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Abstract—Scientists are increasingly exploring and utilizing
the massive parallelism of general-purpose accelerators such
as GPUs for scientific breakthroughs. As a result, datacenters,
hyperscalers, national computing centers, and supercomputers
have procured hardware to support this evolving application
paradigm. These systems contain hundreds to tens of thousands
of accelerators, enabling peta- and exa-scale levels of compute
for scientific workloads. Recent work demonstrated that power
management (PM) can impact application performance in CPU-
based HPC systems, even when machines have the same ar-
chitecture and SKU (stock keeping unit). This variation occurs
due to manufacturing variability and the chip’s PM. However,
while modern HPC systems widely employ accelerators such as
GPUs, it is unclear how much this variability affects applications.
Accordingly, we seek to characterize the extent of variation
due to GPU PM in modern HPC and supercomputing systems.
We study a variety of applications that stress different GPU
components on five large-scale computing centers with modern
GPUs: Oak Ridge’s Summit, Sandia’s Vortex, TACC’s Frontera
and Longhorn, and Livermore’s Corona. These clusters use a
variety of cooling methods and GPU vendors. In total, we collect
over 18,800 hours of data across more than 90% of the GPUs in
these clusters. Regardless of the application, cluster, GPU vendor,
and cooling method, our results show significant variation: 8%
(max 22%) average performance variation even though the GPU
architecture and vendor SKU are identical within each cluster,
with outliers up to 1.5× slower than the median GPU. These
results highlight the difficulty in efficiently using existing GPU
clusters for modern HPC and scientific workloads, and the need
to embrace variability in future accelerator-based systems.

Index Terms—Accelerator Architectures; Dynamic Voltage
Scaling; Power Measurement; Temperature Measurement; Time
Measurement

I. INTRODUCTION

Recently, domain scientists have leveraged the massive
parallelism of accelerators for scientific discovery. Some of
these discoveries use machine learning (ML) or deep learning
(DL) for image recognition [1], [2], speech recognition [3]–
[5], and machine translation [6], [7]. Scientists have also used
accelerators in other areas, including molecular dynamics, ma-
terial science, and quantum chemistry. Since these applications
often require peta- or exascale levels of compute, running them
on massively parallel systems has yielded promising results
in areas including protein folding [8], plasma reactor status
prediction [9], material science [10], and SARS-CoV-2 [11].

Accordingly, supercomputers, datacenters, and computing
centers have procured hardware to accommodate this evolving
application paradigm. To reach exascale levels of compute,
many of these systems use many accelerators, which of-
fer greater power efficiency and thus support emerging AI

Fig. 1: Normalized runtime across the five compute clusters
for SGEMM. All clusters exhibit significant performance
variability and contain several outliers.

and HPC workloads within a constrained power budget. For
example, nearly all of the top 10 supercomputers leverage
GPUs [12] and the second-ranked supercomputer, Oak Ridge
National Lab’s (ORNL’s) Summit, has over 27000 GPUs.
Compute centers such as NCSA Delta (840 GPUs), SDSC
Expanse (216 GPUs), and Texas Advanced Computing Cen-
ter (TACC, 744 GPUs) also utilize many GPUs. Similarly,
Microsoft, Tesla, and others have deployed accelerator-based
supercomputers [13], [14]. The upcoming Aurora, El Capitan,
and Frontier supercomputers [15] are expected to have even
more GPUs. Thus, current exascale computing systems contain
hundreds to tens of thousands of GPUs, and future systems
will likely be comprised of a large variety of accelerators and
customized chips [13], [14], [16]–[23].

Despite their power efficiency, exascale systems have an
enormous power footprint, making it important to consider the
hardware’s power management (PM) algorithms. PM can lead
to power and frequency variations across nodes. Such dynamic
behavior makes it challenging for repeatable, high perfor-
mance and can lead to resource underutilization. For example,
recent work studying CPU-based supercomputers showed that
PM impacts application performance by up to 20%, even for
CPUs with the same architecture and vendor SKU (Stock-
Keeping Unit) [24]–[29]. This variation occurs due to the
manufacturing process and the chip’s power constraints [26],
[30]. However, despite their increasingly widespread use in
modern HPC systems, there is limited work that examines
how accelerator PM and manufacturing variability affects
application performance. For example, while Scogland, et
al. [30] conducted an AMD GPU variability study in 2015,
they only used one benchmark and called for a more in-depth
study. We discuss related work further in Section II.

