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ABSTRACT

In order to democratize data science, we need to fundamentally

rethink the current analytics stack, from the user interface to

the “guts.” Most importantly, enabling a broader range of users

to unfold the potential of (their) data requires a change in the

interface and the “protection” we offer them. On the one hand,

visual interfaces for data science have to be intuitive, easy,

and interactive to reach users without a strong background in

computer science or statistics. On the other hand, we need to

protect users from making false discoveries. Furthermore, it

requires that technically involved (and often boring) tasks have

to be automatically done by the system so that the user can

focus on contributing their domain expertise to the problem. In

this paper, we present Northstar, the Interactive Data Science

System, which we have developed over the last 4 years to ex-

plore designs that make advanced analytics and model building

more accessible.
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1. INTRODUCTION
To truly democratize Data Science, we need to fundamen-

tally change the way people interact with data. Astonishingly,

the interfaces people use to analyze data have not changed

since the 1990s, and most analytical tasks are still performed

using scripting languages and/or SQL. Of course, there have

been fashion trends in the choice of programming language

(e.g., from PERL to Python), algorithms (e.g., from neural nets

to statistical learning and back to neural nets), and database

technology (SQL to NoSQL to Not Only SQL). Yet, people still

interact with data primarily through writing scripts and SQL-

like languages, with up to hour-long wait times for results.
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We argue that we should stop holding onto the past; rather,

we should start designing systems for how Data Science should

be done 10 years from now. With Northstar1, a system for

interactive Data Science, we’ve tried to do exactly that for the

last four years. Perhaps surprisingly, some aspects of our vision

for the system have been inspired by movies such as ”Minority

Report” and the newer James Bond films. All of these movies

feature highly collaborative visual environments with touch

(and pen) interfaces for analyzing data; you see nobody coding

in Python. With Northstar, we had a very similar goal: to

provide a highly collaborative visual Data Science environment

based on a touch and pen interface, and simplify its use so

much that domain experts who are not trained in statistics or

computer science can use it without any help.

At the same time, we wanted to use hardware that is already

available and not wait until holograms actually become reality

(though, we were really excited about HoloLens [76]). We

therefore settled on interactive whiteboards – specifically, the

Microsoft Surface Hub – as our core target platform. Inter-

active whiteboards are essentially large multi-touch TVs, but

often with highly reduced lag time and better resolution, which

provide a real alternative to whiteboards. Consequently, we

were not shocked that Microsoft struggled to fulfill the demand

for the Surface Hub [111], nor did it surprise us that other tech

companies, such as Google, followed suit and now also offer

their own interactive whiteboard solutions.

So far, interactive whiteboards are just better conferencing

systems, but they have the potential to be much more. We

want to put them at the center of every meeting that involves

numbers, from discussing sales figures to better understanding

the customer base, and even to building predictive models. We

envision a collaborative environment where domain experts and

data scientists can work together to arrive at initial solutions

during a single meeting – solutions which can then, if neces-

sary, be refined offline. This is in stark contrast to the current

dreadful way that data scientists and domain experts interact:

meetings after meetings to find a common base before real

progress is first made. Consequently, to foster collaboration

and results during a meeting, the system has to provide a vi-

sual interface, because co-programming Python with a CEO is

simply not an option. Furthermore, we want to enable domain

1Previously, it was named Interactive Data Exploration System
(IDES), but this name no longer seemed adequate since we
added significant support for model building.
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Figure 1: Illustration of Vizdom accompanying the use case described in Section 2. (1a) Example of progressive visualiza-

tions. (1b) Example of a brushing operation initiated by putting two visualizations close to each other. (2a) Example of a

frequent itemset operator that is filtered by a selection in the visualization in the top right area. (2b) Operators can also serve

as filters for downstream visualizations. Dashed connection lines represent a NOT operator. The bottom left visualization

is filtered to everything BUT the item selected in the operator. (3a) Example of a prediction operator that uses Northstar’s

automated ML capabilities. (3b) Visualizations can be used as filters to subset the data a prediction operator works on. (3c)

Users can choose to transfer long-running prediction operators to an offline mode if more precision is desired.

experts to build models on their own without the help of a data

scientist or within the meeting room setting. Thus, the user

experience on a domain expert’s laptop should be similar to that

on an interactive whiteboard and feature a virtual data scientist,

who watches over the process and prevents any major mistakes.

Interestingly, by putting the user experience first, we not only

found that existing systems do not work in this setup, but we

also ended up designing a system very different from one we

would have created using a systems-first approach. Today, we

already have several pilot deployments of Northstar in industry

and academia, among them Adobe and IGT.

The main goal of this system paper is to provide an overview

of Northstar and explain the rationale behind its design, as well

as outline interesting challenges, solutions, and future work for

designing the next generation of Data Science systems, with

the goal of eventually truly democratizing Data Science.

The remainder of this paper is organized as follows: After

a motivating use case (Section 2), we provide an overview

of Northstar (Section 3), and afterward discuss the different

components of Northstar in more detail (Section 4 - 8). Fi-

nally, we discuss related work (Section 9) and future directions

(Section 10), before concluding the paper (Section 11 & 12).

2. A MOTIVATING USE CASE
To motivate Northstar and illustrate its power, we present an

introductory use case of how we envision Northstar being used.

Throughout this description, we refer to parts of Figure 1.

Pete, a product manager, and Dana, a data scientist, both

work at a large software company that offers various produc-

tivity tools through a subscription-based model. The company

has recently released a new product, XYZ, and Pete has noticed

that it’s not meeting their expectations. More specifically, it

seems like the churn rate (i.e., the numbers of customers who

stop their subscription) for XYZ has been increasing steadily.

Pete asks Dana to meet with him to investigate the issue

collaboratively and explore how customers are behaving. They

start up Vizdom, the front end of Northstar, on an interactive

whiteboard (see also Figure 2) in one of the meeting rooms and

start out with a few data exploration queries. (1a) For example,

they plot the churn rates of other products and find, that the

overall trend for XYZ indeed looks worse. (1b) Using Vizdom’s

brush and normalization features, they follow up by looking at

XYZ’s user demographics to see if particular subpopulations

(different age groups, in the example) of users are more likely to

stop their subscriptions. They conclude that no particular group

of users shows any interesting trends. All of these visualizations

are computed and refined progressively. Despite their large data

set, Dana and Pete see near-instantaneous results for all their

interactions, allowing them to explore many different questions

in a short amount of time and without losing focus on their

current train of thought.

Dana suggests investigating interactions between different

tools. (2a) She brings up a frequent itemset operator in Vizdom,

inputs ”products used,” and filters it to include only users who

have used XYZ; they observe that users commonly use XYZ in

combination with other company tools. (2b) Pete has a hunch

and selects all the users using XYZ together with ABC. He has

long suggested that the overlap in functionality between the

two tools is fairly significant and that they might compete with

each other. Looking at the churn rate for this subpopulation

and comparing it to the overall population of users who use

XYZ, they see that there is a noticeable difference: users who

use both tools are more likely to end their subscription than

users who do not. Vizdom’s filter functionality supports the full

power of boolean queries. In the example, Pete uses a gesture to

produce a NOT operator, represented by the dashed connection

line. Pete writes a note: he wants to follow up with his team

and discuss ideas for making the two tools more distinct.

