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Abstract
A funnel-type mold is commonly used to provide necessary clearance for the submerged entry nozzle in the thin slab

casting (TSC). The partially solidified shell is subjected to the mechanical deformations, which can lead to the defects

formation and, as a results, to a breakout. Traditionally, the results of the flow simulation, performed by the finite volume

method (FVM), are fed to the external package for the finite element analysis of stress and strain. A coupled model was

assembled using ‘‘creeping solid’’ approach by blending the Norton-Hoff viscoplastic stress for the solidifying shell with

the Newtonian viscous stress of the liquid melt. The FVM was used to combine both liquid and solid stress models within a

single solver. The iterative procedure based on the improved both side diffusion method was introduced to treat the

nonlinear relation between the viscoplastic stress and the strain rate. The modeled shell thickness was verified by previ-

ously published breakout measurements and the simulation results. Temperature distribution, obtained during the TSC

simulation, dominantly corresponds to the viscoplastic range. Developed numerical approach is robust and has direct

industrial application.

Keywords Solid shell � Viscoplastic stress � Solidification � Norton-Hoff model � Thin slab � Continuous casting �
Improved both side diffusion method � OpenFOAM

List of symbols

Operators
r Gradient operator (m-1)

rT Transpose of gradient operator (m-1)

r� Divergence operator (m-1)

r2 Laplace operator (m-2)

a� b Outer product of two vectors

A : B Double inner product of two tensors

dev Að Þ Deviatoric part of a tensor

tr Að Þ Trace of a tensor
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Symbols
c Carbon content (wt.%)

C Material constant (MPa-n s-1)

Cp Specific heat capacity (J kg-1 K-1)

C‘
p

Specific heat capacity of liquid (J kg-1 K-1)

Cs
p Specific heat capacity of solid (J kg-1 K-1)

d Solid shell thickness (mm)

f‘ Liquid fraction

fs Solid fraction

H Total enthalpy (J kg-1)

I Unit tensor

Consistency parameter (Pa sm)

Kvp Viscoplastic consistency (MPa sm)

K�
vp Viscoplastic consistency at elasto-viscoplastic

transition (MPa sm)

L Latent heat of fusion (J kg-1)

m Strain rate sensitivity

m* Strain rate sensitivity at elasto-viscoplastic

transition

n Net stress exponent

p Pressure (Pa)

Q Activation energy (J mol-1)

R Universal gas constant (J K-1 mol-1)

Svpe Latent heat release term in viscoplastic model (W

m-3)

Srefe
Latent heat release term in reference model (W

m-3)

DSe Latent heat release difference between viscoplastic

and reference models (W m-3)

t Time (s)

T Temperature (K)

Tcast Casting temperature (K)

Tliq Liquidus temperature (K)

Tsol Solidus temperature (K)

T� Temperature of elasto-viscoplastic rheology

transition (K)

u; uj j Velocity vector and magnitude (m s-1)

upull Casting velocity (m min-1)

ur Relative velocity (m s-1)

us Solid-phase velocity (m s-1)

Greek symbols
_e Strain rate tensor (s-1)

_evp Viscoplastic strain rate (s-1)

_evp Viscoplastic strain rate tensor (s-1)

_evpeq ; _eeq Von Mises equivalent strain rate (s-1)

k Thermal conductivity (W m-1 K-1)

k‘ Liquid thermal conductivity (W m-1 K-1)

ks Solid thermal conductivity (W m-1 K-1)

K Perzyna flow rule coefficient (Pa-1 s-1)

l‘ Dynamic viscosity of liquid (Pa s)

lvp Apparent viscoplastic viscosity (Pa s)

n Deviatoric part of viscoplastic stress (Pa)

q Density (kg m-3)

q‘ Liquid density (kg m-3)

qs Solid density (kg m-3)

relvp Elasto-viscoplastic stress (Pa)

relvp Elasto-viscoplastic stress tensor (Pa)

rstat Static plasticity threshold (‘‘fluidity’’ limit of

solid) (Pa)

rvp Viscoplastic stress (Pa)

rvp Viscoplastic stress tensor (Pa)

rvpeq Von Mises equivalent stress for viscoplastic stress

(Pa)

relvpeq
Von Mises equivalent stress for elasto-

viscoplastic stress (Pa)

rtot Total stress tensor (Pa)

Rtot Deviatoric part of total stress (Pa)

Rliq Newtonian stress in liquid (Pa)

Rvp Viscoplastic stress in solid (Pa)

Rvp
xx Transversal component of viscoplastic stress

tensor (MPa)

Rvp
yy Longitudinal component of viscoplastic stress

tensor (MPa)

1 Introduction

During the solidification, the properties of the alloys,

according to the pioneering work of Flemings [1], drasti-

cally vary at the two-phase region, also called the mushy

zone. In the continuous casting (CC), the defects are

formed and accumulated under the mechanical strain dur-

ing the casting process and can result in a breakout due to

the variation of the alloy properties. The course of the

initial solidification in the CC mold, the interaction of the

growing shell with the turbulent melt flow and its behavior

during a withdrawal are one of the key features for the final

product quality in the CC process [2–6].

The extended reviews on the methodology and practical

applications of the numerical modeling of the continuous

casting are presented throughout two decades starting from

early two-thousands by Thomas [7] and Atkinson [8] and

supplemented by recent works by many researchers

[2, 4, 5, 9–11].

In early two-thousands, Thomas [7] stressed in his review

that the enhanced heat flux at the exit of the mold could be an

indication of the mold taper pressing to strongly against the

shell. Additionally, the following factors, such as shell

thickness at mold exit, the metallurgical length and the

corresponding cooling practice are important, since the slab

becomes susceptible to cracks due to the off-corner depres-

sion, reheating or non-uniform shell growth.

