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Fuzzing is a popular dynamic program analysis technique
used to find vulnerabilities in complex software. Fuzzing involves
presenting a target program with crafted malicious input de-
signed to cause crashes, buffer overflows, memory errors, and
exceptions. Crafting malicious inputs in an efficient manner is a
difficult open problem and often the best approach to generating
such inputs is through applying uniform random mutations
to pre-existing valid inputs (seed files). We present a learning
technique that uses neural networks to learn patterns in the
input files from past fuzzing explorations to guide future fuzzing
explorations. In particular, the neural models learn a function
to predict good (and bad) locations in input files to perform
fuzzing mutations based on the past mutations and corresponding
code coverage information. We implement several neural models
including LSTMs and sequence-to-sequence models that can
encode variable length input files. We incorporate our models
in the state-of-the-art AFL (American Fuzzy Lop) fuzzer and
show significant improvements in terms of code coverage, unique
code paths, and crashes for various input formats including ELF,
PNG, PDF, and XML.

I. INTRODUCTION

Fuzz testing [18], [12] is one of the most widely used
automated software testing technique that has been successful
in automatically discovering a large number of security vul-
nerabilities in complex programs. The key idea in fuzzing is
to continuously generate new malicious inputs to stress-test
a target program to discover unexpected behaviors such as
crashes, buffer overflows, or exceptions. Typically, a fuzzer
is started with an initial set of seed input files, which are
continuously transformed to generate malicious inputs either
by random mutations, constraint-solving, or using a set of
manually-defined heuristics. Since the input formats can be
quite complex, generating malicious inputs typically requires
millions of mutations, and therefore the fuzzing process can
be seen as a huge search problem to identify a good set of
mutations that would lead to higher code coverage and more
crashes. In this paper, we present a learning technique that uses
neural networks to learn patterns in the input files from previous
fuzzing explorations to guide the future fuzzing explorations. In
particular, the neural models learn a distribution over different
locations in the input files to apply the mutations, which in
turn is used to guide the fuzzing process to explore new unique
code paths and crashes.

The current fuzzing techniques can be broadly categorized
into three main categories: i) Blackbox fuzzing [18], [14],
[1], ii) Whitebox fuzzing [12], and iii) Greybox fuzzing [26].
Blackbox fuzzers treat the target program as a black box with no
internal inspection inside the program. In contrast, whitebox

fuzzers require knowledge of the structure of the program
being tested (possibly, but not necessarily, through analysis
of the program source code) to generate input mutations to
specifically target certain code fragments. Greybox fuzzers
form a middle ground where they perform limited source code
inspection such as computing code coverage using lightweight
code instrumentation. Although all fuzzing techniques have
different strengths and weaknesses, greybox fuzzing techniques
based on random mutations have resulted in fuzzers such as
AFL (American Fuzzy Lop) [26], which has been successful in
finding a large number of real-world bugs in complex programs.
The success of greybox fuzzers largely results from their
simplicity that allows for efficient low-level implementations.

In this paper, we explore whether it is possible to use machine
learning to learn a strategy for guiding the input mutations
based on previous history of executed inputs and code coverage
information. More specifically, we aim to learn a function that
can predict optimal locations in the input files to perform the
mutations. We first run the traditional fuzzing techniques for a
limited time to obtain data regarding which mutations lead to
new code coverage, and then use this data to learn a function
to guide further input modifications towards generating new
promising inputs. Although our technique is applicable to any
fuzzing system, we instantiate it on the current state-of-the-art
AFL fuzzer [26], which is a genetic algorithm based greybox
fuzzer. AFL performs random mutations to a set of seed input
files, and maintains an input queue of promising new input files
that lead to execution of new code paths. Since it is difficult
to precisely mutate the input files using random mutations,
typically millions of newly generated inputs are discarded and
only a handful of them (in the input queue) are considered
for future mutations. Our technique aims to learn to guide
this process of input generation to minimize the time spent on
generating unpromising inputs, thereby increasing the chances
of the fuzzer to cover new code paths.