After exploring the data, our two protagonists decide to be

more proactive and install measures to reduce the number of

future subscription cancellations. In the past, they had good

success with sending coupons to customers. They think adding

a new customer relation workflow that automatically sends this

coupons to users they are about to loose could help.
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(3a) To check how feasible this is, they use Vizdom to build a

model that predicts, given all available data, if a particular user

is likely to cancel their subscription in the future. The system

goes off and initiates an automatic model search that validates

its results by splitting the data into various training and testing

folds. Since this operation is again done progressively, Pete

and Dana can see after just a few seconds that the system found

a model that does fairly well on this task (i.e., F1-Score = 75%).

Pete is not an expert in machine learning, so Dana toggles the

view to a confusion matrix that shows the detailed performance

of the best model the system has found so far. Pete wants some

more details, so they inspect the model in more depth. Among

other things, they can inspect different training testing splits,

see the predictions for different user sub-populations, or look at

attribute-based decision boundaries. In doing so, Pete notices

that one of the top decision criteria is whether a customer

is a student. That seems fishy to Pete. Given his domain

background and experience, he knows there is high fluctuation

among students. They often cancel their subscriptions at the

end of a semester then sign up again at the beginning of the

next. (3b) He asks Dana to exclude this population of users

from their model. The system restarts its model search and

Pete and Dana see that the overall performance is a bit worse

now, but Pete thinks it’s better to exclude those users to avoid

sending unnecessary promotions.

They decide that the workflow is reasonable and plan to

deploy it into the production environment. (3c) Dana puts the

ongoing model search into offline mode. The system will keep

searching for and improving models that solve this problem

and will notify Dana of the results after a specified time. At

that point, Dana can export the best model the system found in

Python and hand it off to one of her team members to set up

this new customer-relations workflow with some A/B testing.

After a few weeks, Dana and Pete reconvene and use Vizdom

again to analyze if this prediction model worked well and if

sending these promotions affected the churn rate.

3. Northstar OVERVIEW
Putting the targeted user experience first, as sketched out in

the previous section, led us to a very different system design

than a systems-first approach would have. In this section, we

first discuss some of the key realizations that influenced the

system design before presenting the overall system architecture.

3.1 Key Requirements for Designing an In­
teractive Data Science System

Over the course of the project, we conducted several user

studies [113, 115, 114], which guided our system design to

address the aforementioned use case. While some of the real-

izations appear to be trivial in hindsight, they were not when we

started. In the following, we outline some of our key findings

during the course of the project.

(1) Results have to be approximate: Results for any opera-

tion, including machine learning, have to return in seconds, if

not milliseconds. Anything else disturbs the user’s experience,

leading to fewer discoveries [69, 113] and causing domain

experts to walk away, saying, “better to do that offline.” Unsur-
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Figure 2: Northstar architecture overview

prisingly, that implies that results have to be approximated, as

it is otherwise often impossible to return answers fast enough.

(2) Outliers matter: While a lot of work in approximate

query processing disregards the importance of outliers, we

found them extremely important. Users have a tendency to

explore anything that stands out – the most valuable customers,

records with data errors, the top-k sold products, etc.

(3) Progressive results are often better than error bars:

While the first version of our interface featured error bars, we

now support them only as an option for advanced users. As

other studies have already shown [23], error bars are often mis-

interpreted by users or simply ignored in the first place. We

found that progressive results, which are continuously updated

in the background until they converge on the complete answer,

provide the user with a much better experience. Most impor-

tantly, we found that fluctuations in the visualization help the

user to better understand how reliable the approximation is, and

the guarantee that the result will eventually converge provides

additional confidence.

(4) Connect & explore over legacy systems: Companies

often have a large landscape of legacy systems, from various

database installations (Oracle, DB2, Postgres, etc.) to dis-

tributed filesystems (Hadoop, EMC, etc.), which hold most of

their data and are extremely hard to change. Therefore, a key

requirement is that a new analytics system has to seamlessly

integrate with the existing infrastructure and that a user can

simply connect to a data source and start exploring without any

time-consuming pre-processing steps.

These requirements influenced one of the most important de-

sign decisions for Northstar; instead of creating a new database

system which replaces existing DWHs (e.g., as proposed in

[106, 107]) to better support Interactive Data Science (IDS), we

decided to design an accelerator, which sits on top of DWHs,

filesystems, etc., and essentially functions as a giant intelligent

cache for the data source.
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(5) Visualizations are not like SQL queries : The work-

load created by visualization systems is very different from

what TPC-H and TPC-DS make us believe analytical work-

loads look like. A single visualization often requires more than

one query, and even simple visualization are often extremely

hard to express as SQL queries [35]. For example, histograms

require binning the data into buckets and then performing an

aggregation per bucket, which is surprisingly complicated to

express in SQL and not well supported by existing DBMSs.

(6) Visualization can hide information: For months, we

demonstrated Northstar’s unsupervised learning feature using

MIMIC II [77], a data set about critical care patients. Using

frequent itemset clustering, we showed that we can quickly find

a large difference between the common diseases of young vs.

old people. However, just by chance, one of us inspected the

data more closely and found that the age 0 was used for patients

whose age was unknown. When those records were removed,

the difference in the clustering wasn’t that pronounced anymore,

indicating that patients with missing patient information also

have different diseases. This simple discovery led us down a

rabbit hole of research topics to investigate techniques that can

automatically point out potential problems in an analysis, from

the Simpson Paradox to Multiple-Hypothesis Error.

(7) Taking a holistic view of Data Science is important:

Users frequently want to switch between looking at data (ex-

ploring it), transforming and analyzing it (building models,

running stats). For example, with the MIMIC 2 data set, we

wanted to test if patients with a fever also have a higher heart

rate. We therefore quickly created a statistical test in our inter-

face, but then noticed that the temperature of some patients was

reported in Celcius and not Fahrenheit. Thus, a user should be

able to quickly write a UDF to convert Celsius to Fahrenheit

and rerun the whole analysis with the corrected input without

ever switching to different tools.

3.2 Overall System Architecture
We designed Northstar specifically to address the IDS re-

quirements, and also kept redesigning it as we came across

new ones. For example, we first designed Vizdom with the

goal of taking advantage of our existing analytics framework,

Tupleware [24, 25]. Tupleware is in many aspects similar to

Spark, but was designed to run on small high-performance clus-

ters and was able to achieve one to three orders of magnitude

better performance. However, while our initial belief was that a

fast execution engine is key to achieving interactivity, it turned

out that query approximation and progressive results and the

ability to quickly change the analytical workflow based on user

interaction are far more important and often contradict the goal

of code compilation. Interestingly, the same observation was

recently made by the HyperDB team. Because of its excellent

query execution performance, HyperDB was sold to Tableau

and now is primarily used as a backend for Tableau’s visual

front end. However, in a recent publication [61], the authors

primarily describe how to avoid code generation for the often

short running queries generated by the visual front end. In con-

trast, we decided to build IDEA, the interactive data exploration

accelerator, and now only use Tupleware to pre-compile com-

plex operations. Furthermore, during the turn of the project,

Python became increasingly popular as the main language of

choice for data scientist. Thus, it became pretty clear that we

can not rely on a single execution engine, but rather need to be

compatible with other frameworks.