In this paper we perform a rigorous study to understand
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GPU variability in large scale, accelerator-rich computing
clusters. While some systems [13], [14] utilize FPGAs or
other accelerators, we focus on GPUs since the majority
of the Top-500 systems utilize GPUs. To ensure coverage
across GPU workloads that are run on modern systems and to
stress different GPU components, we select five applications
from ML, sparse graph analytics, and molecular dynamics.
Furthermore, we study multiple computing clusters to examine
how different scales (hundreds to tens of thousands of GPUs),
cooling (air, mineral oil, and water), and GPU vendors (AMD
and NVIDIA) impact variability. Specifically, we study five
modern compute clusters: ORNL’s Summit, Sandia National
Lab’s (SNL’s) Vortex, TACC’s Frontera & Longhorn, and
Lawrence Livermore National Lab’s (LLNL’s) Corona. We
perform measurements on over 90% of the GPUs on each
cluster and verify that our methodology is statistically signif-
icant [31]. In total, we collected and analyzed over 18,800
hours of data to study variability in performance, temperature,
GPU frequency, and power consumption. Our findings include:
• All clusters exhibit significant performance variability
when running SGEMM (Figure 1), which is normalized to
a median runtime of 1. On average, SGEMM performance
varies between 7%-9% across GPUs in the same cluster,
with outliers up to 1.5× slower than the median GPU.
• Performance variability is larger for compute intensive
workloads such as matrix multiplication (SGEMM) or
training ML models like ResNet-50 (22%, max 3.5×
slower than median GPU) than memory intensive work-
loads like PageRank (1%). BERT pre-training, which has
a mix of compute and memory-bound operations, has 8%
performance variation. This variation impacts resource
utilization, increases runtime, and hurts responsiveness,
especially for multi-GPU experiments.
• Air cooled clusters (Longhorn, Corona) have a large
temperature range ≥ 30°C and very high temperature
nodes can have severe power throttling (>15% of TDP).
Water and mineral oil cooling reduce temperature varia-
tion, but do not reduce performance and power variation.
• On the largest GPU cluster we study (Summit), there
are a number of power outliers that are not correlated
with temperature or frequency variation.
• Our results are consistent across different days of the
week and times of day, indicating that the variability is
not transient. Moreover, we also validated that similar or
higher variability occurs when limiting the GPU power
to be lower than the TDP (Section VI-A).

Overall our results indicate that significant power and per-
formance variation exists in GPU-rich systems. Given there
are no standards to expose PM information to administrators,
it is difficult today to identify aberrations within the cluster
that might require maintenance, modifications, or even re-
placement of GPUs. Further, unlike CPU-based systems, GPU
nodes cannot be assigned as a desktop or a submit node
to minimize impact. Thus, our results motivate systematic
benchmarking across nodes to provide an early-warning for

system administrators to perform maintenance or investigate
bad GPUs, without hurting long-term cluster performance.
Finally, our work also highlights the need to improve visibility
of accelerator variability and design mitigation techniques in
runtime frameworks for both users and system administrators.

II. BACKGROUND AND RELATED WORK

A. Hardware Performance Variability

As large scale datacenters and supercomputers are typ-
ically power-constrained, manufacturing variability between
two identical architectures translates to varying performance
and causes load imbalance even for perfectly balanced work-
loads. PM and temperature variations can also cause thermal
throttling, possibly degrading performance further. To mitigate
variability, CPU-based HPC systems have adopted various
techniques including: dynamic load balancing algorithms [32],
[33], cooling mechanisms and temperature-aware job place-
ment [34]–[36], and intelligent adaptive runtimes [24]–[26].

However, less work has examined how GPU PM and
manufacturing variability affect applications. Coplin, et al. [37]
and Jiao, et al. [38] demonstrated that memory- and compute-
bound GPU workloads exhibit significant differences in per-
formance and energy for a variety of configurations. Jiao, et
al. also found that increasing frequency often increased both
power consumption and performance in Fermi-class GPUs.
Moreover, they demonstrated that GPUs utilize dynamic volt-
age and frequency scaling (DVFS) to help stay within their
power limit. However, both studies were conducted on GPUs
several generations older than the ones in use today and focus
on performance variability for a single-GPU workstation. Sim-
ilarly, Scogland, et al. examined how LINPACK’s performance
varied for CPU clusters and AMD GPUs [30]. However,
this study was done in 2015, only used a single benchmark,
and motivates the need for a more in-depth study of GPU
variability. Thus, while these papers are a useful foundation,
characterization is needed to determine the impact of PM on
modern GPU-rich systems for representative workloads.

Other recent work has also examined how the Titan super-
computer’s thousands of GPUs behaved over the machine’s
lifetime [39]. However, this work focused on issues like
reliability, and did not investigate the impact of PM.

B. GPU Power Management

Current many-GPU systems use a local-only PM setup:
each GPU has a given thermal limit it must stay within (its
thermal design power, TDP), which is 300W for NVIDIA
V100 GPUs and AMD MI60 GPUs [40], [41] and 230W for
the NVIDIA Quadro RTX 5000 GPUs [42] we study. The GPU
PM controller varies the GPU’s voltage and frequency using
DVFS to avoid exceeding its TDP [43], [44]. Although GPU
vendors such as AMD and NVIDIA have not disclosed details
about their DVFS schemes (or PM controllers), prior work
has shown that, similar to multi-core CPUs, DVFS adjusts the
GPU’s streaming multiprocessor (SM) and memory frequen-
cies and voltages to stay within the TDP and reduce energy
consumption. Sometimes DVFS inadvertently compromises



Cluster GPU # GPUs # Nodes Cooling
CloudLab [46] NVIDIA V100 12 4 air
Longhorn [47] V100 416 104 air
Frontera [47] RTX 5000 360 90 mineral oil
Vortex [48] V100 216 54 water
Summit [49] V100 27648 4608 water
Corona [50] MI60 328 82 air

TABLE I: Summary of clusters studied.

performance [43]–[45]. Thus, PM can affect the performance
of GPU applications. Moreover, there is no global PM strategy
across GPUs in a cluster. As a result, GPUs can be also
affected by the behavior of other GPUs on the same node.