We implemented several neural network architectures to learn
the function to predict the expected code coverage map given
a set of input modifications. Since input files can be of varying
lengths, we use architectures such as LSTM (Long Short term
Memory) [15] and sequence-to-sequence with attention [3] that
can encode variable-length sequences. At fuzzing time, we
use the learnt function to predict a heat map for the complete
input file, which corresponds to likelihood of mutations of each
file location leading to new code coverage. We then use the
coverage map to prioritize the mutation locations. For training
these functions, we first run AFL on a subset of seed files for a
limited time, and obtain the training data for mutation-coverage



2

Algorithm: Simple Random Fuzzing
Input: Seeds, Target program B
Result: MaliciousInputs
for Seed ∈ Seeds do

for iterations← 0 to limit do
input← Seed
length← len(Seed)
mutations← RandInt(length)
for mut← 0 to mutations do

byte← RandInt(length)
mutate(input, byte)

end
result← Execute(P , input)
if result is crash then

Append input to MaliciousInputs
end

end
end

Algorithm: AFL Fuzzing
Input: Seeds, Target program P
Result: MaliciousInputs
for Seed ∈ Seeds do

for iterations← 0 to limit do
input← Seed
length← len(Seed)
mutations← RandInt(length)
for mut← 0 to mutations do

byte← RandInt(length)
mutate(input, byte)

end
result, cov ← Execute(P , input)
if result is crash then

Append input to MaliciousInputs
end
if HasInputGain(cov) then

Append input to Seeds
end

end
end

Fig. 1. Comparison of the AFL fuzzing algorithm with a simple random fuzzing algorithm. The mutate function mutates a byte of the input in place using
various techniques such as bit flips, byte flips, bit rotations or arithmetic operations. The Execute function executes the target program with the mutated input
and reports on crashes. For AFL, the Execute function also reports the induced code coverage (cov).

information.
We evaluate our technique on several input formats such

as ELF, PNG, PDF, and XML. We observe that the neural
augmented AFL results in significant code coverage improve-
ments for the ELF and PNG parsers than the AFL, whereas for
the PDF and XML parsers, the coverage is comparable. We
observe that the neural augmented AFL consistently results in
exploring significantly more number of unique code paths for
ELF, PNG, and XML parsers. Most importantly, the number
of observed crashes significantly increased for neural guided
AFL for the ELF and XML parsers. We observe a smaller
coverage improvement for PDF parser because of the additional
time needed for the learnt model to predict coverage map on
large PDF input files, but we believe this performance can be
improved through some additional performance engineering.

This paper makes the following key contributions:
• We model the problem of learning promising locations

to fuzz in input files using different neural network
architectures.

• We present a technique to efficiently train the location
prediction function and then use the learnt function to
perform fuzzing.

• We implement our learnt neural models inside the state-of-
the-art AFL fuzzer, and show that it results in significantly
more code coverage, unique code paths, and crashes on
different input formats.

II. AFL BACKGROUND

AFL is a state-of-the-art greybox evolutionary fuzzer. AFL
has a simple strategy to craft malicious inputs: attempt many
small localized mutations to the seed files, as well as some

stacking mutations which mutate many locations in the seed
simultaneously. AFL’s strength lies in its genetic algorithms.
AFL instruments source code during compilation to gain access
to code coverage during execution. During execution of the
target program, AFL observes the code coverage that a mutated
seed induces. A mutated seed is considered interesting if it
induces some never-seen-before piece of code to be executed,
or if it changes the frequency of execution of a previously seen
piece of code. This is referred to as input gain. AFL saves
mutated inputs which induce an input gain and treats them as
further seed files to mutate. This constant evolution of the seed
pool helps reach many obscure code paths which require many
iterated small mutations to reach. This pool is also frequently
culled to pick the best seeds to mutate. AFL’s strategy has
discovered many bugs in mature open source projects such
as Mozilla Firefox, ffmpeg, OpenSSL, clang and others. A
comparison of a simple blackbox random fuzzer and AFL
fuzzer’s core algorithm is shown in Figure 1.

Fuzz testing is computationally intensive. Even a small input
gain requires thousands to millions of random mutations to
discover. However, not all mutations are created equal. File
formats and their parsers are heterogenous. We believe a
mutation to the file header, or other critical sections is more
likely to yield input gain. This is a likely scenario since many
conditional branches are dependent on small critical sections.
In contrast, sections containing raw data are less likely to yield
input gain because they are usually read by small pieces of
code in tight loops. However, it is difficult to manually identify
such locations for a complex input format without a lot of
domain expertise.

A natural next step is to codify quantitative techniques
to automatically identify optimal locations to mutate. We
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investigate neural networks based machine learning techniques
to automatically identify useful locations in input files using
code coverage feedback.

III. OVERVIEW OF THE FRAMEWORK

Our framework consists of a fuzzer and a model that
highlights useful locations in an input file. During runtime,
the fuzzer queries the model for each seed file and focuses
mutations on the highlighted locations. A sample highlighted
seed file is presented in Figure 2. Given an input file in a
sequence-of-bytes format, the model annotates a heat map
function highlighting the relative efficacy of mutating each
position in the input file. Due to the variable length of seed
files, the model is defined as a family of functions.