The resulting system architecture is shown in Figure 2. The

Vizdom front end provides a visual data exploration environ-

ment specifically designed for pen and touch interfaces, such as

the Microsoft Surface Hub. Figure 2 includes an actual picture

of the Microsoft Surface Hub in our lab running Vizdom to

explore a medical data set. A demo video of Vizdom can be

found here vimeo.com/139165014. Currently, Vizdom

connects to IDEA using a standard REST interface, which in

turn connects to the data sources using the appropriate proto-

cols (e.g., ODBC). These data sources can include anything

from legacy data warehouses to raw files to advanced analytics

platforms (e.g., Spark, Hadoop).

In turn, IDEA acts as an intelligent cache and streaming

approximation engine that uses Tupleware [25, 24], Python,

Spark or other engines as runtimes for more complex analytics

tasks. To inform IDEA about which operations are available

in which runtime, the primitive library provides a standard-

ized API and metadata information about them. For the ML

auto-tuning, we built Alpine Meadow, a ”query” optimizer for

machine learning. Finally, QUDE, the component to Quantify

the Uncertainty in Data Exploration, monitors every interaction

the user does and tries to warn about common mistakes and

problems and, if possible, even prevents them from happening

in the first place.

In the following, we describe each component in more detail

and how they address the aforementioned challenges.

4. VIZDOM: AN NOVEL INTERFACE

FOR DATA SCIENCE
As Fisher et al. [42] argued, a common way to perform data

analytics at the turn of the 21st century was to use spreadsheet

applications and data sets that would fit completely in mem-

ory. Computations were therefore fast and results were visible

within seconds. Users could perform multiple analyses simul-

taneously, explore different aspects of the data, and iteratively

and interactively refine findings at a fast pace.

Today, these conveniences are gone. Increasing data com-

plexity that requires specialized query languages and transfor-

mations, modern analytical scenarios that rely on advanced

algorithms (e.g., machine learning), and the sheer size of to-

day’s data all force users to interact with data through custom

jobs written in scripting or programming languages. These

jobs run for minutes or hours in the cloud, without providing

insights on what goes on behind the scenes.

This mainframe-like interaction paradigm is an inherently

poor fit for Data Science. The work is exploratory by nature and

demands rapid iterations, and all but the simplest analysis tasks

require domain experts, who often do not have programming

skills, to be in the loop to effectively steer the process.

While systems like Tableau are a step in the right direction,

offering a visual interface for data exploration, they lack support

for creating sophisticated models. In our work to make Data

Science more accessible, we saw user experience as a crucial

component. We consciously designed Northstar using a top-

down approach, where user needs drive the requirements for the
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rest of our system. We therefore closely collaborated with Andy

van Dam’s group at Brown University to develop Vizdom [26],

a novel pen-and-touch interface for interactive Data Science

(Figure 2 shows Vizdom running on a Microsoft Surface Hub).

Vizdom exhibits a fluid [36] and novel interaction style that

is designed to promote “flow”—staying immersed in the cur-

rent activity and not being distracted by the user interface—and

relies on prompt feedback and fast response times. Interac-

tively analyzing multidimensional data sets requires frequent

switching between a range of distinct but interrelated tasks

(e.g., producing different visuals based on different column

sets, calculating new variables, observing interactions between

subsets of the data, creating statistical models, etc.). Vizdom

addresses this challenge by unifying a comprehensive set of

tools for visual data analysis into a hybrid pen-and-touch sys-

tem designed to exploit the visualization advantages of large

interactive displays. Tools are either data views, placeholders

for visualizations, or operators that perform transformations or

computations on data. User can interact with these elements

through direct manipulation, and elements will act not only as

result-viewers but also, more importantly, also as controls for

adjusting or steering ongoing computations. Leveraging an un-

bounded whiteboard metaphor, users can combine these tools

like building blocks to create interactive and visual workflows.

In designing Vizdom, we put heavy emphasis on fast re-

sponses to each and every user interaction regardless of the

size of the data being analyzed. Human-computer interaction

literature [80, 93] often states that a delay of one second is the

upper bound for system responses, after which users lose focus

on their current train of thought. To ensure a highly interactive

environment for data analysis, Vizdom makes use of progres-

sive visualizations and approximate answers as computed by

IDEA (see Section 6).

We first demonstrated Vizdom at VLDB 2015, where it won

the Best Demo Award. Since then, we have worked with various

academic and industry partners to get Vizdom with its backend

deployed and learn more about the real needs of domain experts

and data scientists across various domains. We worked with one

of Adobe’s Data Science teams, who used Vizdom to analyze

their product subscription data, and started a collaboration with

IGT, among others. Similarly, we continuously use Vizdom

for focused user studies to better understand user behavior. For

example, we studied the impact of approximate visual results

on exploratory analysis [113] and examined the effect of the

multiple comparison problem in visual analysis [115].

5. TUPLEWARE: BARE METAL SPEED

FOR UDFS
Todaya’s analytics frameworks are ill-suited to support in-

teractive visual frontends, even for simple operations on small

data sets. Current frameworks (e.g., Hadoop, Spark) are de-

signed to process massive data sets distributed across huge

clusters, which addresses the problems faced by giant Internet

companies. With these frameworks, just scheduling a single

job can often take longer than any reasonable interactivity la-

tency threshold. With Tupleware, we explored the design of a

new analytical framework for interactive latencies and “normal”

users—not the Googles of the world. Two key contributions of

Tupleware are (1) the close-to-zero execution and scheduling

overhead and (2) new query compilation and optimization tech-

niques. The latter fundamentally bridges the gap between query

optimizers, which usually make high-level optimization deci-

sion (e.g., join ordering), and compilers, which make low-level

optimization decisions (e.g., loop-unrolling).

While Tupleware was very important in the early stages of

Northstar, it lost its importance in the interactive Data Science

stack over time. First, it turned out that even the fastest exe-

cution engine can be too slow to provide interactive response

times for complex operations. Thus, we started to implement

more and more algorithms as approximate and progressive al-

ternatives directly in IDEA (see next section). Second, code

compilation, as also noted by others [61], often has an up-front

cost, which can quickly add up in cases where many small,

short-running queries dominate the workload. Hence, it be-

came more efficient to use Tupleware mainly to pre-compile

complex analytical operations (similar to stored procedures),

which are then combined into complex workflows based on the

user interactions within IDEA using an iterator-based execution

model. However, Tupleware was one of the very first systems

to compile complex analytical workflows, and many systems

built upon its results [1, 78, 83, 37]. Furthermore, we believe

that Tupleware’s compilation strategies might play an important

role in the next generation of Northstar as part of synthesizing

better access methods [63].

6. IDEA: AN INTERACTIVE DATA

EXPLORATION ACCELERATOR
As mentioned in the previous section, even the fastest run-

time can be too slow to guarantee interactive response times

over very large data sets. Approximate query processing (AQP)

techniques can help in these situations, but existing techniques

fall short in providing good approximations over rare events.