According to Ramirez Lopez et al. [5], the numerical

modeling became a key tool to investigate the lubrication
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concepts in the continuous casting, giving insights into the

heat transfer and solidification guided by the flow with an

aim to predict defect formation, mentioned by Flemings [1]

and Thomas [7]. It is promoted that by the oversimplifi-

cation of the numerical models, the key issues can be

missed. The numerical modeling achievements supple-

mented with the industrial observations should improve the

knowledge and the conceptual point of view on modeling

techniques.

Novel modeling techniques are applied nowadays to

resolve the transient multiphase phenomena during CC,

e.g., meshless approach employed by Vertnik et al. [12] to

tackle the turbulent flow and solidification at the presence

of the electromagnetic steering. Reduction in the problem

dimensions allows to perform the investigation of the

solidification during casting in shorter terms [13–16] or

combine them with the industrial measurements to define

proper casting strategy to avoid defects formation [17, 18].

Current authors suggested a novel single mesh approach to

simulate the heat transfer during CC including convection

in the liquid slag to predict the parasitic solidification in the

submerged entry nozzle (SEN) region [19]. The scale

adaptive modeling of the multiphase mold flow with

application to the analysis of the opened eye formation was

recently published elsewhere [20, 21].

As a funnel-type mold is used to provide necessary

clearance in the narrow cavity region for the SEN, the

(partially) solid shell of the thin slab casting is much

stronger subjected to the mechanical deformations than that

of conventional CC. Traditional approach for the funnel-

type mold simulation, as presented in Vakhrushev et al.

[22], provides steady-state distribution of the solid shell

velocities. The full elasticity of the solid structure and

neglecting its rheology variations due to the cooling are

restrictive assumption. However, the steady-state approxi-

mation cannot tackle the transient phenomena that occur

during continuous casting. The shell compression and

tension are the provenance of the cracks and the hot tearing

formation [23]. As recently revealed, the interaction of the

highly conductive shell with the induced electric current

during electromagnetic brake leads to the complex topol-

ogy of the Lorentz force and to the complete alternation of

the melt flow pattern [24–26].

The aim of the current work is to track the transient

mechanical behavior of the solidifying shell during con-

tinuous casting in a funnel-type thin slab mold by

employing a transient viscoplastic stress model. Tradi-

tionally, a decoupled one-way approach is employed in the

computational fluid dynamics (CFD) community for com-

plex full-size geometries. The flow simulation results are

typically obtained with the finite volume method (FVM).

Next, they are fed to an external package for the finite

element analysis (FEA) [27–29]. Substantial contribution

in this field was done in previous studies [30–34] by

developing the arbitrary Lagrangian–Eulerian (ALE) for-

mulation in the context of the alloy casting. The method

includes a solution of the governing conservation laws for

mass, momentum, and energy on the Eulerian mesh. The

coupled solution is reflected via elasto-viscoplastic stress

model to the corresponding mesh motion algorithm. To

model the continuous casting, such an approach requires

several steps: firstly, the thermomechanical analysis is

performed by treating the mush as a non-Newtonian fluid;

next, the initial and boundary conditions for the two-phase

simulation are extracted from the first calculation by

defining the point of the coherency of the two-phase core

([ 65% of solid) and continuously crowing mesh in the

frame of the ALE approach with the casting speed using

special buffer zone as well.

Due to the complex cross-methodological (FVM/FEA or

Lagrangian/Eulerian) coupling, such approaches are lim-

ited to 2D or axisymmetric geometries, reducing the studies

mostly to the steady-state cases. The currently presented

model is an attempt to overcome these limitations.

Additional motivation of the present study is to verify a

single-phase volume-averaging approach for the applica-

tion to model a viscoplastic stress in the two-phase region

during alloy solidification. On the contrary to the previ-

ously applied multiphase Eulerian–Eulerian volume-aver-

aging model for the equiaxed crystal sedimentation

[35–37] and the twin-roll casting process [38–40], the so-

called mixture model is very robust, numerically stable and

fast in sense of the calculation time required. As an

advantage of the presented work, a full 3D model is con-

sidered including an SEN, a funnel-type thin slab mold

(879 mm in height) and strand part (4000 mm along cast-

ing direction including mold). The boundary layers were

introduced to correctly predict near-wall flow and heat flux.

A highly turbulent flow in the SEN (with maximum

velocities of 3 m s-1) drastically limited the efficiency of

the time marching algorithm to integration step of 10-4 s.

Taking all arguments into account, the multiphase

approach was found to be inappropriate for transient full-

scale industrial simulation.

In the present study, a coupled model is assembled using

viscoplastic approach in the frames of the ‘‘creeping solid’’

hypothesis. In this method, as the solid fraction increases

specifically above a certain (coherency) limit, a consider-

able strain resistance of the solidifying alloy develops. The

mush represents a columnar skeleton with liquid in the

inter-dendritic mushy zone [41], which can sustain high

stresses, while the solid and the liquid become strongly

coupled. That is usually reflected in the viscoplasticity

theory by an abrupt jump of the effective viscosity.

In current work, the viscoplastic Norton-Hoff type stress

is applied to model a complex process of the thin slab

90 A. Vakhrushev et al.

123



continuous casting, and the first results are discussed. The

blending of the stress tensor for the solidifying shell is done

with the viscous liquid stress based on the solid fraction

distribution. The advantage of the proposed approach is

using finite-volume formulation within a single solver for

both solid shell mechanical behavior and the strong melt

flow. The latter is typically excluded in most studies on the

mechanical stress calculations by simplifying to a plug-

type flow. In the present study, the flow phenomenon is

fully considered. The iterative procedure is introduced for

the treatment of the nonlinear relation between the vis-

coplastic stress and the strain rate tensor.

The classical thermomechanical models were developed

for the semi-solid state, providing the constitutive equa-

tions for porous metallic materials saturated with liquid.

The difference between the cases lies in the solid-phase

permeability and the material globular [41] as well as the

dendritic morphology [42–44]. Some of the models are also

restricted to the isothermal conditions only. The great

endeavors were done by Fachinotti et al. [31, 45] by

revising constitutive temperature and composition-depen-

dent models and combining with the Lagrangian–Eulerian

approach of Bellet and Fachinotti [30] to apply it to the

actual casting processes.

