveat being

that future nuclear genome analyses are also necessary to fully clarify bobwhite population

structure and the genetic basis of all four putative subspecies west of the Mississippi River

(USA). Collectively, our analyses of bobwhite mitogenomic data, including evidence for hetero-

plasmy, strongly support the deployment of low-cost, high-yielding, next-generation sequenc-

ing technologies in place of conventional PCR-based analyses of small mitochondrial

fragments for future population studies. Additionally, population, demographic, and phyloge-

netic analyses reported in this study were robust to the inclusion or exclusion of heteroplasmic

SNVs (Tables A-D and Figures A-F in S1 File). Finally, because next-generation sequencing

technologies provide the opportunity to simultaneously capture both nuclear and mitochon-

drial DNA sequence information, the emergence and analysis of these types of data from rele-

vant bobwhite populations are fully expected to compliment previous bobwhite microsatellite

studies [89, 90].

Methods

Bobwhite and Scaled Quail Sampling, Taxonomy, and Isolation of
Genomic DNA

Two sources of bobwhite quail (n = 25 females; n = 26 males) were utilized for DNA isolation

in the present study, including lawfully harvested wild bobwhites for which ethical clearance is

not applicable, and those collected via trapping, where ethical clearance is required. Bobwhites

obtained via trapping (n = 27) were collected during two-week periods of August and October

(2012 and 2013) using milo-baited funnel traps on private ranches and public wildlife manage-

ment areas located in the Central Great Plains, Edwards Plateau, High Plains, and Southwest-

ern Tablelands ecoregions of Texas and Oklahoma. Traps were designed to minimize injury

and covered with natural vegetation in a manner that simulated natural loafing cover, which

minimized stress by providing shade and concealment from predators, and also discouraged

restless behavior. Following capture, and during processing, birds were kept in zippered pillow

cases (i.e., darkened environment) to further ameliorate stress. A subset of all captured birds

were euthanized by cervical dislocation, which is an American Veterinary Medical Association
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acceptable method for small birds. All birds were collected under authorization of a Texas

Parks and Wildlife permit (SPR-1098-984; Austin, TX, USA) and via Institutional Animal Use

Protocols from both Texas Tech University (IACUC 11049–07; Lubbock, TX, USA) and Texas

A&MUniversity (IACUC 2011–193; College Station, TX, USA). Skeletal muscle samples (i.e.,

from one or both legs) were obtained from bobwhites that were lawfully harvested (n = 24) on

private ranches in the Central Great Plains, Southwestern Tablelands, Southern Texas Plains,

and Western Gulf Coast Plain ecoregions of TX (USA). Likewise, skeletal muscle samples from

the legs of one lawfully harvested scaled quail were also obtained from one of the same private

ranches in the Southern Texas Plains ecoregion. Bobwhite ecoregion assignments followed the

U.S. Environmental Protection Agency (EPA) level III ecoregion maps (http://archive.epa.gov/

wed/ecoregions/web/html/level_iii_iv-2.html). Putative subspecies designations for all bob-

whites included in this study (i.e., C. v. texanus; C. v. taylori) followed geographic designations

described west of the Mississippi River (USA) [1–3]. Genomic DNA was isolated from skeletal

muscle derived from the legs of bobwhites (n = 52) and one scaled quail (n = 1) using the Mas-

terPure DNA Purification Kit, according to the manufacturer’s recommendations (Epicentre

Biotechnologies Inc., Madison, WI) [36]. The presence of high molecular weight genomic

DNA was assessed and confirmed by agarose gel electrophoresis, with quantitation via Nano

Drop 1000 (NanoDrop Technologies Inc., Wilmington, DE), and by evaluating all isolates

using a Qubit 2.0 fluorometer (Life Technologies Corp, Carlsbad, CA) [36].

Illumina Library Construction and Sequencing

Small insert PE libraries were constructed using the TruSeq Nano LT Library Prep Kit (Illu-

mina #FC-121-4001) according to the standard protocol supplied by the manufacturer. All

quail PE libraries were multiplexed and processed using PE-125 cycle runs (2×125 bp), with

data generation (i.e., image processing and base calling) occurring in real time on the Illumina

HiSeq 2500v4 High Output instrument (Illumina Inc., San Diego, CA). Briefly, the sequencing

strategy consisted of multiplexing four barcoded birds per lane, which delivered high mito-

chondrial coverage across all individual quail.