Yet, users commonly explore those events, as they often contain

interesting insights (e.g., the habits of the few highest-valued

customers, the suspicious outliers, etc.). Furthermore, exist-

ing AQP engines integrate poorly with legacy systems. We

therefore started to develop the first Interactive Data Explo-

ration Accelerator (IDEA) [27] with the goal of building the

first approximation engine for interactive Data Science, which

seamlessly integrates with existing IT infrastructures.

6.1 Neither a DB nor a Streaming Engine
Interestingly, IDEA required a fundamental rethinking of

the query execution model; it is neither a system for one-shot

queries, nor traditional AQP engine, nor a streaming engine.

Rather, IDEA has entirely unique semantics. Fundamentally,

IDEA is a database as a middle-tier and acts as an intelligent, in-

memory caching layer that sits in front of the much slower data

sources, managing both progressive results and the samples

used to compute them.

But even over cached samples, the query execution model

is different. Unlike DBMSs, queries are not one-shot opera-

tions that return batch results; rather, workflows are constructed

incrementally, requiring fast response times and progressive

results that refine over time. It is also not a traditional AQP

engine, as users often incrementally compose operations into
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complex workflows with one output being the input for one or

more other operations, like in a streaming system. Yet, in con-

trast to streaming engines, IDEA is meant to enable free-form

exploration of data sampled from a deterministic system (e.g.,

a finite data source), whereas traditional streaming engines

typically assume a predefined set of queries over infinite data

streams and do not have samples as inputs.

Also in contrast to a traditional DBMS, IDEA can offload

prefiltering and pre-aggregation operations to an underlying

data source (e.g., perform a predicate pushdown to a DBMS)

or even transform the base data by executing custom UDFs in

the source. Most importantly, though, in contrast to traditional

DBMSs, AQP engines, or streaming engines, IDEA users com-

pose queries incrementally, therefore resulting in simultaneous

visualizations of many component results with varying degrees

of error. Maintaining different component partial results rather

than single, exact answers imposes a completely new set of

challenges for both expressing and optimizing these types of

queries. Currently, our IDEA prototype uses a preliminary

interaction algebra to define a user’s visual queries.

6.2 Visual Indexes
Similar to the algebra and optimizer, we also found that tra-

ditional indexes are suboptimal for interactive data exploration

tasks. Existing incremental techniques either sort the data (e.g.,

database cracking [51]) or do not naturally support summary

visualizations. However, sorting can destroy data randomness

and, consequently, the ability to provide good estimates. Simi-

larly, existing techniques generally index every tuple without

considering any properties of the frontend (e.g., human percep-

tion limitations, visualization characteristics) and can require a

lot of storage space, especially for highly dimensional data.

For example, some visualizations (e.g., histograms) require

the system to scan all leaf pages in a traditional B-tree, since this

index is designed for single-range requests rather than provid-

ing visual data summaries. We therefore proposed VisTrees [35],

a new dynamic index structure that can efficiently provide ap-

proximate results specifically to answer visualization requests.

The core idea of VisTrees is that the nodes within the index are

“visually-balanced” to better serve visual user interactions and

then compressed based on perception limitations.

6.3 Sample Management
As previously mentioned, IDEA caches as much data as pos-

sible from the underlying data sources in order to provide faster

approximate results, since most data sources are significantly

slower. For example, the memory bandwidth of modern hard-

ware ranges from 40−50GB/s per socket [10, 110], whereas we

recently measured that PostgreSQL and a commercial DBMS

can only export 40−120MB/s, even with a warm cache holding

all data in memory. Although DBMS export rates may improve

in the future, IDEA’s cache will still remain crucial for provid-

ing approximate answers to visual queries and supporting more

complex analytics tasks (e.g., ML algorithms).

Conceptually, IDEA can be best referred to as a sample

management system and roughly divides the memory into

three parts: the Result Cache, the Sample Store, and space for

Indexes. When triggered by an initial user interaction, IDEA be-

gins ingesting data from the various data sources, speculatively

performing operations and caching the results in the Result

Cache to support possible future interactions. At the same time,

IDEA also caches all incoming data in the Sample Store using

a compressed row format. When the available memory for the

Sample Store is depleted, IDEA starts to update the cache using

a reservoir sampling strategy to eventually create a representa-

tive sample over the whole data set even if the data stream is

biased. To further mitigate the impact of bias in the data stream,

IDEA takes advantage of sampling operators most database

systems provide as well as reads from random offsets of the

data (e.g., when connected to a file). Furthermore, IDEA might

decide to split up the reservoir sample into several stratified

subsamples to overrepresent the tails of the distribution, or to

create specialized indexes for potential future queries. This is

done based on the current visualizations on the screen as they,

for example, determine what filter chains the user is able to

create. All these decisions are constantly optimized based on

both past and current user interactions. For example, if the user

drags a new attribute onto the canvas, the system will allocate

more resources to the new attribute in preparation for potential

follow-up queries. At the same time, IDEA constantly streams

increasingly precise results to the frontend as the computation

progresses over the data, along with indications about both the

completeness and error estimates.

6.4 Approximating Black Boxes
In contrast to most other AQP engines, IDEA has the goal of

approximating complex analytics and machine-learning pipelines.

This is particularly challenging as many operations are black

boxes to IDEA. For example, IDEA is fully compatible with

scikit-learn [52] and even allows users to add new Python op-

erations. In order to approximate results for these operations,

IDEA uses a relatively simple idea: it executes the operation

first over a small sample and then re-executes the operation over

progressively increasing sample sizes. However, this creates a

whole new set of challenges, e.g., what is a good sample size

to start with and in what increments should it be made larger?

We address some of these questions in more detail when we

discuss Northstar ML auto-tuning capabilities (Section 7).

6.5 Result Reuse
As outlined earlier, query approximation for visual interac-

tive Data Science has its own set of challenges but also pro-

vides a vast array of opportunities, one of them being reuse.

Visual tools have encouraged a more conversational interaction

paradigm [43], whereby users incrementally compose and iter-

atively refine queries throughout the data exploration process.

Moreover, this style of interaction also results in several sec-

onds (or even minutes) of user “think time” where the system

is completely idle. Thus, these two key features provide an

AQP system with ample opportunities to (1) reuse previously

computed (approximate) results across queries during a session

and (2) take actions to prepare for potential future queries.

However, it turned out that there existed close to no work to

efficiently reuse approximate results. To that end, we made an

interesting and, in hindsight, conceivably trivial observation:

almost all visualizations convey simple statistics about the data.

Based on that observation, we developed a new AQP formula-

tion that treats aggregate query answers as random variables
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Figure 3: IDEBench results for four systems as a summary report. Results show the mean percentage of time violations

and missing histogram bins, as well as the mean relative errors (MREs) and MRE CDF for the approximated results; the

greater the proportion of small errors, the smaller the area above the curve.

to enable reuse of approximate results with formal reasoning

about error propagation across overlapping queries [43].