According to the book of Rappaz et al. [46], the metal

alloys perform as an elastic material till 1/3 of their

absolute melting temperature. Then, the creeping occurs

corresponding to the elasto-viscoplasticity of the material,

and approximately, above 2/3 of the melting temperature, a

fully viscoplastic behavior is observed. The viscoelasticity

of an alloy represents rate-dependent unrecovered defor-

mations of the material. Rate dependence in this context

corresponds to the creeping of the solid according to the

rate of load has been applied. Temperature distribution,

obtained during the thin slab casting simulation, lies

dominantly within the viscoplastic range slightly catching

transition to the elastoplastic behavior.

The numerical results comparison showed good agree-

ment with the previously obtained and experimentally

verified ones. The detailed description of the numerical

model and the simulation results are presented in the next

sections; finally, the discussion and the conclusions are

made.

2 Numerical model

Based on the previous experience of developing a numer-

ical Eulerian–Eulerian model to simulate behavior of the

packed bed of equiaxed crystals [35–37] and the

macrosegregation during the twin roll casting [38–40], the

viscoplastic stress model was applied to the thin slab

casting by reducing it to the ‘‘mixture’’ formulation, which

is more robust for the industrial scale simulations.

The following assumptions were made to model the

viscoplastic behavior of the solidifying shell during its

withdrawal:

(i) An averaged ‘‘single’’-phase approach is

employed considering the simulated media to be

a mixture of the liquid and solid.

(ii) Main material properties such as density, specific

heat and thermal conductivity are constant across

both phases, and moreover, they are temperature-

independent; thermo-solutal buoyancy is ignored.

(iii) Temperature and pressure field equilibrium is

assumed between liquid and solid phases.

(iv) Total effective stress incorporates both the New-

tonian and the viscoplastic one according to the

phase fraction in the control element of the

computational grid; thermomechanical stress is

ignored.

2.1 General equations of motion

The continuity and momentum equations for the incom-

pressible liquid become:

r � u ¼ 0; ð1Þ

q
ou

ot
þr � u� uð Þ

� �
¼ r � rtot: ð2Þ

To perform the coupling between the solid and liquid

phase, the total stress tensor is divided into deviatoric and

hydrostatic parts, representing shear and volumetric forces

correspondingly. Next, a volume averaging of all terms is

considered:

rtoth i ¼ dev rtoth ið Þ þ 1

3
tr rtoth ið Þ ¼ Rtoth i � hpi � I: ð3Þ

Omitting the volume averaging notation hereinafter for

all further derivations, the deviatoric part of the total stress

tensor can be expressed as a blending of the viscoplastic

stress for the solid and the Newtonian one for the liquid

melt:

Rtot ¼ fs � Rvp þ f‘ � Rliq; ð4Þ

where the condition fs þ f‘ � 1 is valid.

The deviatoric part of the liquid stress tensor is

Rliq ¼ 2l‘ dev _eð Þ � 2l‘ _e; ð5Þ

where _e represents a symmetric part of ru:

_e ¼ 1

2
ruþrTu
� �

: ð6Þ
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To clarify the reformulation in right side of Eq. (5), one

should revive the property of the _e from Eq. (6) by

recalling the continuity condition of incompressible fluid

Eq. (1) and by simple manipulation. Consistently, it can be

derived that

dev _eð Þ ¼ _e� 1

3
tr _eð ÞI ¼ _e� 1

3
r � uð ÞI � _e: ð7Þ

In other words, the strain rate is originally a deviatoric

(or traceless) tensor for incompressible media. That will be

later used in this work for the corresponding substitutions

in further derivations, e.g., in the equivalent strain rate

formulation. However, for the rheological models includ-

ing the mush compressibility, such as reported by Fachi-

notti et al. [31], the non-hydrostatic terms will reflect the

so-called bulk viscosity and the corresponding two-phase

region compression. Here, the authors left this topic for the

future detailed investigations.

As a concluding assumption of the presented approach,

the pressure balance at the solid–liquid interface is taken,

thereby leading to a single ‘‘pressure’’ field for both phases.

To avoid confusion, the ‘‘pressure’’ is regarded as a

spherical tensor of the volumetric forces defining com-

pression–depression in the material regardless of its ‘‘liq-

uid’’ or ‘‘solid’’ nature.

2.2 Norton-Hoff-type deformation model

2.2.1 General elasto-viscoplasticity at high temperatures

General solids show the elastic-viscoplastic behavior. The

solid becomes purely viscoplastic close to the solidus

temperature when the yield and hardening are negligible.

Viscoplastic behavior is referred as the Ostwald-de-Waele

law or more commonly the Norton-Hoff law [47].

With the rising temperatures, the strength properties of

steel undergo significant weakening and become strain-

rate-dependent, showing creeping behavior. At low strains,

the solid stress can be split in two components by decou-

pling elastic and viscoplastic parts as formulated by Norton

for the uniaxial stress [48]:

ð8Þ

The difference relvp � rstat is a so-called extra-stress.

Below that threshold, the material acts as the elastic one.

Above the limit, an irreversible portion of deformation

happens, characterized by a _evp. The classical power law

in Eq. (8) was introduced by Norton [48]

including two parameters and m. The von Mises

equivalent stress is introduced as:

relvpeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
dev relvpð Þ : dev relvpð Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
n : n

r
; ð9Þ

where dev relvp
� �

¼ relvp � 1
3
tr relvp
� �

I. The von Mises

equivalent strain rate for the incompressible media by

recalling Eq. (7) is

_evpeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_evp : _evp

r
ð10Þ

The multiaxial analogue of Eq. (8) is obtained by gener-

alizing it to the form of

ð11Þ

Applying the overstress model and formalization of

Perzyna [49, 50], the elasto-viscoplastic flow rule is

obtained [46], where its viscoplastic part corresponds to

_evp ¼
ffiffiffi
3

p

2 � relvpeq

max 0;
relvpeq � rstatffiffiffi

3
p

Kvp

( ) !1=m

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K

�n � K � n

ð12Þ

with n ¼ dev relvp
� �

(see Eq. (9)) and the viscoplastic

consistency Kvp. By manipulating left- and right-hand side

of Eq. (12) to extract the von Mises invariants according to

Eqs. (10) and (9), one obtains:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_evp : _evpð Þ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