Bobwhite Mitogenome Reference Mapping and Variant Detection

Prior to reference mapping, all Illumina sequence reads were trimmed for quality and adapter

sequences using the CLC Genomics Workbench, as previously described [36]. Comparison of

the initial bobwhite draft mitogenome reference sequence (GenBank Accession

AWGT00000000.1) [36] with recently published mitogenome reference sequences for several

members of the family Odontophoridae (NewWorld quail) [37] revealed an in-frame gap in the

ND5 reference sequence; a complication related to de novo assembly of a circular mitochondrial

chromosome into a linear contig (i.e., end gaps). However, the recent increase in mitogenome

taxon sampling for species of the Odontophoridae [37] allowed for comparative correction and

read-based validation of the gap within the previously reported bobwhite reference mitogenome

sequence (GenBank Accession AWGT00000000.1) [36]. Thereafter, the trimmed Illumina

sequence reads generated for 51 bobwhites were individually mapped to the corrected bobwhite

mitogenome reference sequence [36] (i.e., equivalent in length to GenBank Accession

KJ914548.1; mitogenome = 16, 702 bp) using the reference mapping algorithm within the CLC

Genomics Workbench (v7.0.3 and v7.5.1) [36]. Reference mapping parameters were as follows:

no masking; mismatch cost = 2; insertion cost = 3; deletion cost = 3; minimum read length frac-

tion = 0.95; minimum fraction of nucleotide identity (similarity) = 0.95. Duplicate mapped

reads were removed using the CLC Genomics duplicate mapped reads removal algorithm (ver-

sion 1.0; For PCR-based libraries), which also aims to collapse reads that are only distinguished
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by minority-branch sequencing errors (http://www.clcbio.com/files/usermanuals/Mapped_

Duplicate_Reads_Removal_Plugin.pdf). All mapped reads were extracted for deposition in the

DRYAD digital repository (doi:10.5061/dryad.t39q6). Thereafter, we used the CLC probabilistic

variant detection algorithm [36] to predict bobwhite mitogenome variants (SNVs, Indels,

MNVs; http://www.clcbio.com/files/whitepapers/Variant_Caller_WP_web.pdf). This algorithm

uses a Bayesian model and a Maximum Likelihood approach to calculate prior and error proba-

bilities for the Bayesian model. These probabilities are used to determine the most likely allele

combination per nucleotide position, with a user specified probability threshold for variant pre-

diction equal to 0.95 [36]. Additional user specified settings for variant detection were as follows:

ignore nonspecific matches = yes; ignore broken read pairs = no; minimum coverage = 4; vari-

ant probability� 0.95; require variant in both forward and reverse reads = yes; maximum

expected variants = 2; ignore quality scores = no. Resulting variant tracks for all 51 bobwhites

were annotated by sequence overlap using mitogenome annotations previously described [36,

37], and the functional consequences of all putative variants were predicted using the vertebrate

mitochondrial genetic code implemented in the CLC Genomics Workbench (v7.0.3 and v7.5.1).

Consensus mitogenome sequences for all 51 bobwhites were manually constructed using indi-

vidual variant reports, and then compared for accuracy to the consensus sequences computed

by the CLC Genomics Workbench (v7.0.3 and v7.5.1).

Generation of a Complete Scaled Quail Mitogenome Sequence

Two basic approaches were used to produce a complete scaled quail mitogenome. First, we

mapped Illumina PE reads generated for a female scaled quail onto a bobwhite mitogenome

reference sequence (GenBank Accessions AWGT00000000.1 and KJ914548.1) [36, 37] using

the reference mapping algorithm implemented within the CLC Genomics Workbench (v7.5.1),

and subsequently computed a scaled quail consensus. For comparison, all of the mapped reads

were extracted and used in conjunction with the CLC de novo assembly algorithm, as previ-

ously described [36]. Both approaches produced identical results (16,701 bp), and the scaled

quail mitogenome was comparatively annotated by sequence overlap(s) with mitogenome

annotations previously described [36, 37]. Sequence overlaps were established by alignments

performed in the CLC genomics workbench (v7.5.1) and/or via ClustalW online (http://www.

ebi.ac.uk/Tools/msa/clustalw2/), with subsequent manual inspection. Translation of all 13

mitogenome protein coding genes provided no evidence for frameshifts, premature stop

codons, or missing data (i.e., gaps).