For example, consider a simple bar chart showing the count

per category of the following SQL query:
SELECT sex, COUNT(*)

FROM census

GROUP BY sex

One way to model a group-by attribute is to treat it as a

categorical random variable X , where X can assume any one

of the possible outcomes from the sample space ΩX . For

example, a random variable modeling the sex attribute can take

on an outcome in the sample space Ωsex = {Male,Female}.

More interestingly, filter chains as shown in Figure 1 can be

expressed as conditional variables. For example, assume that a

sex bar chart was linked to a salary bar chart as the downstream

operation, and only ‘Female’ was selected. Let us further

assume that Y is the random variable for the salary distribution.

Then, we can determine the proportional height of the bar for

the salary range 0− 10k as P (Y ≤ 10k|X = Female).
Surprisingly, this view of query results for visualizations not

only made it easier to estimate the quality of results for each

operation in an incrementally composed workflow, but also

opened up many new opportunities for result reuse. For exam-

ple, it allows “query rewrites” by means of Bayes’ Theorem or

the Law of Total Probability.

6.6 Results
We recently evaluated IDEA against other systems to create

a benchmark for interactive data exploration, called IDEBench

[33]. The key result of this study is shown in Figure 3 and

compares MonetDB, IDEA, approXimateDB, and a commer-

cial in-memory AQP system (referred to as System X) with

respect to the data loading time and data quality after X sec-

onds over 500MB of flight data [81] for 10 different interactive

exploration workflows (see [33] for more details). As the fig-

ure shows, IDEA overall is able to return the fastest and even

meets a targeted return time of 500ms around 99% of the time

with significantly less data prep time. In this case, the data

was stored on file for all systems and we gave idea 3 minutes

from “connecting to” the file to exploring. IDEA also has fewer

missing bins in approximated histograms, and the mean relative

error over all returned results is significantly less than approXi-

mateDB’s and marginally less than System X’s’. One of the key

reaons is, that the benchmark simulates a user who explores the

data set by incrementally building queries and that IDEA can

explore the incremental nature of requests. Finally, it should be

noted, that in contrast to the next best system, the commercial

AQP engine System X, IDEA features progressive results, and

in contrast to all other systems, it can also approximate the

execution of machine-learning algorithms.

7. Alpine Meadow: A QUERY OPTIMI­

ZER FOR MACHINE LEARNING
One key promise of our work is to help users quickly ar-

rive at an initial solution, often a model, in a collaborative

meeting. Unfortunately, selecting the right ML algorithm and

hyper-parameter tuning is often a time-consuming and boring

process. In 2013, with MLbase [64], we took the first step

toward unlocking the power of ML for end users. MLbase

provided (1) a simple declarative way to specify ML tasks and

(2) a novel optimizer to select and dynamically adapt the choice

of learning algorithm. One of the key contributions of this work
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was TuPAQ [95], a novel bandit-based hyper-parameter tuning

strategy that was the predecessor of Hyperband [67]. How-

ever, MLbase was not designed for interactive environments

and the process of hyper-parameter tuning could take hours.

Therefore, we started the Alpine Meadow project based on our

experience with MLbase. Alpine Meadow and MLbase have

several commonalities: they both use a query-optimizer-based

approach to ML auto-tuning and, for example, use bandits to

efficiently explore the search space. But there are also signifi-

cant differences—most importantly, the focus on interactivity.

In the remainder of this section, we outline in greater detail

what makes Alpine Meadow unique.

7.1 Focus on End­to­End Learning
Alpine Meadow was developed as part of the DARPA D3M

[92] project, which aims to entirely automate machine learning.

Every six months, DARPA evaluates all systems on how well

they can autonomously solve a set of problems. The problems

range from text classification tasks to building models that auto-

matically measure wrist length from images. Each task comes

in the form of a JSON description containing the goal and a

description of the available data for the task. The system then

needs to automatically find the best pipeline in a given time

frame (e.g., 10 minutes) and is evaluated using some quality

metric (e.g., F1 score). Therefore, in contrast to MLbase and

many other ML auto-tuning systems, Alpine Meadow’s goal

is to automatically create the entire end-to-end workflow from

data cleaning operations to the model, including deep-learning

models. Also in contrast to MLbase, Alpine Meadow is de-

signed to take user feedback into account. Meaning, a user can

steer the exploration, for example, by proposing new features

or presetting certain operations, such as cleaning operations.

7.2 Interactivity
The most notable difference between Alpine Meadow and

other ML auto-tuning systems is the focus on interactivity.

Alpine Meadow aims to provide a first answer in seconds,

which is then refined in the background. Consequently, it

usually tries simpler pipelines over small samples first before

increasing the sample size and model complexity.

Furthermore, we developed a cost-quality model to measure

the ”promisingness” of a pipeline over a given sample. By

filtering out pipelines with high cost, we can prune the search

space, saving resources and reducing the overall search latency.

For now, our cost-quality model estimates three factors for a

given pipeline over a sample of size m: (1) the time for training

and testing the pipeline; (2) the expected quality gain of a

pipeline over the last best solution; (3) the risk of a pipeline,

that is, the variance of quality. These factors are then weighted

differently over time. For example, at first, the training time

is given more weight as we want to return a good solution as

quickly as possible to the user, potentially sacrificing quality.

Later we assume that the quality of a pipeline matters more

and we allow proportionally more expensive pipelines to run

to eventually find the best performing model. . To actually

build the cost model we use (1) learned rules (see next section)

as well as (2) the history of past and ongoing training steps

(see [9] for more details).

7.3 Learned Rule­Based Optimization and
Transfer Learning

We extensively use meta-learning techniques to utilize his-

tory from similar problems. Most importantly, our optimizer de-

rives best-practice rules from past experience and uses them to

create and prune the search space as well as prioritize pipelines.

To jump-start the system, we trained it using publicly available

competitions (e.g., Kaggle) as well as the sample problems

that DARPA provided (note that DARPA has a separate set

of problems that we have never seen for evaluation purposes).

Furthermore, we made the rules problem-specific. Based on

the techniques of [41], we determine the similarity of every

problem to previous problems and adjust the importance of

rules based on this similarity.

This approach further allows us to transfer existing solutions

to new problems. For example, for an image classification

task, we might use an existing deep-learning model that was

trained on CIFAR, “chop off its head” (i.e., remove the top

neuron layers), and replace it with a new set of layers for the

given task (a common transfer learning technique). As a result,

we are often able to train more complex models in a short

amount of time, as our optimizer prefers to start from existing

solutions. A nice side effect of the rule- and transfer-learning-

based approach is that it also makes the final pipelines simpler

to explain to the user.

7.4 User Interactions with Alpine Meadow
While Alpine Meadow can be used without Vizdom and

IDEA, it unfolds it full potentially when used together. For

example, using Vizdom users can at any time steer the search

process, e.g., by restricting the model type or feature prepro-

cessing steps, adding new features, and/or restricting the model

building to subpopulations of the data. Furthermore, IDEA en-

sures that all operations, including the machine learning model,

return first results in sub-seconds after every user interaction,

and that the key characteristics of the so far best models are

always visualized to the user. Furthermore, the best pipelines

can be interactively inspected and modified, and the output of a

model can be used as an input for other operations in Vizdom,

making it for example possible to quickly analyze on what data

the model does not perform well on, or to use the model itself

to label unlabeled data, etc.