2

3

3

2
K � nð Þ : K � nð Þ

r
) _evpeq

¼ 2

3
K � relvpeq : ð13Þ

After the nonlinear function K defined in Eq. (12) is

plugged into Eq. (13), the extra-stress becomes

relvpeq � rstat ¼ Kvp �
ffiffiffi
3

p� 	mþ1

� _evpeq

� 	m
; ð14Þ

which allows to derive an expression for the consistency

parameter in Eq. (11):

ð15Þ

Combining the extra-stress from Eq. (14) with the Per-

zyna formulation (see Eq. (12)) gives a compact form of

the elasto-viscoplastic flow rule by reducing it to

_evp ¼ 3

2

_evpeq

relvpeq

� n: ð16Þ

Summarizing, in this section, the rheological model

reflecting the solidified alloys behavior at a high tempera-

ture range (above 1/3 of the liquidus) is described. Two

model parameters, Kvp and m, are obtained experimentally

and will be described later.
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2.2.2 Pure viscoplasticity without static threshold

With continuously growing temperature at some critical

point, the plasticity limit, rstat, cannot be defined. In this

regime, the unrecoverable deformations occur when the

material undergoes even the weak loads. Such a rheological

phenomenon is regarded as the pure viscoplasticity, which

is valid, according to the book of Rappaz et al. [46], at

temperature higher than 2/3 of their melting point.

The pure viscoplasticity law can be directly derived

from the elasto-viscoplasticity formulation as presented in

Eq. (8). The latter is reduced by excluding the static plastic

threshold, assuming rstat � 0, to the pure power law. The

flow rule Eq. (12) together with its compact form Eq. (16)

can be inverted to the pure viscoplastic constitutive law,

referred in the literature as the Norton-Hoff law:

Rvp ¼ 2 � Kvp �
ffiffiffi
3

p
_evpeq

� 	m�1

� _evp; ð17Þ

where Rvp is accepted to be a deviatoric part of the rvp.

2.2.3 Constitutive equation for viscoplastic stress
and strain

As it was mentioned here previously, the viscoplastic

model parameters are estimated experimentally. In the

present study, a constructive equation model is used cor-

responding to the Model AI reported in Kozlowski et al.

[51]. As reported by the authors, it is applicable for a wide

range of low strain rates between 10–3 and 10–6 s-1 at high

temperature range of 1223–1673 K when the carbon con-

tent is varied between significantly low (0.005 wt.%) and

the high one (1.54 wt.%). The constitutive model of

Kozlowski et al. [51] was constructed for the range where

the employed experimental data from Wray [52] and

Suzuki et al. [53] were the most consistent. Very recently,

Koric and Abueidda [54] used Kozlowski model [51] for

the 0.09 wt.% low carbon steel alloy for the neutral net-

works learning for the solidification predictions during CC.

Moreover, Huespe et al. [55] could successfully apply this

constitutive model for the billet casting of the 0.3 wt.% C

alloy, and the results were approved experimentally.

Fachinotti and Cardona [45] reviewed a wide range of the

constitutive models, showing the whole variety of the

applied approaches. As a conclusion, they stated that for

the elevated temperature, the rate-dependent viscoplastic

models (such as the Kozlowski model used in the present

study) are the most appropriate.

It is worth reminding that a peritectic steel casting is

considered with the 0.06 wt.% C alloy (the same as in the

previous study [22]) which fits in the range of Kozlowski

experimental work [51].

The original model includes constitutive equation,

which expresses the _evp as a function of the rvp, tempera-

ture and the carbon content of the alloy [51]. The one-

dimensional flow rule is expressed as an Arrhenius-type

equation [45]:

_evp ¼ C � exp � Q

RT

� �
� rvpð Þn: ð18Þ

where the relation between the Q and R is fixed to a value
Q
R ¼ 49; 890 K. According to the accepted notation, the Q is

defined as a variable parameter (which is generally a case);

however, in the present study, it is included in the constant

relation and does not vary. The material parameters are

described based on T and c as follows [45]:

n ¼ 5:331þ 4:116� 10�3T � 2:116� 10�6T2; ð19Þ

C ¼ 24; 333þ 49; 973cþ 48; 757c2: ð20Þ

However, Eq. (18) is derived for the uniaxial stress and

strain case. To extend it for the multidimensional defor-

mations, its scalar analogue for the von Mises invariants

are employed. Omitting the direct flow rule formulation,

we switch to a reverted version derived in respect to the

equivalent stress:

rvpeq ¼ C�1=n � exp Q

nRT

� �
� _evpeq

� 	1=n
: ð21Þ

The elasto-viscoplastic extra-stress (see Eq. (14)) is

rewritten for pure viscoplasticity without static plasticity

threshold as:

rvpeq ¼ Kvp �
ffiffiffi
3

p� 	mþ1

� _evpeq

� 	m
: ð22Þ

Simple comparison of Eqs. (21) and (22) reveals that the

strain rate sensitivity is expressed via the n as m ¼ 1=n,

which results in

rvpeq ¼ C�m � exp mQ

RT

� �
� _evpeq

� 	m
: ð23Þ

Finally, the viscoplastic stress law Eq. (22) and the

inverted Kozlowski flow rule Eq. (23) are combined to

derive the viscoplastic consistency parameter Kvp from the

constitutive model in a form of

Kvp ¼
1ffiffiffi
3

p
ffiffiffi
3

p
� C

� 	�m

� exp mQ

RT

� �
: ð24Þ

Thus, the parameter Kvp is now expressed as a function

of temperature and the carbon content.