{
fk : {0x00, 0x01, . . . , 0xFF}k 7→ [0, 1]k

∣∣∣k ∈ N
}

(1)

For simplicity, we denote this family of functions as simply
f that can take as input an arbitrary number k of input locations.
This function associates each position in the input file with
the probability of a mutation yielding an input gain. During
augmented execution, the fuzzer first queries this model prior
to performing mutations, and uses the resultant heatmap to
guide the mutation towards useful locations. Potential inputs
which target few useful locations are vetoed during augmented
execution; this saves time by avoiding executions on inputs
which are unlikely to give input gain. Formally, a mutated
input is vetoed unless it meets the required cutoff presented in
equation 2. ∑

k

[(x⊕ x′) ∧ df(x)e] > α (2)

where:

x = input file to fuzz
x′ = mutated input
⊕ = bitwise exclusive-or
d_e = ceiling function
α = A user defined cutoff hyperparameter

Ostensibly, (x ⊕ x′) is the diff of the mutated input with
respect to the seed. The key idea in equation 2 is to consider
only diffs which modify many useful byte positions as indicated
by f(x). The α parameter controls how many "useful" bytes
must be mutated. This formulation of heat map function f is
easy and efficient to integrate with any fuzzing system as it
performs the heat map computation once in the beginning for
any seed file.

For training a model to learn the function f , the input file
and corresponding code coverage are required. In particular,
the following elements are used to train the model:
• x: The seed file being fuzzed;
• b: Code coverage bitmap yielded by executing the target

program on x;
• x′: The mutated seed file;
• b′: Code coverage bitmap yielded by executing the target

program on x′.

Note that these data elements are first class citizens of most
greybox fuzzers and require no additional instrumentation to
generate. Blackbox fuzzers can also be easily augmented to
generate code coverage information for the target program.

While it is clear that a lack of change in code coverage
indicates mutations applied to useless locations, there is no
straightforward method to determine useful locations through
(input, code coverage) tuples. A general framework for creating
a supervised training dataset pairs on some scoring of b, b′,
denoted s(b, b′), is:

XY = {(x, x⊕ x′) |s (b, b′) > γ} (3)

for some real valued cutoff value γ. Given the training
dataset, the goal is to learn a model that can map an input
file x to a diff heatmap x⊕ x′, which in turn can be used to
identify potentially useful locations to focus the attention of
fuzzing mutations.

The advantage of the above approach is that it results in
culling the useless mutations which are scored lower than
the useful mutations. A model learning from the dataset will
receive many well scored (x, x ⊕ x′) pairs in a supervised
setting. A single seed is typically paired with many mutations.
To minimize the aggregate loss over this "one-to-many"
relationship, the expected value of the diff x ⊕ x′ given x:
E[(x⊕ x′)|x] is learned. This captures the relative usefulness
of flipping bytes at certain locations.

In principal, an effective incarnation of s(b, b′) is challenging.
The desired behavior of s(b, b′) is highlighting mutations which
cause input gain, resulting in "never-seen-before" execution
behavior in the target program. This sequential dependency on
fuzzing history requires a function s∗ that is conditioned on
previous coverage history, which is unfortunately difficult for
learning methods to model. We, therefore, choose an intuitive
approximation of s∗:

s(b, b′) =
∑

1≤i≤|b|

[bi < b′i] (4)

where bi denotes the ith bit of the bitmap b and |b| denotes
the length of the bitmap. The truth table for bitwise strictly
less than function is given in Table I.

TABLE I
THE TRUTH TABLE FOR BITWISE STRICTLY LESS FUNCTION.

x y x < y

0 0 0
0 1 1
1 0 0
1 1 0

The bitwise ‘strictly less than’ scoring function highlights
code sections which are not executed in b, but executed in b′.
This function rewards increases in code coverage. In practice,
we have found this scoring function to give good results across
a wide number of target program.
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Fig. 2. A highlighted seed file for the PNG file format. Useful sections are indicated in red. The png header and other relevant bytes are identified as promising
locations to mutate.

Fig. 3. The veto model used by Augmented-AFL. Mutations which target no useful locations are not executed.

IV. LEARNING FOR AUGMENTED FUZZING

Our design for learning augmented fuzzing consists of
modifications to AFL as well as a neural network model to
predict optimal locations to fuzz.