7.5 Initial Results
Figure 4 shows the performance of Alpine Meadow against

other systems competing in D3M, which includes teams from

Stanford, NYU, UC Berkeley, and many others (anonymized

as Systems 2-10). The figure shows how many of the DARPA-

provided prediction tasks each system is able to solve, how

often they are better than the expert solution, as well as the

normalized utility score, which is defined as
∑

i

si−bi

|bi|
, with si

(bi) being the performance of the system (baseline) on problem

i. As of March 2018, Alpine Meadow solves not only all of

the DARPA-provided challenges, but is also able to outperform

the expert solution in 80% of the cases. Furthermore, the

normalized score shows that it provides overall good solutions

(i.e., if the system were only a bit better in 80% of the cases

but otherwise much worse, the score would likely be negative).
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Solved Problems Better Than Baseline Normalized Score

Alpine Meadow 100% 80% 0.42

System 2 40% 27% 0.09

System 3 40% 13% 0.02

DARPA Baseline 100% 0% 0.00

System 4 20% 7% -0.07

System 5 87% 47% -0.16

System 6 27% 7% -0.22

System 7 60% 20% -0.59

System 8 87% 53% -0.75

System 9 60% 20% -1.14

System 10 60% 20% -4.57

Figure 4: DARPA D3M Competition Results on 03/2018

8. QUDE: QUANTIFYING THE UNCER­

TAINTY IN DATA EXPLORATION
While visual tools are key to democratizing Data Science,

they also bring new risks. For example, data is often massaged,

filtered, and visualized until the domain expert sees something

interesting, and only then is a statistical test performed. How-

ever, this ignores the “fishing expedition” before the test—and

the increased risk of a false discovery because of it. We there-

fore believe that a system should automatically track potential

common mistakes within a Data Science pipeline. But multi-

hypothesis errors are just one type of potential problem among

many within Data Science pipelines. Others include the Yule-

Simpson effect or, when training models, imbalance of labels

or common problems in representing null values. If we want

to empower a broader class of users without deep statistical or

machine-learning backgrounds to analyze data sets, we should

work toward automatically protecting them from these (com-

mon) mistakes. Over the last one to two years, we have started

to address this problem by developing QUDE (pronounced

“cute”), a tool for Quantifying the Uncertainty in Data Explo-

ration. In the following, we highlight four areas where QUDE

already helps to detect, quantify, and sometimes even correct

common problems.

8.1 Uncertainty as Unknown Unknowns
Incompleteness of data is one of the most common sources

of uncertainty in practice. For instance, if unknown data items

are missing from the unknown target population (i.e., we can’t

tell if the database is complete or not), even a simple aggregate

query result, like SUM, can be questionable.

We therefore started to develop techniques that estimate not

only the amount of missing data based on techniques from [100,

101, 102] but also the impact those items might have on query

results [19, 20]. We assume a simple data integration scenario

in which (semi-)independent data sources are integrated into

a single database. The overlap between the different data sets

allows us to estimate the number of missing items using species

estimation techniques [100]. Further, it is possible to make

estimates about the values the missing items might have using

our novel bucket estimator [19]. This way, Vizdom is able to

indicate to the user how much impact missing data might have

on the visualization.

8.2 Uncertainty as Undetected Data Errors
For a data scientist, it is important to know whether a data

set is clean enough to begin analysis or if it is worthwhile to

invest more time and money in cleaning. In the best case, these

unknown errors are unimportant corner cases, but often enough

they can be crucially overlooked problems that significantly

affect any subsequent analytics. This raises a fundamental

question: Is it possible to quantify the data quality of a data set

with regard to the number of remaining errors in the data set?

While this is a seemingly simple question, it is actually

extremely challenging to define data quality without knowing

the ground truth [85, 14, 38, 91, 39, 58]. A simple approach

is to extrapolate the number of errors from a small “perfectly

clean” sample [104, 108, 11, 16, 22, 71]): (1) we take a small

sample, (2) perfectly clean it manually or with the crowd, and

(3) extrapolate our findings to the entire data set. For example,

if we found 10 new errors in a sample of 1000 records out of 1M

records, we would assume that the total data set contains 10000

additional errors. However, this naı̈vee approach presents a

chicken-and-egg paradox. If we clean a small sample of data,

it may not be representative and thus will give an inaccurate

estimate. For larger samples, how can the analyst know that the

sample itself is perfectly clean without a quality metric?

We therefore developed the Data Quality Metric (DQM) [18],

a statistical estimator based on the principle of diminishing re-

turns, which basically states that every additional error is more

difficult to detect. For example, with experts or crowdsourcing,

the first (crowd-)worker to pass over the data set finds more

new errors than every subsequent worker, and so on. The key

insight is to estimate this diminishing return rate (i.e., fewer

errors are found in each pass) and project this rate forward to

estimate the number of errors if there were an infinite number

of workers (i.e., all discoverable errors). The ratio of the current

errors to the estimated discoverable errors then functions as an

indicator of the cleanliness of the data set.

8.3 Uncertainty as False Discovery
While interactivity is key to the usability of advanced visual

analytical tools [69], using them also significantly increases the

risk of making spurious discoveries. Such risk has two aspects:

(1) the statistical significance of the visualized results is unclear,

and (2) the growing number of hypotheses being tested during

exploration increases with every single visualization.

The first aspect of risk is important because visualizations

have the power to influence human perception and understand-

ing.Suppose that an ice cream company salesperson is exploring

a data set about sales. First, she wants to get a yearly distribu-

tion of the sales figures. So, she compares the sales of the last

five years using a histogram of sales per year. In the second

step, she is interested in learning if sales differ significantly

across states. She thus compares sales per state over the last

five years.

Suppose the histogram shows that sales in Vermont were

higher than in Rhode Island. Consider how tempting it is for an

unsophisticated user to conclude that Vermonters buy more ice

cream just based on the visualization. Although a statistically

inclined user would formally analyze this observation by using

hypothesis testing, she would have to redirect her attention to

work with a different statistical tool (e.g., R) before proceeding

to the next data exploration step. After such a context switch,

the insight might turn out completely wrong due to random

noise. At scale, the division of labor between data exploration
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and hypothesis testing will cause even more waste of human

efforts on such spurious insights. Thus, if a visualization pro-

vides any insights, these should be tested immediately for their

significance. If that is not be the case, the value of the visualiza-

tion would be very limited, as the user would not be allowed to

make any conclusions based on the visualization. Thus, if we

consider a visualization as something more than a pretty picture

presented to the user (i.e., more than just a listing of facts), we

should always test the insight the user gains from the visualiza-

tion for its significance and inform the user about it. A central

challenge of our work is the understanding of the hypothesis

derived by the user given a certain data visualization. With

respect to the previous example, the hypothesis derived by the

user could be: (1) Vermonters buy more ice cream than Rhode

Islanders, (2) Rhode Islanders buy more than Vermonters, or

(3) they buy ice cream in the same amount.