III. METHODOLOGY

To ensure that our results were representative across a
variety of GPU clusters with different properties, we sought
to run experiments across clusters of different sizes, cooling
approaches, and GPU vendors. Moreover, we also selected
benchmarks that are representative of how modern systems
are used and which stress a variety of GPU components.
Cluster Parameters: Table I summarizes the unique HPC
clusters we studied. First, we used a small cluster in Cloud-
Lab [46], which contains 12 air-cooled GPUs split across 3
nodes, each with 4 NVIDIA V100-SXM2 GPUs. We also
studied five larger HPC clusters. TACC’s air-cooled Longhorn
cluster [47] has 416 GPUs split across 104 nodes, each with 4
NVIDIA V100 GPUs. SNL’s water-cooled Vortex cluster [48]
contains 216 NVIDIA V100 GPUs split across 54 nodes.
To examine variability in a larger cluster, we also studied
ORNL’s water-cooled Summit supercomputer [49] (27648
NVIDIA V100 GPUs). Finally, to examine variability across
GPU vendors, we studied AMD MI60 GPUs in Livermore’s
Corona cluster [50]. Although we do not have access to
Vortex’s temperature setup, the Summit and TACC GPU’s
shutdown, slowdown, max operating, and max memory op-
erating temperatures are: 90°C, 87°C, 83°C, and 85°C, re-
spectively. The Corona GPU’s shutdown, slowdown, and max
memory operating temperatures: are 105°C, 100°C, and 99°C,
respectively [51], [52]. Finally, the Frontera GPU’s shutdown,
slowdown, and max operating temperatures are: 96°C, 93°C,
and 89°C, respectively. Throughout our experiments, we did
not observe GPUs exceed these thresholds.
GPUs: Although AMD and NVIDIA have recently released
newer GPUs than the ones available in the systems we study,
we chose to study MI60’s, RTX 5000’s, and V100’s because
they are widely used in modern HPC systems. Prior work
recommended pinning frequency, power limits, fan speed, and
voltage ID to ensure that all GPUs have the same initial state
(from the software and user perspective) [31]. However, Volta
V100 GPUs do not have fans [53]. Instead, like many server-
class GPUs, they are attached to large heatsinks and rely on
server chassis fans to pull air across them for cooling. As a
result, it is not possible to adjust their fan speed (e.g., using
nvidia-smi) like desktop-class GPUs. Moreover, as we do not
have administrative privileges on the clusters, we could not pin
the frequency, power limit, or voltage ID. Instead, we verified
that all GPUs were configured to the maximum frequency and

Benchmark Input Size Clusters Collection
Observed Duration

SGEMM [57]
25536× 25536 Longhorn 6 Weeks
25536× 25536 Summit 8 Weeks
24576× 24576 Corona 2 Weeks

ResNet-50 [58] Train. Set: 1.2M images Longhorn 2 WeeksBatch size: 64

BERT [59] Train. Set: 30K words Longhorn 1 WeekBatch size: 64
LAMMPS [60] (x, y, z) = (8, 16, 16) Longhorn 2 Weeks
PageRank [61] 643994× 643994 Longhorn 2 Weeks

TABLE II: Summary of applications studied on HPC clusters.

power limit: 1530MHz and 300W for the V100s and 1800MHz
and 300W for the MI60s, respectively. We believe this setup is
still relevant because it demonstrates how much variability a
common HPC user, who does not have these privileges, would
see. Moreover, we observed similar variability on a smaller
CloudLab cluster where we had administrator privileges and
could pin frequency and power (Section VI-B).
Workloads: We selected four applications from parts of
CORAL-2 [54], a collection of benchmarks used to measure
exascale workload performance. To ensure that our workloads
stress different GPU components and thus provide a holistic
view of variability, we chose applications that are compute-
bound, memory-bound, or balanced [37], [55], [56]. Table II
summarizes the applications. SGEMM is a compute-intensive
matrix-multiply kernel that is widely used in a number of
workloads, including ML. ResNet-50 is a popular, multi-GPU,
compute-intensive ML training workload. BERT is a popular,
multi-GPU Transformer-based model that is part of the of
the widely used MLPerf training benchmark suite. LAMMPS
is a popular scalable scientific computing application that is
memory-bound our selected configuration. Finally, we tested
another memory-bound workload, PageRank, which is used
in the Havoq graph analytics benchmark. To ensure we study
both single GPU and multi-GPU runs, we run LAMMPS,
PageRank, and SGEMM on a single GPU while ResNet and
BERT are run across multiple GPUs. We also analyzed ResNet
when running as a single GPU application with batch size
scaled down appropriately to enable comparisons with the
multi-GPU ResNet experiments. To evaluate variability across
clusters, we ran SGEMM on all clusters; we ran all other work-
loads on TACC’s Longhorn cluster. We provide further details
about each application’s setup in their corresponding Results
& Analysis sections. Collectively, analyzing these workloads
helps us gauge whether GPU variability is application-specific
or not in HPC systems.
Measurement: We collected four metrics for the duration of
each application: kernel runtime (iteration runtime for ResNet-
50 and BERT) in milliseconds (ms), GPU CU/SM temperature
(°C), GPU CU/SM power consumption (Watts), and GPU
CU/SM frequency (MHz). To collect this data we use the
GPU vendor’s profilers [62], [63]. As in prior work [31],
we computed the recommended sample size (number of
GPUs) for each cluster to obtain λ = 0.5% accuracy for
average power within a 95% confidence interval. Given that
we sample measurements from almost all GPUs in each
cluster, our sample size is 2.9× larger than the worst-case