It is crucial to notice that since in Model IA in

Kozlowski et al. [51] the stress is measured in MPa and the

material constant C is taken in MPa-n s-1 [45, 51], thereby

the Kvp (after some trivial manipulations) gets MPa s1/n or

MPa sm as its units.
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2.2.4 Viscoplastic model update algorithm

An important remark should be done for the one-phase

formulation used in this study. The equality of the vis-

coplastic and liquid strain rate ( _evp � _e) is assumed since a

single velocity field is used for both phases. Thereby,

hereinafter, a notation of _e is used in the completed defi-

nition of the blended stress tensor deviator in Eq. (4).

Moreover, in the von Mises invariant _evpeq ; the viscoplastic

superscript is omitted as well as leading to its redefinition

as _evpeq � _eeq.

Generalizing the viscoplastic stress formulation in

Eq. (17), the ‘‘effective’’ or ‘‘apparent’’ lvp is introduced as
a nonlinear function of the equivalent strain rate _eeq:

lvp ¼ Kvp

ffiffiffi
3

p
_eeq

� 	m�1

: ð25Þ

The strain rate characterizes the velocity gradient

between the adjoin ‘‘layers’’ of the creeping material: the

higher the strain rate is, the more velocity change is

observed at the neighboring locations. The viscoplastic

viscosity depends on this local characteristic of the motion

which is referred as the rate-of-load. Since the strain rate is

integrated into the ‘‘effective viscosity’’ calculation, a

coupling procedure is applied to converge the nonlinear

terms:

(i) the strain rate is estimated using Eq. (6);

(ii) according to Eqs. (10) and (25), the _eeq and the lvp

are updated;

(iii) a new solution of the flow/heat transfer equation

system is integrated based on the latest estimation

of the blended stress distribution advancing to the

next time step;

(iv) repeat procedure by applying under-relaxation on

pressure, velocity fields, released latent heat term

as well as on the effective viscosity;

(v) repeat above steps to reach a convergence crite-

rion for the coupled solution;

(vi) proceed to the next time step.

Additional coupling step was to overcome the solver

stability issues. Since a strong nonlinear term in the Norton

power law can cause the divergence of the solution, the

enhanced numerical treatment was applied according to the

improved both side diffusion method by Fernandes et al.

[56] and more recently extended by Araújo et al. [57]. It

employs the artificial diffusion term added to both sides of

the momentum equation. The terms are treated separately

in the implicit and explicit manner for the left- and the

right-hand sides correspondingly. The method originates

from the FEA and aims to tighten the velocity/stress cou-

pling. It simultaneously helps avoiding the checkerboard

pattern in solution. The improved algorithm is based on the

larger computational stencil. Such a discretization is done

due to the extended flexibility of the OpenFOAM CFD

package.

2.3 Heat transfer and solidification model

As it was shown previously by the authors, the latent heat

advection plays a dramatic role in build-up of the solid

shell thickness and depends on the columnar phase veloc-

ities predicted by the model [22, 58]. However, in the

coupled model for the flow and solidification, newly sug-

gested here, which considers the viscoplasticity of the

solidified shell, no information regarding the solid-phase

velocities can be obtained due to the single-phase formu-

lation. Assuming the constant q and k, the energy equation

is taken in its general advection–diffusion form regarding

the total enthalpy:

q
oH

ot
þr � u � Hð Þ

� �
¼ kr2T : ð26Þ

The total enthalpy for the mixture is estimated in the

current approach by ignoring the temperature dependency

of the Cp and the L:

H ¼ rCpdT þ 1� fsð Þ � L: ð27Þ

By inserting Eq. (27) into Eq. (26), the latent heat

advection term is derived as follows:

Svpe ¼ q � L � ofs
ot

þr � u � fsð Þ
� �

: ð28Þ

The simulation results, using previously developed for-

mulation [22, 58], are considered as a reference case. The

corresponding latent heat advection term is:

Srefe ¼ q � L � ofs
ot

þr � us � fsð Þ
� �

: ð29Þ

The difference between two models, described in

Eqs. (28) and (29), becomes obvious by simple compar-

ison: in the current approach, the u is used, whereas the us
is responsible for the latent heat advection within the

frames of the previously used method. The details and

outcomes are discussed later.

3 Modeling thin slab casting

According to the approach, presented in Sect. 2, the cou-

pled numerical model was implemented by the authors as a

standalone solver in the open-source CFD package Open-

FOAM. The description of the numerical setup, the simu-

lation results and their discussion come in the very next

sections.
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3.1 Viscoplastic model parameters

The basic parameters of the viscoplastic deformation

model were selected here based on the Kozlowski consti-

tutive Model IA (see Eqs. (19) and (20)), and the corre-

sponding expression for the Kvp is derived here in Eq. (24).

Figure 1 shows that the temperature dependency of m

and Kvp is presented and analyzed for the selected consti-

tutive model used in this study. As it is observed, the

m drops during cooling, which corresponds to faster

response of the apparent viscoplastic viscosity to small

strain rates, as shown in Fig. 2. Corresponding viscoplastic

consistency grows during cooling, defining stronger vis-

coplastic stress magnitude in general. Additionally, the

temperature range of the experimental work of Kozlowski

et al. [51] is marked in Fig. 1 along with the liquidus and

solidus temperatures of the alloy used for the thin slab

casting simulation (see Table 1 for the details).

As shown in Fig. 1, the sensitivity parameter varies

between 0.136 and 0.170 for the investigated alloy and in

the pure viscoplastic temperatures, whereas the Kvp fits into

the 5–115 MPa sm range. However, to simplify the analysis

of the results, the presented studies were limited to the

constant viscoplastic model parameters. The fixed strain

rate sensitivity m* = 0.138 and the viscoplastic consistency

K�
vp = 44.62 MPa sm were selected corresponding to the

reference temperature T� � 1170:33 K, which is referred

to the transition between elasto- and pure viscoplastic

rheology hypothesis according to the book of Rappaz et al.

[46].