The second aspect of risk is arguably even more severe. With

every additional hypothesis test, the chance of finding a false

discovery increases. This problem is known as the “multiple

comparisons problem” (MCP) and has been studied extensively

in statistics literature [12, 7, 46, 60].

Data exploration on systems such as Vizdom [26] or Tableau

not only increase the risk of false discovery, but also changes

the way that statistical tests are applied. Suppose in the pre-

vious example the salesperson explores various relationships

in the sales data set through visualizations until she sees a vi-

sualization that she deems useful (e.g., significantly more ice

cream sales to males in Massachusetts compared to California).

With some background in statistics, she validates this insight

by using an appropriate test with a significance level of 5%.

Suppose the observed p-value is below the significance level,

so she rejects the null hypothesis and believes that there is only

a 5% chance that she incorrectly rejected the null hypothesis

in case it was true. However, this way of applying statistical

testing is wrong. What the user ignores is that before she did

the test, she had already searched through the data set for a

while and observed different insights and, implicitly, their cor-

responding hypotheses, albeit untested. Thus, by the time the

user applied the statistical test, she was already inadvertently

trapped in the multiple comparisons problem. This was also

confirmed in a recent user study we performed [115]. In our

experiment using synthetic data sets with known ground truth

labels, over 60% of user insights were false.

Unfortunately, existing work to control for MCP are often

not directly applicable to interactive data exploration or have

other severe drawbacks. For example, the most common ap-

proach of using holdouts allows verifying the gathered insights

just once; any additional data exploration session would require

a complete new holdout unless the testing over the holdout was

MCP-controlled, so the problem remains (see [116] for more

details). Furthermore, splitting a data set into exploration and

holdout data sets can significantly lower the power (i.e., the

chance to find real insights), especially for rare events. In con-

trast, statistical techniques such as the Benjamini-Hochberg

procedure to bound the False Discovery Rate (FDR) or the

Bonferroni procedure to bound the Family-Wise Error Rate

(FWER) were not designed for incremental testing. We there-

fore started to develop techniques which (1) try to infer based

on the visualizations what the user might be inferring/testing

and (2) automatically control the FDR rate. For example, in

[116, 117] we develop an automatic MCP control based on

alpha-investing fully integrated into Vizdom. However, the

whole area is still in its infancy and many interesting research

challenges remain.

8.4 Uncertainty as Hidden Facts
Visualizations as a form of aggregation can “hide” data errors

or the incompleteness of data, and sometimes even mislead. As

mentioned in Section 3, we recently observed this phenomenon

when analyzing the age distribution of patients in the MIMIC-

II data set. The distribution was visualized using histograms

with a bucket size of 10 years. Nothing was suspicious about

the visualization, which showed that very young and older

people are in the emergency room slightly more often. Only

after zooming in did we find that the data set did not contain

any patients between 1 and 9 years; rather, all patients in this

bucket had an age of 0. It turned out that the data came from

an emergency room for adults and the value 0 was used if

the age was not known. Even more severe, filtering out the

0-aged patients significantly changed our conclusions regarding

younger and older patients.

Inspired by this result, we developed techniques [47] to au-

tomatically detect forms of Simpson’s Paradox, which is a

special type of error in which a high-level aggregation leads

to a wrong conclusion. The two main challenges to enabling

efficient online detection are sheer data size as well as the num-

ber of different attribute combinations that need to be tested.

Therefore, for our algorithms, we applied two main techniques:

(1) For dealing with large data sets, we developed a set of ap-

proximate algorithms that can stream over the data and decide

in a probabilistic manner if the data is likely to contain a Simp-

son’s Paradox. This allows our algorithms to make a prediction

at interactive speeds of how likely it is to find a paradox after

seeing only a small amount of data. (2) Since many different

attribute combinations need to be tested to detect a Simpson’s

Paradox, we devised a technique that leverages ideas from mul-

tiarmed bandits to find a good trade-off between exploration

and exploitation. These techniques allow us to scale out to

large data sets or data sets with many different attributes.

To summarize, QUDE is a first step toward building an as-

sistant that can help domain experts who are not trained data

scientists to make discoveries on their own. However, clearly

we are still at the beginning, and many interesting research

challenges remain open as described in Section 10.

9. RELATED WORK
Our work around Northstar spans many different research

areas — in fact, so many areas that we need to refer to the

individual publications around Northstar for a more detailed

listing of related work and only highlight a few of them here.

Vizdom: the visualization community has produced various

systems that facilitate data exploration by domain experts. For

example, Tableau and its research predecessors Polaris [97] and

imMens [70] are systems for analyzing data sets through visu-

alizations with a high degree of customizability. To achieve the

low latencies required for user-driven data exploration, these
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systems either use heavily optimized DBMSs or precomputa-

tion of results. Though we support similar data exploration

workflows, we apply an intuitive pen-&-touch interface in Viz-

dom and focus on progressive computation and visualization

to guarantee interactivity thresholds. Furthermore, we aim

to support users in the entire Data Science process from data

preparation over exploration to model building.

IDEA: Most related to IDEA is the work in approximate

query processing using sampling [3] and online aggregation [50].

However, systems that use biased sampling (e.g., AQUA [4],

BlinkDB [5], DICE [56]) typically require extensive prepro-

cessing or foreknowledge about the expected workload, which

goes against the ad hoc nature of interactive data exploration.

On the other hand, systems that perform online aggregation

(e.g., CONTROL [49], DBO [55], HOP [21], FluoDB [112])

typically cannot deal with black-box operations and/or out-

liers. Verdict [84] uses the results of past queries to improve

approximations for future queries in a process called “database

learning.” However, Verdict requires up-front offline parameter

learning, as well as a sufficient number of training queries, in

order for users to begin seeing large benefits. Also related to

IDEA are techniques to improve the “visual experience;” for

example, approximated histogram [73], better smoothing of

timeseries data [89], or visualizing data transformations [59].

Those techniques are largely orthogonal to the ideas presented

here, but it would be very interesting to integrate them into

Northstar. Most related to IDEA’s execution model are prob-

ably FluxQuery [31] and zenvisage [94], although their focus

is on SQL workloads. Finally, in order to better support user

sessions in DBMSs, various techniques have been developed

to reuse results [98, 54, 79, 29]. Nonetheless, these techniques

do not consider reuse in the context of (partial) query results

with associated error.

Alpine Meadow: Most related to Alpine Meadow is the

work on ML algorithm selection and hyper-parameter tuning

[96, 8, 72, 68, 66, 45]. For example, TuPAQ [96] and Hy-

perband [66] use variations of the multiarmed bandit (MAB)

algorithm to better allocate computational resources for hyper-

parameter tuning. Other solutions like Auto-WEKA [99, 62]

or its sister package Auto-sklearn [40] are more similar to our

approach, as they also consider various feature selection and

data transformation algorithms with the intent of generating

ML pipelines. Still, these solutions are built for offline use and

run for a predefined amount of time, rendering them unfeasible

for interactive settings. Furthermore, they also do not consider

transfer learning or data cleaning steps, and do not offer good

support to take user input into account.