recommendations. Thus, our measurements are statistically
significant. Unless otherwise specified, we use the median of
each measurement to avoid one-off outliers. Since 1ms is the
minimum sampling interval for these profilers, we configured
our input sizes to ensure kernel durations were larger than 1ms.
To characterize applications as compute- or memory-intensive,
we also collected profiler metrics related to functional unit
(FU) utilization (the utilization level of arithmetic functional
units measured by nvprof on a scale of 0 to 10), DRAM
utilization, and stalls. As all the clusters we study are shared,
we collected measurements while other machines were in use.
However, for consistent measurement we ensured there was
no timesharing of our allocated nodes or GPUs during data
collection. By using exclusive allocations and staggered run
times, we eliminated spatial and temporal effects on variability
for all applications. We discuss spatial effects further in
Section VII. Finally, to protect against transient effects we
collected data for multiple runs on the same machine over
multiple days or weeks.
IQR & Variability: We use box and whiskers plots and
inter-quartile regression (IQR) to help determine variation
and categorize statistically significant outliers. Each box plot
represents the spread from quartile 1 to 3 (Q1 to Q3). The
center of the box represents the median (Q2). With IQR =
Q3−Q1, the upper and lower whiskers in the plot represent
Q3 + 1.5IQR and Q1 − 1.5IQR, respectively. The IQR
captures 99.3% of the Gaussian distribution within the box-
and-whisker format. We define range as the difference between
the upper and lower whiskers. We denote the variation of a
metric as range

Q2 and denote all data points that fall outside
the whiskers as outliers. Thus, outliers are not included in
our variance calculations.

IV. VARIATION ACROSS CLUSTERS
A. Methodology for SGEMM Application

We use SGEMM to study variability across clusters. Our
SGEMM application is a single SGEMM kernel that per-
forms matrix multiplication on two matrices containing single-
precision floats. To do this, we use optimized SGEMM
implementations from NVIDIA’s cuBLAS [57] and AMD’s
hipBLAS [64] libraries for the respective GPUs. To study
the effects of the GPU’s PM controller, it is important that
all streaming multiprocessors (SMs) or compute units (CUs)
are fully occupied and the work is evenly distributed across
SMs/CUs. Moreover, because the PM controller relies on
DVFS to maintain the power limit for safe operation [44], [65],
the kernel run must be long enough for the DVFS controller to
reach a stable state [37]. Thus, we carefully tuned the matrix
size (Table II) for both NVIDIA V100s and AMD MI60s to
(i) achieve a sufficient runtime (Section III), (ii) ensure high
performance, and (iii) provide high SM/CU occupancy.

We define 1 run of our experiment as 100 repetitions of the
SGEMM kernel. The repetitions help avoid statistical bias and
transient effects. Before collecting data, we run one warm-up
run to avoid counting cuDNN startup overheads [66], [67]. We
provide the exact same matrix inputs to every GPU, since the
data inputs themselves are not important in our study.

B. SGEMM on TACC Longhorn

Figure 2 shows aggregated box plots for kernel duration,
frequency, power, and temperature for SGEMM on Longhorn.
Overall, SGEMM has 9% performance variation on Longhorn.
Moreover, despite verifying that the GPUs are configured to
run at the highest frequency (1530MHz), Figure 2 shows
that the GPUs run at lower frequencies (1300-1440MHz).
The overall frequency variation is 140MHz or 11%. We also
observe a wide spread in temperatures (33°C between Q1 and
Q3). Furthermore, certain GPUs also run at power levels far
below 300W: at around 250W. This significant variation in
performance, power, and temperature motivated us to further
investigate the relationship between these metrics.

Figure 3 presents scatter plots between the distinct mea-
surement pairs. In Figure 3, although sometimes the slowest
kernels run on the GPUs at the highest temperatures – and the
fastest kernels run on the lowest temperature GPUs – overall
performance and temperature are not strongly correlated (ρ =
0.46). For example, multiple GPUs running at the same
temperature have up to a 200ms (10%) performance difference.
Additionally, the top-right of the performance vs temperature
plot shows a cluster of GPUs with both high temperature and
longer runtimes. This implies that if a GPU is running at a high
temperature (>78°C), it is likely to have worse performance.
However, this is not always the case, because other GPUs run
at similar temperatures but complete much faster (e.g., c004).
This is surprising because as frequency increases, temperature
is expected to increase. Moreover, usually higher frequencies
improve SGEMM’s performance [30], [44] and our results
agree with this trend. Figure 3c shows that performance and
frequency are strongly correlated on Longhorn (ρ = −0.97).
Further, Figure 3b shows that certain GPUs consume less than
290W, and these GPUs usually have lower performance and
higher temperatures. This indicates that higher temperature
levels may hurt performance. OVerall, these variations in
trends highlighted the need to examine these GPUs more
closely. So, we reported our findings to Longhorn system
administrators, which helped them perform early identification
of a poorly performing node and investigate it in greater detail.
Takeaway 1: Despite running the same kernel on similarly
configured GPUs, we see 9% performance variance across
GPUs in the Longhorn cluster, with temperature range ≥ 30°C
and some power outliers at 250W.

C. SGEMM on ORNL Summit

We next examine the larger Summit to see if similar patterns
are seen. As shown in Table I, Summit contains 27648 GPUs
and is water cooled. We collect the same measurements for
SGEMM as Longhorn. However, since Summit has so many
GPUs, we further breakdown our measurements based on the
particular row and column where a machine resides (using
node location references derived from ORNL’s layout [68]).