As shown in Fig. 2, with a decreasing parameter m, the

apparent lvp dramatically grows in correspondence to

Eq. (25) for the range of the _eeq below 10–2 s-1, and thus

the material strongly resists to the small velocity gradients

namely the relative deformations in the material. On the

contrary, its motion is allowed for significantly higher

deformations since its resistance drops and the material

starts to creep easier. For the sensitivity parameter m close

to identity for the whole rate-of-strain range, the vis-

coplastic viscosity does not change dramatically, and more

relative motion is allowed within the solid phase. However,

based on previous studies and literature sources for the

metal alloys, the casting range for the parameter m lies

between values of 0.1 and 0.2, thereby in the region of

rapid response to strain rates.
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Fig. 2 lvp based on _eeq for different m as referred to Eq. (25) and for

fixed K�
vp from Table 1

Table 1 Material properties and casting conditions used in study for

alloy with compostions of C 0.06, Ni 0.1, Mn 0.13, Si 0.1, Cu 0.08, Al

0.035, P 0.015 and S 0.012

Property Unit Quantity

q ¼ q‘ ¼ qs kg m�3 6998.49

Cp ¼ C‘
p ¼ Cs

p J kg�1 K�1 838.2

k ¼ k‘ ¼ ks W m�1 K�1 35

l‘ Pa s 0.0054

L J kg�1 243; 000

K�
vp MPa sm 44.62

m* – 0.138

upull m=min 4.3

Tcast K 1825

Tliq K 1797.9

Tsol K 1755.5
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The strain rates range (expressed for the von Mises

invariant _eeq), which was used in the experimental work of

Kozlowski et al. [51], is marked in Fig. 2 with a cyan

stripe. Typical casting range for the strain rate sensitivity is

marked in gray according to the literature and to the pre-

viously plotted temperature dependency in Fig. 1. The

rheological curve of the apparent viscosity lvp ¼
lvpðm;K�

vp; _eeqÞ according to the m* is marked in red.

Current model uses, as shown in Fig. 3, the solid frac-

tion/temperature correlation for the industrial alloy (see

Table 1) determined by an engineering software IDS

[59, 60], which is more complex than, for example, cor-

responding linear relation in Svensson et al. [27].

3.2 Numerical grid and model setup

The modeling domain sketch is shown in Fig. 4a; it includes

the SEN, water-cooled mold cavity of the funnel type

(879 mm in height) and the strand part (4000 mm along

casting direction including mold) marked as the secondary

cooling zone. The details of the dominantly hexahedral mesh

are shown in Fig. 4b. The refined boundary layers are

introduced to accurately resolve the extracted wall heat flux,

which defines the growth of the solid shell. The melt flow/

two-phase region interaction should also be carefully tracked

along with the corresponding viscoplastic stress in the mush

during the shell withdrawal. Thereby, the mesh refinement

was extended toward the bulk region. Geometry dimensions

for the 1726-mm-wide and 72-mm-thick funnel-type mold

are shown in Fig. 4c. The corresponding applied heat flux

profiles, adopted from the measured values in Camporre-

dondo et al. [61], are gathered in Fig. 4d.

To simplify the analysis and the comparison of the

results, the sub-grid unresolved turbulence flow effects are

excluded in the present study. Instead, a laminar liquid

stress model is employed by the authors on a very fine

numerical grid (so-called ‘‘coarse DNS’’ approach).

The total grid size used in the study included around 10

million volume elements. The calculations are performed

on the HPC cluster using two nodes each with 28 cores

(Intel Xeon E5-2690v4 2.60 GHz) and 128 GB RAM.

Time integration step in the simulation is 10-4 s to keep

maximum Courant number below 1. For the time integra-

tion, the PIMPLE algorithm (a merge of PISO and SIM-

PLE) is utilized to stabilize the numerical procedure using

under-relaxation to get the required convergence level.

4 Results and discussion

4.1 Simulation results

The developed model considering liquid flow, solidifica-

tion and viscoplastic stress in the two-phase region was

used to perform a simulation of the thin slab continuous

Fig. 3 Temperature dependency of solid-phase fraction.

Tsol ¼ 1755:5 K;Tliq ¼ 1797:9 K; Tcast ¼ 1825 K

Fig. 4 Simulation domain and setup details. a 3D geometry of thin

slab mold including submerged entry nozzle and slab part; b details of

numerical grid; c geometry dimensions (mm); d heat flux along

vertical direction of mold adopted from Refs. [22, 61]
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casting process based on the process conditions and

geometry shown in Fig. 4a and in Table 1, as well as it was

reported previously by Vakhrushev et al. [22].

The flow and solidification simulation results are shown in

Fig. 5, and the instantaneous velocitymagnitude distribution

in Fig. 5a is displayed along with temperature field and

shown in Fig. 5b. As it is mentioned previously, the ‘‘coarse

DNS’’ approach was applied on a numerical mesh with high

cell resolution; as shown in Fig. 5a, the highly turbulent flow

structures are obtained during simulation, which are further

employed for solving coupled heat transfer problem.

Figure 5 shows the corresponding solution of the energy

equation: the temperatures are scaled between the liquidus

and the pouring temperature from Table 1 to provide better

contrast and to distinguish the fresh and cold melt regions.

The details of the temperature distribution in the vicinity of

the narrow walls of the mold are analyzed in the zoomed

Fig. 5c where the dark blue region corresponds to the

growing solidified shell. The hot fresh melt jet, impinging

and going along the mush in both vertical directions, is

detected as well, damping the shell growth, as it was pre-

viously reported by Wu et al. [58].

4.2 Validity of viscoplastic regime in simulated
domain

The viscoplastic deformation law was assigned in the

presented study for the solidified shell description.

However, a question arises, to which extending it reflects

the real mechanical behavior of the cast steel without

violating it. Thereby, the validity of the applied Norton-

Hoff viscoplastic law is investigated next according to the

criterion reported in Rappaz et al. [46]. As mentioned

previously, the viscoplastic behavior is postulated to be

valid for the alloys above two thirds of their absolute

melting temperature. Applying for the presented study, this

range corresponds to the temperature values above the

T sol � 2
3
� 1170:33 K.