A. Augmented-AFL
We augmented the AFL fuzzer for this work to utilize the

neural models. The Augmented-AFL queries a neural network
model with each seed prior to fuzzing. The neural model
categorizes the seed into useful and useless sections at the byte
granularity, which is used during fuzzing. The mutations that
target no useful sections are vetoed prior to execution. This
augmented approach is depicted in Figure 3.

The AFL fuzzing strategy applies the following small local-
ized mutations. Note that all mutations below are performed
on sequential sections.
• Bit flips: Mutate the input by flipping [1/2/4] bit(s) at a

time.
• Byte flips: Mutate the input by applying exclusve or to

[1/2/4] byte(s) with 0xFF .
• Arithmetic mutations: Mutate the input by

adding/subtracting interesting quantities at [1/2/4]
byte granularities.

• Interesting substitutions: Mutate the input by splicing an
"interesting" value at [1/2/4] byte granularities.

• Dictionary substitutions: Mutate the input by replacing
bytes with user supplied "interesting" values. These may
be longer than 4 bytes in length.

All mutations above are small and localized changes of
which there are finitely many for a given seed. After the

conclusion of the deterministic phase, AFL begins stacking
many of these small localized mutations which are non-
local and of significant hamming distance with respect to
the input. AFL may apply somewhere between 2 and 128
stacking changes chosen uniformly. In addition to the previously
mentioned location mutations, the following mutations may
also be applied:

• Random byte assignment: Assign a random value to a
random byte.

• Delete bytes: Delete a section of the input file.
• Clone bytes: Append bytes to a section of the input file.
• Overwrite bytes: Overwrite a section of the input file.

Due to the location and context insensitive nature of AFL
fuzzing, most mutations yield no input gain. The goal of
augmented fuzzing is to improve the hit-rate of mutations.
Using the annotated seed provided by the model, mutations
that are unlikely to give input gain are avoided. We used a
highly permissive veto approach to reject mutations which
target no useful locations. The augmented mutation algorithm
is presented in Figure 4.

B. Neural network architectures

We now describe different neural network architectures that
we use to learn the coverage heatmap prediction function.
Recall that the family of functions to be learnt is of the
following format:

{
fk : {0x00, 0x01, . . . , 0xFF}k 7→ [0, 1]k

∣∣∣k ∈ N
}

(5)
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Algorithm: AFL Fuzzing
Input: Seeds, Target program P
Result: MaliciousInputs
for Seed ∈ Seeds do

for iterations← 0 to limit do
input← Seed
length← len(Seed)
mutations← RandInt(length)
for mut← 0 to mutations do

loc← RandInt(length)
mutate(input, loc)

end

result, codecov ← Execute(P , input)
if result is crash then

Append input to MaliciousInputs
end
if HasInputGain(codecov) then

Append input to Seeds
end

end
end

Algorithm: Augmented-AFL Fuzzing
Input: Seeds, Target program P
Result: MaliciousInputs
for Seed ∈ Seeds do

bytemask ← QueryModel(Seed)
for iterations← 0 to limit do

input← Seed
length← len(Seed)
mutations← RandInt(length)
for mut← 0 to mutations do

loc← RandInt(length)
mutate(input, loc)

end
diff ← input⊕ Seed
if
∑

diff ∧ bytemask < α then
continue

end
result, codecov ← Execute(P , input)
if result is crash then

Append input to MaliciousInputs
end
if HasInputGain(codecov) then

Append input to Seeds
end

end
end

Fig. 4. Comparison of the AFL-Augmented algorithm with the benchmark AFL algorithm. The primary difference is in using the QueryModel function to gain
the bytemask of useful and useless locations. This bytemask is bitwise and’ed with the mutation diff to approve or reject the mutation prior to execution.

A possible encoding scheme for this family of functions is
to feed the input "as-is" to an underlying neural network. This
would involve encoding the data as a sequence of real valued
floating point numbers in the range [0, 255]. However, this is
suboptimal since the binary data does not necessarily represent
magnitudes, but could also represent states. It is incorrect to
assume that each byte represents a numerical quantity, it could
represent bitmasks or other non-numerical values. We, therefore,
encode the byte level information in the "sequence-of-bits"
format: {

f ′k : {0, 1}8k 7→ [0, 1]
8k
∣∣∣k ∈ N

}
(6)

This function determines usefulness at a bit granularity. We
reconstitute f given f ′ by averaging the constituent bit values
for each byte.