Figure 4 shows aggregated kernel duration, frequency,
power, and temperature box plots, grouped by rows. Similar
to Longhorn, Summit has 8% performance variation across



Fig. 2: Summary results for SGEMM on Longhorn cluster presented as box plots of (a) frequency, (b) kernel duration
(performance), (c) power, and (d) temperature. The color indicates the cabinet of the GPU.
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Fig. 3: Scatter plots for SGEMM on Longhorn showing that (a) performance and temperature have a weak positive correlation
(Pearson correlation coefficient ρ =0.46), (b) power and performance have a weak inverse correlation (ρ = −0.35), (c)
performance and frequency are strongly correlated (ρ = −0.97) and (d) power and temperature are uncorrelated (ρ = −0.1).
The color indicates the cabinet of the GPU.

all rows, with rows D and F having the most outliers (Fig-
ure 4a). Likewise, frequency variation (Figure 4b) is again near
100MHz across all rows, although rows D and F have some
outliers below 1300MHz. Moreover, although all row’s IQRs
(Figure 4c) range from 295-300W, a number of GPUs consume
less than 290W, especially in rows A and H. However, unlike
Longhorn, Summit’s temperature range is narrow: 40°-62°C.
This shows the benefits of water cooling [39] compared
to Longhorn, although water cooling does not significantly
impact frequency or performance variation.

Figure 5 shows Summit’s scatter plots. Similar to Takeaway
1, performance and frequency were directly correlated (ρ =
−0.99) on Summit (Figure 5a). However, unlike Longhorn,
Summit has a string of power outliers below 290W with
2510ms runtime (Figure 5b). This is unexpected, since GPUs
with a wide power range typically vary in their performance.

To understand these outliers, we analyzed row H, column
36 because of its variance in power consumption.1 We found

1See Appendix B graphs for this row-column pair.

that 7 of its nodes exhibited power outliers, with power as
low as 255W, while the remaining 9 nodes did not have any
outliers. However, despite the power outliers, nodes 10 and 11
did not have any temperature outliers, unlike Longhorn. Hence,
these two nodes show that although water cooling decreases
temperature variation, it does not prevent nodes from having
large performance and power variation. Moreover, the variance
in power consumption seen in row H, column 36 highlights the
difficulty in drawing conclusions from cluster-wide summaries
and provides another example of how our study can be used
to flag underperforming nodes early for system administrators
to investigate further, similar to Longhorn.

Takeaway 2: Summit and Longhorn have similar performance
and frequency variation trends, but Summit has severe power
outliers that are concentrated in a few rows.

Takeaway 3: While Summit and Longhorn have the same GPU
temperature setups, water cooling reduces temperature varia-
tion, but does not improve performance and power variation.



Fig. 4: Summary results for SGEMM on Summit, showing variation in (a) kernel duration (performance), (b) frequency, (c)
power, and (d) temperature. We breakdown box plots by row because of the large scale of the cluster.

Fig. 5: Scatter plots of Summit data showing (a) performance and frequency have strong negative correlation (ρ = −0.99) and
(b) performance and power have almost no correlation (ρ = −0.09). The color indicates the row for the GPU.

Fig. 6: Summary results for SGEMM on Corona presented as box plots of (a) frequency, (b) mean kernel duration (performance),
(c) power, and (d) temperature. Node c115 (green) is the outlier.

D. SGEMM on Corona LLNL

Since compute clusters use GPUs from multiple vendors,
it is important that we also examine how AMD GPUs vary.
Corona uses air-cooling for its AMD MI60 GPUs. We col-

lected the same measurements as Longhorn and Summit. How-
ever, unlike Longhorn and Summit we were unable to obtain a
system map and thus analyze our data by node. Nevertheless,
to improve readability we group nodes in “cabinets” of 12
GPUs, like the similarly-sized Longhorn cluster.



Fig. 7: Scatter plots for SGEMM on Corona showing correlations between (a) kernel duration (performance) and temperature
(ρ =0.20) and (b) kernel duration and power (ρ = −0.48). Node c115 (green) is the outlier.

Figure 6 presents aggregated box plots for our 4 metrics.
Individual data points are distinguished by our node groupings.
Overall, Corona exhibits 7% runtime variation (Figure 6b),
similar to Longhorn (9%) and Summit (8%). Interestingly,
frequency and performance are not as strongly correlated on
Corona (ρ = −0.76 on Corona, versus Longhorn’s −0.93 and
Summit’s −0.99), as Figure 6a shows much less variability
than Longhorn and Summit (Takeaways 1-2). Moreover, the
MI60s have coarser frequency levels than the NVIDIA V100s,
suggesting that the GPU vendor’s DVFS schemes vary signif-
icantly. Finally, the power (2%, Figure 6c) and temperature
(20%, Figure 6d) variability are similar to Longhorn. However,
whereas Longhorn has more power outliers consuming as little
as 250W, Corona only has one outlier node (c115) which
consumes 165W. Surprisingly Corona’s nodes never reach the
max power of 300W. Since the temperature are as high as
99°C (near the slowdown temperature), we believe the DVFS
controller heavily throttles the frequency (most frequencies
also do not reach the peak 1800MHz), thereby decreasing the
power since Pdynamic ∝ frequency.

To further analyze the outlier node, c115, Figure 7 correlates
our metrics. Corona’s kernel runtime and power relationship
(Figure 7b) is similar to Longhorn and matches expectations:
slower GPUs tend to consume less power. However, Summit
does not exhibit this trend, as similarly performing GPUs
in Summit exhibit a wide power range. The performance-
power correlation coefficients are −0.48 and −0.35 on the
similarly-sized Corona and Longhorn clusters, respectively, but
−0.09 on Summit. However, since the cluster sizes differ, we
also compared Summit against a scaled normal distribution of
Longhorn’s performance numbers to determine cluster size’s
impact. The scaled normal performance distribution projects
that the Longhorn data would have 9.4% variability on a
Summit-sized cluster. Since our actual Summit measurements
(Section IV-C) had 8% performance variability, this suggests
the cluster size may impact the severity of variability. Also,
while c115 runs very hot compared to most nodes (Figure 7a),
there is not a clear relationship between kernel runtime and
temperature (ρ =0.20). Typically higher temperatures occur
when GPUs run at higher frequencies and achieve better
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Fig. 8: Normalized performance variation within a GPU for
SGEMM on Longhorn, Summit, and Corona clusters.

performance. However, there are several nodes that run as hot
as c115 but which do not perform worse than the median GPU,
which likely rules out that this outlier was due to inadequate
air cooling. Moreover, all of these GPU’s temperatures are
near the slowdown temperature. Additionally, Summit nodes
that perform similarly also exhibit a wide temperature range.
For example, Corona GPUs performing around 2210ms have
a 25°C temperature range. Thus, c115 appears to be an under-
performing GPU and another candidate for further inspection
and potential replacement by the system administrators.