The surface temperature distribution is analyzed and

shown in Fig. 6. The color scaling is performed in such a

way that the critical viscoplastic regime temperature values

(1170–1200 K) are reflected by the blue colors that allows

to clearly detect them. As one observes, only limited part of

the domain along the corners lies below the viscoplastic

temperature range; it starts at 1710 mm below the mold

exit (see Fig. 6).

The temperature evolution along centerline of the wide

and narrow face of the mold and strand part of the slab is

shown in Fig. 7. One can see that at the mold’s exit, the

cooling curve reaches 1510 K at the wide and 1610 K at

the narrow face. At the location of 4 m below meniscus,

the surface temperature drops to 1460 K (wide side) and

1450 K (narrow side) correspondingly. Thus, the estimated

centerline surface temperatures are significantly higher

than a critical value for the pure viscoplastic law.

Fig. 5 Thin slab casting simulations results. a Instantaneous velocity magnitude field; b temperature distribution in middle plane across mold

cavity; c temperature field details close to narrow wall of mold
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More significant slab surface temperature decrease is

detected during performed numerical studies at the strand’s

corner regions where it goes beyond the viscoplastic limit

of 1170.33 K. As referred to the literature [46], the elastic

behavior of the material is observed below one third of the

melting temperature, which corresponds to 585.17 K in the

present study. However, the minimum temperature

observed for the simulation domain including 879-mm

mold and the 3-m strand in the casting direction is higher

than 1000 K. While insignificantly catching the transition

from elasto-viscoplastic regime, the simulation results

remain dominant in the frames of the pure viscoplasticity

hypothesis, thus confirming the utilized stress model to be

valid in the present study.

4.3 Solid shell thickness

The solid shell thickness was compared (see Fig. 8)

between two cases: case I uses the precalculated solid

velocities based on a fully elastic traditional approach

disclosed elsewhere [22]; case II employs a viscoplastic

model from this paper to treat the solid shell. It should be

mentioned that the constant material properties are used in

both cases. The validity of this assumption is discussed in

the next section.

Firstly, the comparison along the wide face of the slab is

shown (see Fig. 8a, b). Corresponding numbers on the iso-

lines show the shell thickness in millimeters. It is observed

that only slight difference occurs in the casting (vertical)

direction. However, it is more pronounced in the

transversal direction: in the referenced Case I, the shell is

thicker in the central part of the wide face, whereas for the

results using new approach, it is thicker near the narrow

side.

Fig. 6 Temperature field distribution along wide and narrow faces of mold. Geometry is scaled 1-to-2 in casting direction and 5-to-1 along

narrow side

Fig. 7 Surface temperatures along centerlines of wide and narrow

faces of mold and strand parts of simulation domain
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The deviation between the predicted shell thickness can

be described by recalling Eq. (29), based on the previously

derived formulations [22, 58], and the latent heat advection

using the mixture velocity (as in Eq. (28)). Comparing

these two formulations, the corresponding dference DSe is
obtained in the following form:

DSe ¼ Svpe � Srefe ¼ q � L � r � u� usð Þ|fflfflfflffl{zfflfflfflffl}
ur

�fs

0
B@

1
CA

� q � L � r � ur � fsð Þ: ð30Þ

According to Eq. (30), DSe is proportional to ur. As a

result, in the updated model formulation, used here, slightly

more of the latent heat (released within the mushy zone

during solidification) is advected along casting direction by

the dendritic structure as compared to the case of the

separately precalculated solid velocities. Thus, the growth

of the solid shell is damped, and some deviation in shell

thickness is observed, as shown in Fig. 8c, d for the slab’s

horizontal cross section at 2000 mm below meniscus level.

The shell thickness at the corresponding sections A–A in

Fig. 8 is 20.5 mm for the model with predefined solid

velocities (Fig. 8c) and 18.1 mm for the viscoplastic

deformation model (Fig. 8d) with the 13.3% difference.

For the narrow face distribution (section B–B), the thick-

nesses correspondingly are 14.8 and 13.6 mm been

measured at the center of the slab’s narrow side, showing

lower deviation of 8.8% between the models than at the

wide side.

4.4 Model validation

The presented modeling results for the solidified shell

thickness were verified against other simulation works

[22, 62, 63] and the breakout measurements [61].

The solid shell thickness for the cases with the precal-

culated solid velocities using temperature-dependent

properties (Fig. 9a, previous study [22]) and with the

constant material data (Fig. 9b) is displayed against the

industrial measurements [61] together with the presented

viscoplastic model results (Fig. 9c). The mushy zone pro-

files are plotted along the vertical line located at 750 mm

from the wide face center, where the shell thickness is least

disturbed by the hot jets. It must be clarified that the proper

consideration of the operation delay after the breakout and

the partial solidification of the alloy, entrapped in the mush,

during the drainage should be explained when comparing

to the breakout shell [64].

Considering these uncertainties, the simulated shell

thickness shows a good agreement with the measured one

for the presented variety of the numerical setups (see

Fig. 9). The experimental data lie between the iso-lines of

Fig. 8 Solid shell thickness (95% solid) based on steady-state solid-

phase velocities model (left pictures) and using current viscoplastic

deformation model (right pictures). a, b Solid shell thickness along

wide face of mold; c, d liquid-phase distribution at horizontal cross

section at 2000 mm below meniscus level
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solid fraction fs = 0.01 and fs = 0.30. As seen from the

plots, the evolution of the shell can be well-tracked. The

modeling results presented elsewhere [61–63] show the

similar tendencies.

It is worth mentioning that a slight difference is

observed between the case with temperature-dependent

properties (Fig. 9a) and simulations with the constant ones

(Fig. 9b, c). Moreover, there is a small deviation in the

mushy zone distribution between the Case I in Fig. 9b and

Case II in Fig. 9c due to the different withdrawal models,

as discussed previously. However, all mismatches are

minor. Thereby, the model verification is satisfying; the

assumption of the constant material properties can be

accepted. The material properties variation based on the

temperature field, incorporation of the solid fraction in the

constitutive model parameters, and appearance of the bulk

viscosity due to the mush compressibility [31] are essential

topics for the future studies.