Due to the varying length and sequential nature of the input,
Recurrent Neural Network (RNN) was the obvious choice.
Each input file is sequential data which is most likely parsed
sequentially by the target program. RNNs are able to count [21].
This is useful in annotating file formats which contain header
information at fixed offsets. RNNs have been successfully used
in Statistical Machine Translation [6], [3], and this task is
similar since binary file formats can be considered a language.

RNNs are known to have problems with longer sequences.
Due to this reason we chose Long Short-Term Memory
(LSTM) as our base recurrent unit [15]. LSTMs extend the
memory capability of a recurrent unit to longer sequences.

This is accomplished by a separate pathway for the flow of
memory. LSTMs can also "forget" memories that have outlived
their usefulness which allows more expressiveness for longer
sequences. Recall that a recurrent unit computes state update
and output, ht, ot as follows.

ht, ot = f(xt, ht−1) (7)

An LSTM decomposes the above overall framework into
the following subcomponents.

ft = σ(Wf · [xt, ht−1] + bf )

it = σ(Wi · [xt, ht−1] + bi)

Ct = ft × Ct−1 + it × tanh(WC · [xt, ht−1] + bC)

ot = σ(Wo · [xt, ht−1] + bo)

ht = ot × tanh(Ct)

where:

σ = Sigmoid activation function
W∗ = Learned weight vectors
b∗ = Learned bias vectors

The forget gate ft, and the input gate it control whether old
memory is forgotten, and whether the current input is worth
remembering. This interplay allows the memory information
of LSTMs to persist through longer sequences.

We explored several architectures using LSTM as our base
recurrent unit to determine whether there is an affinity between
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TABLE II
ENUMERATION OF ALL ARCHITECTURES, WITH THEIR NUMBER OF TRAINABLE PARAMETERS. BLANK ENTRIES MEAN THIS COMBINATION WAS NOT TESTED.

One Layer Two Layers
Model 64-bit chunk 128-bit chunk 64-bit chunk 128-bit chunk
LSTM 33,024 131,584 66,048 263,168
Bidirectional LSTM 66,048 263,168 57,856 230,400
Seq2Seq N/A N/A 57,856 230,400
Seq2Seq+Attn N/A N/A 57,985 230,657

Fig. 5. The data collection approach to collect input, code coverage pairs.

input annotation and neural architecture. Recent advances in
Neural Machine Translation have highlighted some important
architectures such as Seq2Seq [6] and Seq2Seq with Attention
[3]. Do these translation focused architectures also work well
when learning the structure of the binary formats? In total, we
evaluated the following architectures:

• LSTM: A simple unidirectional LSTM [15].
• Bidirectional LSTM: A bidirectional LSTM which sees

the input backwards and forwards.
• Seq2Seq: Sequence-to-sequence architecture [6].
• Seq2Seq+Attn: Sequence-to-sequence architecture with

attention [3].

Bidirectional LSTMs see the input in backward and forward
order. A bidirectional LSTM is composed of two unidirectional
LSTMs, one in each forward and backward direction. Given a
length n sequence, to compute the values for timestep t, the
forward LSTM’s ht−1 and the backward LSTM’s hn−t−1 are
used in conjunction. A merge function is used to merge the
output of the unidirectional LSTMs. The merge function can
be one of many functions combining two like sized vectors
such as sum, multiply, or concatenate. We chose to use the
sum function for one-layer Bidirectional LSTMs, and the
concatenate function for LSTMs with two or more layers.

We also experimented with the number of layers, and the
chunk size of the LSTM inputs provided at each timestep. The
purpose was to determine how complex byte prediction is, and
whether more complex models outperform simpler models.

Our models consume k bits per iteration, and also output
k bits per iteration. We experimented with chunking the
input sequence into 64-bit or 128-bit chunks. Our proposed
architectures and total number of trainable parameters are
detailed in Table II.

One-layer bidirectional LSTMs used a sum merge func-
tion, while two-layer bidirectional LSTM used a concatenate
function. The second layer of the two-layer bidirectional
LSTM was a unidirectional LSTM. Seq2Seq and Seq2Seq+Attn
were comprised of one encoding, and one decoding layer.
The encoding layer was a bidirectional LSTM which was
merged using the concatenate function. The decoding layer
was a unidirectional LSTM. We did not explore unidirectional
Seq2Seq or Seq2Seq+Attn.