Lastly, a single GPU exhibits little performance variation
across independent application runs. Figure 8 shows the
normalized per-GPU performance variance for SGEMM on
various clusters. The median variance values are 0.44%, 0.12%
and 6.06% on Longhorn, Summit, and Corona, respectively.
Thus, our results are repeatable and any transient effects cause
only minor variations. Although there are a few outliers as
high as 12% (Longhorn node c002-010), we found that these
do not correspond to the worst performing GPUs. Instead,
they fall between the median and Q3, which suggests that
ill-performing GPUs are consistently ill-performing.
Takeaway 4: Corona’s AMD GPUs exhibit similar behavior to
the like-sized Longhorn cluster with NVIDIA GPUs. However,
the performance-power relationship in the larger Summit
differs from Corona and Longhorn, suggesting that cluster size
affects variability degree.

E. SGEMM on SNL Vortex

We also evaluated SGEMM’s behavior on SNL’s Vortex
cluster [48]. Vortex is similarly sized to Longhorn and Corona,



1340

1360

1380

1400

1420

1440

 F
re

qu
en

cy
 (M

H
z)

(a) (c) (d)

Cabinet: v0-v11 v12-v23 v24-v35 v36-v47 v48-v59

2300

2350

2400

2450

2500

K
er

ne
l D

ur
at

io
n 

(m
s)

(b)

295.0
295.5
296.0
296.5
297.0
297.5
298.0
298.5

Po
w

er
 (W

)

42.00

44.00

46.00

48.00

50.00

Te
m

pe
ra

tu
re

 (C
)

Fig. 9: SGEMM box plot summary results on SNL Vortex for (a) frequency, (b) performance, (c) power, and (d) temperature.

but is water-cooled whereas Longhorn and Corona are air-
cooled. We gathered data from 184 GPUs on Vortex. However,
we were unable to obtain information about their location
within the cluster. Thus, similar to Corona, we simplify
readability of plots by grouping nodes into “cabinets” of 12
GPUs.

Figure 9 shows aggregated box plots for kernel duration,
frequency, power, and temperature when the SGEMM kernel
is run on Vortex. We observed a performance variation (9%)
similar to Longhorn (9%) and Summit (8%) clusters. Despite
the GPUs being configured to run at the highest frequency
level (1530MHz), Figure 9 shows that they often run at lower
frequencies (1330-1442 MHz), similar to other clusters. These
frequencies vary by about 100 MHz or 10% between the
fastest and slowest GPUs observed. The temperature difference
between the GPUs has a narrower spread (10°C between Q1
and Q3) on Vortex than Longhorn. This is likely due to
Vortex’s use of water-cooling. From Figure 9c, we also observe
that all GPUs operated within 5W of the 300W power limit,
unlike Longhorn where some outliers consuming significantly
lower power (Figure 2).

Figure 10 presents correlations between the metrics. Similar
to Takeaway 1, on Vortex we again see a strong inverse
correlation between frequency and performance. Figure 10b
shows the correlation between temperature and kernel dura-
tion. Similar to Longhorn (Figure 3), multiple GPUs running
at the same temperature have up to a 200 ms (10%) difference
in performance. However, unlike Longhorn we do not observe
GPUs with high temperature having longer runtimes in Vor-
tex. Thus, temperature and performance apper to be weakly
correlated in water-cooled systems. This may be because all
observed GPUs are running relatively cooler (median 46°C)
when compared to Longhorn (median 66°C).

From these observations, we find a consistent trend across
Longhorn, Summit, Corona, and Vortex of performance vari-
ations being inversely correlated with changes in frequency.
To verify that these frequency changes occur due to DVFS
mechanisms employed by PM infrastructure, we examine
the timelines of frequency and power for two GPUs at the
extremes of kernel performance (Figure 11). We examine a
10s slice in the middle of the overall application run, during
which 4 SGEMM kernels are launched and run to completion.
Vertical lines indicate the start time of a new kernel. Figure 11a
shows that an SGEMM kernel is launched at 430.6s and the

GPU reports a frequency of 1340MHz. Similarly, a kernel
is launched on GPU-2 at 432s, with the GPU reporting an
initial frequency slightly under 1440MHz. As the kernels begin
executing, the frequency starts to rise along with an increase in
power draw (Figure 11b). However, as soon as power reaches
and exceeds the 300W TDP, the DVFS mechanism triggers a
frequency drop until the GPU reaches a state where the power
draw remains below 300W. Note that DVFS affects both GPUs
but GPU-1 crosses the power limit at much lower frequencies
than GPU-2 (GPU-1 runs at a median frequency of 1327 MHz,
whereas GPU-2 is running at 1440 MHz). This difference
in frequency translates into a 173 ms or 8% difference in
performance between the two GPUs, even when the GPUs
have the same temperature (44°C on average) and nearly the
same average power draw. These timelines demonstrate that
(1) differences in performance between GPUs is correlated to
changes in frequency, and that (2) these frequency changes
are driven by the PM infrastructure trying to keep power
consumption under the GPU’s TDP.