As already shown, the verification data for the CC

process mostly come after costly breakouts. However, in

the future, we are looking for the experiments such as very

recently published by Balogun, O’Malley and co-authors

[65] combined with the withdrawal of the semi-solid shell.

4.5 Viscoplastic stress in solidified shell

Two viscoplastic stress components acting correspondingly

along transversal and casting directions are investigated as

shown in Fig. 10. The compression and tension zones in

the solidified shell are indicated along the iso-surface of the

95% solid fraction by blue and red colors correspondingly.

The iso-surface is enlarged 4 times in thickness direction

for better resolution of the results. Strong tension/com-

pression areas are detected especially along the curved

funnel part of the mold cavity. It was found that the shell is

under tension horizontally at the central and outer parts of

the funnel (check for Rvp
xx\0 in Fig. 10) as well as verti-

cally at the low part of the funnel, after it has been

straightened in the parallel part of the mold (blue zone for

Rvp
yy in Fig. 10). The red zones correspond to the solid shell

being under the compression especially at the vertical at

m
m/sucsine

m
woleb

e cnatsi
D

Distance from slab surface/mm

Exp. [61]

fs=0.30

fs=0.01

fs=1.00

Distance from slab surface/mm

Exp. [61]

fs=0.30

fs=0.01

fs=1.00

Distance from slab surface/mm

Exp. [61]

fs=0.30

fs=0.01

fs=1.00

(a) (b) (c)

Fig. 9 Verification of modeled solid shell thickness (750 mm from

wide face centerline) against breakout measurements [61], and cases

with precalculated solid velocities using temperature-dependent

properties [22] (a) and constant material properties (b), results for

viscoplastic solid shell model with constant material properties (c)

Fig. 10 Transversal Rvp
xx (left) and vertical Rvp

yy (right) components of

viscoplastic stress tensor Rvp
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horizontal transition zones from the curved funnel and the

parallel mold plates.

As shown in Fig. 10, the critical tensile values in the

simulation lie in the range of 250 kPa. The ultimate tensile

stress (UTS) for the steel alloys is strongly temperature-

and morphology (read composition)-dependent. As repor-

ted by Outinen and Mäkeläinen [66] and recently reviewed

by Wang and Lui [67], the strength properties of the steel

drop from the room temperature level of 500–1000 MPa to

5%–10% at the high temperatures above 1273 K. By

extrapolating the experimental data [66, 67] up to 1723 K,

the lowest range for the UTS becomes less than

0.5–1.0 MPa. That estimation makes the simulation values

close to the critical limit. Thereby, at the upper part of the

mold, the hot jet impingement and the local remelting of

the solidifying skeleton can lead to the strength weakening

till the rapture occurs.

However, it is not fully valid to compare the presented

results with the real steel properties, since the constant

viscoplastic model parameters were used for the apparent

viscosity lvp.

5 Conclusions

1. A Norton-Hoff-type viscoplastic model was applied

for the two-phase solidifying region to study the key

phenomena in the curved mold during thin slab cast-

ing. A single FVM framework was used with the

enhanced numerical treatment of the nonlinear vis-

coplastic stress tensor according to the improved both

side diffusion method.

2. A full 3D simulation of the industrial thin slab caster

was performed including SEN region, the funnel-type

mold, and the secondary cooling zone. The melt flow,

heat transfer and viscoplastic stresses in the solidifying

shell were calculated for the alloy with compositions

of C 0.06, Ni 0.1, Mn 0.13, Si 0.1, Cu 0.08, Al 0.035,

P 0.015 and S 0.012 within the typical casting range.

3. The viscoplasticity was found dominantly valid in the

calculation domain except small regions catching the

elasto-viscoplastic transition. The tension and com-

pression of the solid shell was detected along the

mold’s funnel within the corresponding straightening

and bending zones, where the local reheating or non-

uniform solidification can cause the crack formation

leading later to a breakout.

4. The modeling results were verified against the break-

out shell measurements and the numerical studies

published elsewhere, showing a good agreement.

5 The described approach can be integrated with the

free-surface tracking models, and include the magne-

tohydrodynamic effects, etc. The aim of the future

development is to estimate the breakout risks using

modern quality indices and defect detection techniques

to be directly applied for the industrial process

enhancement.
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J.M. Nóbrega, Comput. Fluids 172 (2018) 728–740.

[58] M. Wu, A. Vakhrushev, A. Ludwig, A. Kharicha, IOP Conf. Ser.

Mater. Sci. Eng. 117 (2016) 012045.

[59] J. Miettinen, S. Louhenkilpi, H. Kytönen, J. Laine, Math.

Comput. Simul. 80 (2010) 1536–1550.

[60] J. Miettinen, S. Louhenkilpi, V.V. Visuri, T. Fabritius, IOP

Conf. Ser. Mater. Sci. Eng. 529 (2019) 012063.

[61] J.E. Camporredondo S., A.H. Castillejos E., F.A. Acosta G., E.P.

Gutiérrez M., M.A. Herrera G., Metall. Mater. Trans. B 35

(2004) 541–560.

[62] H. Liu, C. Yang, H. Zhang, Q. Zhai, Y. Gan, ISIJ Int. 51 (2011)

392–401.

[63] C.J. Wang, Z.Q. Liu, B.K. Li, Metals 11 (2021) 948.

[64] J. Iwasaki, B.G. Thomas, in: Supplemental Proceedings, Vol. 2:

Materials Properties, Characterization, and Modeling, TMS,

Wiley, Hoboken, USA, 2012, pp. 355–362.

[65] D. Balogun, M. Roman, R.E. Gerald II, J. Huang, L. Bartlett, R.

O’Malley, Steel Res. Int. 93 (2022) 2100455.
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