V. EVALUATION

We evaluate the effectiveness of the Augmented-AFL on four
target programs with the goal of assessing the augmentation
strategy across a diverse set of programs encountered in practice.
The chosen target programs were readpng [22], readelf [10],
mupdf [16], and libxml [24]. We investigated several metrics
for these programs, primary amongst them were code coverage
and input gain. Code coverage and input gain are first class
metrics used by AFL. Input gain is measured by the total
number of inputs which cause input gain over the runtime of
the fuzzer. The number of crashes found with Augmented-AFL
and AFL were also measured.

We collected 180 randomly chosen seed files for each
program from a large sample population. The seed files were
evenly divided into a training and test set. To collect the data
for training the models, AFL was run for 24 hours. Input, code
coverage pairs were collected at a uniform 1% sampling rate.
This collection strategy is highlighted in Figure 5. Prior to
training, the data was filtered with the strictly less than function
with a cutoff of 0 to form the training set. That is, given a set
of (x, x′, b, b′), a training dataset XY is constructed as follows.
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TABLE III
ENUMERATION OF ALL PROGRAMS, ALL ARCHITECTURES REPORTING ON AVERAGE CODE COVERAGE AFTER A 24 HOUR EVALUATION RUN. TOP 3

PERFORMING STRATEGIES ARE BOLDED FOR EACH PROGRAM.

One Layer Two Layer
Model 64-bit chunk 128-bit chunk 64-bit chunk 128-bit chunk

readelf

AFL Benchmark 12.20%
LSTM 13.46% 13.34% 12.83% 12.93%
Bidirectional LSTM 12.01% 12.75% 12.50% 12.94%
Seq2Seq N/A N/A 12.11% 13.10%
Seq2Seq+Attn N/A N/A 12.59% 12.90%

readpng

AFL Benchmark 2.20%
LSTM 2.43% 2.38% 2.35% 2.37%
Bidirectional LSTM 2.39% 2.39% 2.42% 2.38%
Seq2Seq N/A N/A 2.31% 2.31%
Seq2Seq+Attn N/A N/A 2.42% 2.39%

mupdf

AFL Benchmark 11.63%
LSTM 11.44% 11.57% 11.26% 11.17%
Bidirectional LSTM 11.80% 11.48% 11.61% 11.39%
Seq2Seq N/A N/A 11.56% 11.58%
Seq2Seq+Attn N/A N/A 11.71% 11.65%

libxml

AFL Benchmark 2.09%
LSTM 2.11% 2.10% 2.11% 2.10%
Bidirectional LSTM 2.09% 2.11% 2.11% 2.11%
Seq2Seq N/A N/A 2.09% 2.11%
Seq2Seq+Attn N/A N/A 2.11% 2.11%

XY =

{
(x, x⊕ x′)

∣∣∣∣∣∑
i

[bi < b′i] > 0

}
(8)

The model implementations were designed using Keras [7], a
high level deep learning library. We chose to use Tensorflow [2]
as the low level backend for Keras.

The training data was heterogenous in length, and could
consist of very large input files up to 200 Kilobytes in length.
To mitigate these issues, input data longer than 10kB was
segmented into a set of 10kB segments. After segmenting,
the data was binned according to length and padded to the
nearest chunk sized boundary. Each step of training consisted
of selecting a bin proportional to bin size, and constructing a
minibatch of elements in the selected bin. The models were
trained for 12 hours to ensure convergence and the training was
performed on Nvidia K40M GPUs with 12 gigabytes of RAM.
We used a loss function of mean absolute error (MAE) and
used the Adam optimizer [17] with a learning rate of 5×10−5

to train the model.
Although Augmented-AFL can exploit previously learned

patterns to improve the hit-rate of mutations, it does not explore
as well as the benchmark AFL algorithm. To counteract this
tendency, for each seed Augmented-AFL may choose with 50%
probability to utilize the unaugmented fuzzing strategy. This
allows for a good mix between exploration and exploitation.
There exist many techniques to better achieve balance between
exploration and exploitation that we hope to pursue in future.

For evaluating the learnt models, we restart AFL and
Augmented-AFL on the test set of seed files. This evaluation
phase was run for 24 hours. To minimize variance, many
instances of AFL were run at one time. For AFL, 16 instances
of AFL were run on a 16 core machine. For Augmented-
AFL, 8 instances of AFL were run on a 16 core machine,
with 8 cores reserved for model querying. For the majority

of validation we used Azure Standard F16s machines with
Intel Xeon E5-2673 v3 CPUs at 2.40GHz and 32GB of RAM.
Due to out of memory issues, Azure Standard D14 size VMs
were used for a small minority of cases. The Azure Standard
D14 VMs are identical to Standard F16s, except with 112GB
of RAM. Dynamic CPU frequency scaling was not enabled
during validation. After 24 hours of execution, the data was
averaged over the many instances.