Overall, the findings on Vortex also reinforce Takeaway 3
– water cooling reduces temperature variation but does not
diminish performance or power variability.

F. SGEMM on TACC Frontera

Finally, we study TACC’s Frontera cluster. As specified in
Table I, Frontera is a mineral oil-cooled system with Turing-
class RTX 5000 GPUs [42], [47]. We compare results on
Frontera with that of the similarly sized Longhorn (air-cooled
V100 GPUs) and Vortex (water-cooled V100 GPUs) clusters.

Figure 12 shows aggregated box plots for our metrics,
grouped by cabinet number. Overall, Frontera shows 5%
performance variation and 7% frequency variation. Since
Quadro RTX GPUs have a faster boost clock [42] than Volta
V100s, Frontera’s range of operating frequencies is higher
than other clusters. Turing-class GPUs also have a lower TDP
(230W [42]), and almost all GPUs on Frontera operate within
5W of this limit, similar to Vortex and Longhorn. However,
two GPUs in cabinet c197 are outliers – they run 1100-1600ms
slower than the median kernel duration, 16°C cooler than the
median temperature, and consume 59W lesser than the median
power consumption. These outliers are similar to those on
Longhorn, Summit, and Corona. Moreover, similar to Corona,
presenting this data to system administrators led them to flag
the the pump that stirs the mineral oil in this cabinet for
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Fig. 10: Scatter plots for SGEMM on SNL Vortex showing (a) kernel duration (performance) and frequency have a strong
negative correlation (ρ = −0.98) and (b) kernel duration and temperature are uncorrelated (ρ =0.04).
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additional investigation – further demonstrating the benefits
of our approach in helping operators manage cluster operation
(discussed further in Section VII). Similar to the water-cooled
Vortex, Frontera has a narrow temperature spread (Q3−Q1 =
4°C), but the median temperature (76°C) is much higher than
Vortex (46°C). These temperature results indicate that mineral-
oil cooling lies somewhere between air and water-cooling in
effectiveness at reducing thermal variation.

Finally, Figure 13 presents scatterplots that correlate our
metrics. Despite the c197 outliers, there is a strong correlation
between performance and power/frequency (ρ = −0.96).
However, Figure 13b shows that GPUs consuming similar

amounts of power can have widely varying temperatures
(ρ = −0.1). This plot, together with observations from Vortex,
suggests that temperature correlation with other metrics is
weaker in systems cooled by water or mineral oil, as op-
posed to air-cooled clusters. Finally, the outlier on Frontera is
concentrated to one cabinet and performs significantly worse,
similar to outliers we observed on Summit (Takeaway 2).

V. VARIATION ACROSS APPLICATIONS

Overall, our study with SGEMM demonstrated that we can
see significant variation across different scales, GPU vendors,
and cooling approaches. However, SGEMM is a single compu-
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Fig. 12: SGEMM box plot summary results on Frontera for (a) frequency, (b) performance, (c) power, and (d) temperature.
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Fig. 13: Scatter plots for SGEMM on Frontera showing that (a) kernel duration (performance) and power have a strong negative
correlation (ρ = −0.96) and (b) power and temperature are almost uncorrelated (ρ = −0.1)

tationally intensive kernel. Thus, although SGEMM is widely
used in modern GPU applications, it may not be representative
of larger applications. Accordingly, we next study different
applications to determine whether variability is application-
specific or not.

A. ResNet-50 on TACC Longhorn

Given their widespread use on GPU-rich clusters, it is
important to understand performance variability for ML ap-
plications. Thus, we studied the ResNet-50 CNN for the
most intensive training phase. We chose the 50-layer version
because it is a stable, commonly used benchmark in the
HPC community [69], [70]. In general, ResNet-50 is com-
putationally intensive, especially for its kernels that perform
convolution. However, ResNet-50 also performs other, more
memory intensive operations, which reduce its overall compu-
tational intensity compared to SGEMM. This is confirmed by
examining FU utilization: averaging across kernels, ResNet-
50’s was 5.4 (on a 1−10 scale) while SGEMM’s FU utilization
was 10. This also aligns with observations from prior work
on classifying GPU applications [71]. Our training set uses
1.2 million images from ImageNet with batch size 64. We
define one training run as 500 iterations. Note that we did
not complete training on our entire training set; 500 training
iterations was sufficiently long to collect profiling data while
training was stable. Finally, since ResNet-50 is commonly
trained using multiple GPUs, we trained across four GPUs
on one node and trained 3−4 times per node. Like SGEMM,
before collecting data we perform one warm up run.

Unlike SGEMM, ResNet-50 has ≈85 unique kernels and
over 1.3 million kernels per run. Since 75% of these kernels
run for less than 2ms, accurately measuring them is challeng-
ing (Section III). Thus, averaging kernel duration would not
fairly characterize its overall performance. Hence, for ResNet-
50 we use iteration duration instead of kernel duration as our
performance metric; iteration duration is also more informative
for HPC users training ML models. All other metrics are
the same as SGEMM. However, we ignore the initialization
kernels (e.g., NCCL) to avoid one-time startup costs.