QUDE: Obviously, QUDE builds upon the vast amount of

techniques developed in the statistics community (see [48] for

an overview). Surprisingly, even though statistical errors are

highly common [53], there is very little work in automating

these techniques in the form of a Data Science assistant to

prevent layman users. Some notable exceptions are the recent

efforts to automatically detect bias in machine learning, algo-

rithm building, and analytics [44, 109] or the use of perceptual

models to quantify when approximations are safe [6].

10. THE FUTURE OF INTERACTIVE

DATA SCIENCE
Northstar provides one of the very first interactive Data Sci-

ence environments with the goal of democratizing Data Science.

It addresses a wide range of research problems to make ana-

lytics and model building more interactive, many of which we

discovered only during the course of this project. However,

even more challenges remain, and we believe interactive Data

Science and the goal of making analytics more accessible for a

broader range of users creates a new research field in itself. We

highlight a few potential future research challenges below.

10.1 Formal Execution Model
As outlined in Section 6.1, the execution model of IDEA

is not a traditional query processor, a pure AQP engine, or a

streaming engine. However, a precise model for the execution

engine does not yet exist. Arguably, our AQP formulation

of Section 6.5 goes in the right direction, but it is mainly fo-

cused on the reuse of results. Even further complexity arises

when considering more diverse data models, such as time series

data, which come with their own semantics and algebra [34].

Nonetheless, we believe that a strong, formalized foundation

can guide the development of future accelerators for interactive

Data Science and their optimizations.

10.2 Other Data Types
Many real-world use cases require dealing with more than

one data type. For example, a sales prediction model might

start out with structured data gathered from a data warehouse,

but then might include features from the product description,

reviews, or the quality of product pictures. Thus, we need tools

which allow data scientists to deal efficiently with different data

types from semi-structured data to videos. This is particularly

challenging as many of the state-of-the-art models for concep-

tual tasks (e.g., video object detection, audio transcription, or

entity discovery in text) are neural nets, which are notoriously

hard to train in sub-seconds. However, techniques like transfer

learning [105] might make it possible, as it allows us to start

from a good existing solution. Yet it is not without challenges,

as the problem now becomes how to efficiently find the most

relevant already-trained model and how to best integrate it into

the current analytical pipeline.

10.3 Data Integration and Transformation
Data scientists commonly want to integrate several data

sources, which often requires an intensive data cleaning and

munging [57] to get all the data into the right format and consol-

idated so it can actually be analyzed. While there has been a lot

of work in data integration [28], most of the existing work is not

necessarily result-oriented, is computationally very expensive,

and/or still imposes a lot of scripting on users. For example, it

would be great if the system could highlight how potential data

errors might influence the individual operations on the screen

(see also 8) and what concrete cleaning steps a user might want

to take. Similarly, the process of transformation should be

made easier. Systems like Trifacta [2] or BoostClean [65] are

already big steps in the right direction; however, we believe

the integration with the Data Science analytics system must
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be much closer to better support the iterative Data Science life

cycle. Ideally, users should be able to seamlessly move between

the different tasks of data collecting, cleaning and integration,

explorative analysis, and building and evaluating models, all in

a visual manner.

10.4 Better Approximation Techniques for
Legacy Systems

As outlined throughout the entire paper, approximate query

processing and progressive results are key to enabling a fluid

user experience. While many techniques have been developed

over the years [13], we found several issues keeping them from

beings fully applicable for us. Most importantly, commercial

database systems currently barely support AQP, and it is unre-

alistic to assume that existing legacy systems, such as a data

warehouse or distributed file system, can easily be replaced

with an AQP engine. This was one of the reasons we imple-

mented our AQP techniques in the middle layer, IDEA, which

then connects to the existing legacy system without actually

changing it. However, this design imposes a whole new set of

challenges, including: (1) how IDEA can guarantee that it gets

a sufficiently randomized data stream out of the legacy system

(see also [82]), (2) how IDEA can best take advantage of the fea-

tures the legacy system provides (e.g., predicate push-downs)

while maintaining fast response times for initial results, and

(3) the possibility of leveraging the underlying system to better

deal with extreme values/outliers (e.g., if the data warehouse

has an index, can the index be partially used?).

Another exciting future direction for AQP techniques is to

learn models that represent the data distribution, as done in

learned indexes [63]. [63] shows how a CDF model can be

used to enhance index structures with quite promising results.

Now assuming a CDF model exists, for example in the form of

a learned index, the same model could now also be directly used

to answer queries. In fact, our AQP formulation for enabling

approximate result reuse from Section 6.5 already provides the

foundation to do that, as it treats results as random variables.

10.5 Risk Control
As outlined in Section 8, democratizing Data Science should

also mean protecting users from common (and not-so-common)

mistakes. With QUDE, we took a first step in this direction,

but many open challenges remain. For example, there is a

growing trend toward creating recommendation engines, which

propose interesting visualizations (e.g., [103, 74, 32, 90, 88])

or exploration steps [75], or automatically test for correlations

[15]. Those systems are potentially checking thousands of hy-

potheses in just a few seconds and are smoking guns disguised

as water pistols. As a result, it is almost guaranteed that the

system will find something “interesting” regardless of whether

the observed phenomenon is statistically relevant. Even worse,

without knowing how exactly the system tried to find some-

thing “interesting” (e.g., a visualization, correlation, etc.) and

how many correlations were tested, it is later often impossible

to correct for the MHP. In some cases, like data polygamy, even

a holdout technique does not work.

The same also holds true for automatically finding machine-

learning models as done with Alpine Meadow, which can be

regarded as a model recommendation engine. That is, train-

ing machine-learning models can be seen as a form of testing,

with the hypothesis being that a given model generalizes over

unseen data, which is usually evaluated using techniques like

cross-validation. However, the more model pipelines and hyper-

parameters we test, the greater the chance that we find a model

that just by chance works well over the cross-validation data

sets (see [30] for a more detailed description). Hence, control-

ling the MHP for recommendation engines is a largely unsolved

research question and we only recently made some interesting

progress on that front by using VC dimensions.

Similarly, there exist many more types of errors that a system

could warn the user about. For example, there has been a lot

of excitement recently about automatically detecting bias [44,

109, 17] or helping the user to understand results using lineage

[86, 87]. We therefore believe that there is a lot of potential for

building a virtual Data Science Assistant, a tool that helps the

domain expert in the discovery and model-building process and

prevents him from making mistakes.

11. CONCLUSION
We speculate that in the near future many conference rooms

will be equipped with an interactive whiteboard, like the Mi-

crosoft Surface Hub, and that we can use such whiteboards to

enable domain experts and data scientists to work together dur-

ing a single meeting to visualize, transform, and analyze even

the most complex data on the spot. We showed that democra-

tizing Data Science requires us to completely rethink the full

analytical stack, from the interface to the “guts,” as well as take

a more holistic view of problems and bridge various research

communities. With Northstar, we explored a first system design

for true interactive Data Science and collaboration using inter-

active whiteboards. Furthermore, Northstar’s deployments in

industry and academia, as well as our various user studies [113,

115, 114], have shown that Northstar helps to gain insights

faster and avoid problematic discoveries, and adds significant

value in practice.
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