A. Code Coverage

The code coverage is reported for all architectures on all
programs in Table III. We can observe significant improvements
in the code coverage metric for readelf and readpng programs.
Almost all models outperform the benchmark (baseline AFL)
for these programs. Often times, the simplest unidirectional
models outperform the other more complex models. However,
no significant improvements in code coverage metric was
observed with mupdf and libxml. For mupdf, most augmented
models perform worse than the benchmark. The only exception
is Seq2Seq+Attn model for mupdf that outperforms the
benchmark by a small amount. For libxml, all models perform
similarly concerning code coverage. The reported code coverage
are all centered around 2.10% and within the margin of error.

B. Input Gain

A second metric for measuring efficacy is input gain. Input
gain is the number of paths found that exhibit never-seen-before
behavior in the target program. This behavior is characterized
by either executing a new block of code, or increasing the
frequency of execution of a previously executed code block.
Input gain vs time plots are presented for the two highest
performing models for each program in Figure 6.

For all programs except for PDF, significant improvements in
input gain are observed. This is expected for readpdf and readelf
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Fig. 6. Input gain vs time plots. From top left to bottom right: readelf, readpng, mupdf, libxml. X-axis denotes time since start in hours. Y-axis denotes unique
number of code paths found.

since code coverage typically increased for these programs.
However, libxml did not exhibit code coverage increases during
validation. This likely means that the same code sections
were exercised more thoroughly with a variation in execution
frequency.

The mupdf parser did not exhibit significant improvements
in code coverage or input gain. We believe this shows the
model query vs execution tradeoff in the proposed design.
Because typical PDF files are quite large in size (over 100kB),
the model query time adversely affects the performance of
Augmented-AFL. Prior to fuzzing each seed file, the model
must be queried for this seed file, which can be several seconds
for such large seed files. Over the runtime of the fuzzer, this
query time adversely affects total fuzzing performance because
execution is often blocked on the model query. We believe that
throughput and performance improvements to model querying

will improve the efficacy of the Augmented-AFL technique for
lengthy formats such as PDF.

C. Crashes

The most important metric for measuring fuzzing efficacy is
the number of malicious inputs discovered, which we measure
by recording the number of unique crashes discovered during
the execution. We observed crashes for only readelf and libxml
and we therefore omit the plots for readpng and mupdf. The
plots of unique crashes found over time are presented for
readelf, and libxml in Figure 7.

The augmented-AFL outperforms the AFL benchmark for
both programs. For readelf, several unique crashes (more than
20) are observed by the 24-hour mark, whereas no crashes are
observed for the benchmark. Similarly, the augmented-AFL
results in finding about 110 unique crashes for libxml by the
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Fig. 7. Unique crashes vs time plots. Left to right: readelf, libxml. X-axis denotes time since start in hours. Y-axis denotes number of unique crashes found.

24-hour mark in comparison to AFL discovering about 80
unique crashes. These results show a significant improvement
over the baseline.

These results show improvements over AFL, a state-of-the-
art genetic algorithm greybox fuzzer. Using machine learning
to predict interesting locations to fuzz, we are able to improve
fuzzing performance over a wide variety of target programs
and file formats. We, therefore, believe that machine learning
guided fuzzing is a promising technique to improve greybox
and blacbkox fuzzers, and similar techniques can be applied
to learn several other fuzzing parameters in future.

VI. RELATED WORK

We now briefly discuss some of the related work on using
machine learning techniques (in particular neural network based
models) for guiding program fuzzing and program analysis.

a) Machine Learning for Grammar-based Fuzzing: The
Learn&Fuzz [13] approach was recently developed for training
neural networks (LSTMs) to learn generative models of the
input formats for grammar-based fuzzing. For complex input
formats such as PDF, randomly mutating the inputs would
quickly result in invalid inputs, and therefore typically grammar-
based fuzzing techniques are used to define the input grammars
for such formats. However, writing a grammar manually by
hand is tedious and error-prone especially for complex input
formats. Learn&Fuzz presented a technique to use LSTMs
to learn a grammar (distribution) for PDF objects using a
character-level model, which can then be sampled to generate
new inputs. Instead of learning a grammar, our technique
uses neural networks to learn a function to predict promising
locations in a seed file to perform mutations. We believe our
technique can complement Learn&Fuzz to further improve
neural grammar-based fuzzing.