Population, Demographic, and Phylogenetic Analyses

For population analyses, all bobwhite mitogenome sequences were aligned using a multiple

sequence alignment algorithm implemented within the CLC Genomics Workbench (v7.5.1;

CLC alignment algorithm; Alignment available in Dryad doi:10.5061/dryad.t39q6). This align-

ment included one bobwhite mitogenome sequence of unknown geographic origin and/or puta-

tive subspecies designation (GenBank Accession KJ914548.1) [37] as well as the gap-corrected

(ND5) reference mitogenome (GenBank Accession AWGT00000000.1) [36]. For bobwhites dis-

playing unequivocal evidence of two intra-individual mitogenome haplotypes that differed by

only one nucleotide (i.e., one heteroplasmic SNV; 10 / 13 bobwhites), both representative haplo-

type sequences were included in the alignment. Likewise, for bobwhites that displayed evidence

for more than one heteroplasmic SNV (n = 3 bobwhites), we used allele frequency data to

deduce the two putative intra-individual mitogenome haplotype sequences. Specifically, in all

but one instance, the reference allele was observed at higher frequencies (i.e., by read count and

coverage) than the alternative allele, thereby supporting the presence of one reference haplotype,
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and one alternative haplotype comprised of minor alleles (S1 Table). The only heteroplasmic

SNV that deviated from this trend was excluded from further analyses. Likewise, two SNVs that

could not be unambiguously excluded as potential numts were also removed from further analy-

ses (S1 Table) [36]. Bobwhite median joining haplotype networks [64] were constructed using

Network 4.6.1.3 (Fluxus Technology Ltd, Suffolk, England), with the default character weights

for SNPs and indels (10 and 20, respectively). All networks were visualized and annotated within

Network Publisher (Fluxus Technology Ltd, Suffolk, England), with manual adjustment of

branch angles to ensure proper magnification and clarity without changing the branch lengths.

Tests of population differentiation and subdivision (KS, KS
�, Z, Z�) [65], estimates of haplotype

and nucleotide diversity (Hd; π) [66], and bobwhite demographic models (i.e., constant stable

population vs growth-decline) [80–82, 91] were computed in DnaSP version 5.10.01 [92]. Fre-

quency distribution tests (D; FS) [83, 84] were also performed in DnaSP version 5.10.01 [92],

with the significance of the test assessed by the beta distribution (D) and/or via coalescent simu-

lation (D; FS) with 16,000 replicates. All computations performed in DnaSP version 5.10.01 [92]

were based on the total number of mutations (excluding gaps), with one exception; the popula-

tion growth-decline model was evaluated via mismatch distribution (i.e., pairwise number of

differences) and the site frequency spectrum (i.e., segregating sites) [80–82, 91]. Pairwise fixa-

tion index (FST) values were computed to assess genetic differentiation using a distance matrix

in conjunction with a Tamura and Nei [93] model within the program ARLEQUIN v3.5.1.2

[94] (i.e., partial and complete D-loop; complete mitogenome). Both multi-locus and standard

MKT’s were performed using the available web interface (http://mkt.uab.es/mkt/help_mkt.asp)

with Jukes-Cantor correction [85, 86], with standard MKT’s [86] for individual mitochondrial

protein coding genes also calculated in DnaSP version 5.10.01 [92]. Tajima’s relative rate test

[79] was performed within the software programMega v6.0 [95], and maximum likelihood phy-

logenies were constructed with RAxML 7.2.8 [96] using a GTR+Γmodel of sequence evolution,

with bootstrap support values based on 1,000 pseudoreplicates.
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