b) Bandit formulation for Fuzzing: Our work was chiefly
inspired through bandit optimization techniques. There has

been some work combining fuzzing and bandit optimization
with fuzz configuration scheduling [25]. In particular, Woo
et al. [25] modeled fuzzer configuration options as a bandit
problem. However, our work takes this approach further by
modeling fuzzing as a bandit problem. We believe that fuzzing
is a discrete optimization problem which can be simplified by
identifying the subset of byte locations with the most payoff,
and that the identification of optimal byte locations is a problem
best solved through multi-armed bandits approach. This “bytes-
as-bandits" approach deserves further study, in particular, we
hope to shed further light on theoretically optimal methods of
identifying optimal bytes.

c) Evolutionary Fuzzing: Evolutionary fuzzing uses exe-
cution feedback to guide future mutation decisions. Some early
work along this direction includes the Evolutionary Fuzzing
System (EFS) by DeMott et al. [8]. EFS uses Genetic Algorithm
techniques to evolve the seed pool where the fitness function
is defined as the induced code coverage. EFS uses several
sophisticated crossover methods to evolve the seed pool over
time. In contrast to AFL, EFS only uses gene crossover methods
to "fuzz" the set of seed files. Recent advances in evolutionary
fuzzing include Taint-based Directed Whitebox Fuzzing [11]
and VUzzer [20]. Taint-based Directed Whitebox Fuzzing uses
dynamic taint tracing to identify parts of the seed which may
cause dangerous code sections to be executed. Mutations
are directed towards these sections to discover bugs. VUzzer
takes a similar approach of using dynamic taint tracing, but
does not attempt to identify and focus on dangerous code
sections. VUzzer works towards increasing code coverage and
thoroughly exercising the code.

The common theme amongst the above techniques is a
feedback loop dependent on past execution behavior. Although
our approach also contains a feedback loop, we favor a neural
approach to guide future fuzzing actions. This is novel because
of the ease of development and integration. Our neural guided



10

approach can be developed quickly using off the shelf Deep
Learning libaries, and can be easily integrated into an existing
Greybox or Blackbox fuzzer. Our approach has relatively low
overhead since the simple models have low query time and
the coverage map can be computed efficiently.

d) Neural Networks for Program Analysis: There have
been several recent works proposed for training neural networks
to perform program analysis such as program repair [4],
program optimization [5], and program synthesis [19], [9],
[23]. These works learn neural representations of programs to
perform various prediction tasks, whereas in our work we train
the neural models to instead represent input files. Moreover, our
work presents the first application of training neural networks
to learn promising fuzzing locations in input files.

VII. FUTURE WORK AND CONCLUSION

We have demonstrated a novel neural based augmentation to
greybox fuzzing. This augmentation identifies useful locations
to fuzz in seed files. We believe that most binary file formats
contain small sections which highly affect execution behavior
of the program. Focusing fuzzing on these small sections is
useful since they are likely to yield novel execution behavior
in the target program.

Our augmentation was chiefly targeted towards greybox
fuzzers such as AFL. Greybox fuzzers are the perfect testbed
because they provide code coverage feedback for each execu-
tion. This feedback was used to train a neural network model to
identify the most promising locations for fuzzing. Our approach
is simple and easy to integrate with most greybox fuzzers.

We showed that recurrent models such as LSTM work
well for this task. This task can be considered similar to
Statistical Machine Translation. Recurrent models have had
great success on statistical machine translation task in recent
years. We evaluated the model on a variety of target binary
file formats such as PDF, XML, PNG, and ELF. The model
significantly outperformed the state-of-the-art AFL fuzzer on
all target programs except PDF. Typically the simplest models
outperformed the more complex models. We believe that the
model performance on PDF shows the cost-benefit tradeoff of
querying the model on large input files. However, we believe
it is possible to improve the results on large file formats such
as PDF with some additional performance engineering.

Although our results are promising, there are many avenues
for further work. We trained our current models in an offline
supervised setting. A natural extension to this work would
be to make learning online using reinforcement learning such
that the model continuously improves as the fuzzing process
proceeds. We believe that fuzzing can be greatly enhanced
through "feedback loop fuzzing," where past execution behavior
guide future mutations. We envision a new type of fuzzer
which leverages machine learning models to guide its mutation
decisions. Fuzzing provides a treasure trove of high fidelity
structured data. The signal to noise ratio is high. Another
possible extension along this avenue is using generative models.
Our model is restrictive, where mutations proposed by AFL
are vetoed. A more interesting approach is to generate the
mutations that are applied to seed files, which we plan to
consider in near future.
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