Figure 14 presents ResNet-50’s aggregated box plots on
Longhorn for our 4 metrics. Unlike our SGEMM experiments
on Longhorn (Section IV-B), ResNet-50 has little frequency
variation and most nodes run at the max 1530MHz. However,
ResNet-50 has 22% performance variation (Figure 14b), our
largest observed variation. The temperature variation (Fig-
ure 14d) is similar to SGEMM’s: a 30°C range. Surprisingly,
unlike SGEMM there is significant power variation (104%,
Figure 14c). We believe this reflects ResNet-50’s more varied
behavior across its different kernel types – although its con-
volution kernels are similar to SGEMM, ResNet-50’s other,
less computationally intense kernels have less onerous power
demands. Consequently, the DVFS algorithm does not need to
reduce voltage or frequency to remain beneath the TDP.

Figure 15 presents scatter plots of our distinct metrics. Fig-
ure 15a shows that most iterations complete within 100-150ms
and GPUs have frequencies around 1530MHz. However, sur-
prisingly, there are tails on both axes. In particular, several
c008 runs have much lower frequency yet perform similarly to



Fig. 14: Multi-GPU ResNet-50 Longhorn box plot summaries for (a) frequency, (b) performance, (c) power, and (d) temperature.

Fig. 15: Scatter plots for multi-GPU ResNet-50 experiments on Longhorn showing (a) iteration duration (performance) and
frequency are almost uncorrelated (ρ = −0.01) and (b) iteration duration and power have a negative correlation (ρ = −0.48).

those running at the max 1530MHz. Meanwhile, several GPUs
in c002 run at 1530MHz (Figure 15a), but perform poorly and
consume much less power (Figure 15b). We expect c002’s
stragglers to consume more power than the tail of c008’s
runs, since Pdynamic ∝ frequency. However, we observe the
opposite: c002’s worst performing runs consume much less
power (as low as 76W) than c008 and other cabinets. This
differs from Longhorn’s SGEMM runs. Thus, ResNet-50 and
SGEMM’s variability and correlation differences on Longhorn
suggest that variability is application-specific. Moreover, 8 of
the 10 worst-performing GPUs for SGEMM were also outliers
for ResNet, highlighting that variability is not transient and
some GPUs consistently do not perform well.

We also ran ResNet as a single-GPU experiment with the
same training set but proportionally scale the batch size to 16.
Figure 16 presents the aggregated boxplots for the single-GPU
experiments. Similar to the multi-GPU runs, power consump-
tion stays well within TDP limits for all GPUs, hence they
run at the max frequency of 1530MHz and observe little PM
interference. The absolute power consumption values are lower
than multi-GPU experiments, but we still see a significant
median power variation (24%) across GPUs. Similarly, the
absolute iteration duration values are also lower than the multi-
GPU results, but single-GPU ResNet continues to demonstrate
significant performance variability (14%). While the c002
outliers observed for SGEMM and multi-GPU ResNet still run
at high temperatures (Figure 16(d)), they demonstrate lower
degradation in performance compared to multi-GPU ResNet.
This shows that multi-GPU jobs with a bulk synchronous
pattern end up running as fast as the slowest GPU, leading

to larger performance degradation.
Takeaway 5: ResNet-50 exhibits the highest performance vari-
ability (22% for multi-GPU, 14% in single-GPU) across all
our benchmarks. Moreover, the difference in ResNet-50’s and
SGEMM’s compute intensities, and the significant difference in
performance-frequency correlations, suggests that variability
is application-specific.

B. BERT on TACC Longhorn

Given the increasing adoption of Transformer-based mod-
els [7], [19], [72]–[79], we also study another multi-GPU ML
workload: pre-training of Bidirectional Encoder Representa-
tions from Transformers (BERT) [59]. BERT is widely used
in Natural Language Processing (NLP) and is in the popular
MLPerf suite [69], [70]. We used BERTLARGE , which has
24 encoders with 16 bidirectional self-attention heads. Our
training set was 30522 words and uses a batch size of 64.
Like ResNet, we limit each training run to 250 iterations and
run across all 4 GPUs in a node. We performed one warm
up run and then performed measurements 5 times on each
node. Overall we observed 53 nodes in Longhorn for BERT
and collect the same metrics as ResNet. Similar to ResNet, we
omit the initialization kernels to avoid one-time startup costs.

Figure 17 shows aggregated box plots on Longhorn for
our 4 metrics. Compared to ResNet, BERT has less over-
all power consumption (Figure 17c): BERT’s median power
consumption is around 40W lower. This is expected because
ResNet uses more compute intensive GEMMs, which increase
its power consumption. In comparison, BERT’s GEMMs are
much less computationally intensive: although GEMMs make



Fig. 16: Single-GPU ResNet-50 box plot summaries for (a) frequency, (b) performance, (c) power, and (d) temperature.

Fig. 17: Multi-GPU BERT box plot summaries on Longhorn for (a) frequency, (b) performance, (c) power, and (d) temperature.

up 30-65% of its total runtime, they only utilize 40-50% of
the GPU [78], [80]–[82] – which decreases BERT’s overall
power consumption. Nonetheless, like ResNet there is large
power variability (≈87%). However, because BERT is less
computationally intensive than ResNet, it has less performance
variability (≈8%) and fewer frequency outliers (Figure 17b
and Figure 17a, respectively). Perhaps unsurprisingly, the
performance outliers in Figure 17 in cabinet c002 on Longhorn
are also outlier nodes for ResNet in Figure 14b. This suggests
that the same GPUs perform poorly for both ML applications.
Takeaway 6: Like ResNet-50, BERT exhibits large power
variability. However, BERT’s less computationally intensive
GEMMs reduce performance variability (8%). Moreover,
BERT’s and ResNet-50’s outlier nodes are the same.

C. LAMMPS on TACC Longhorn

LAMMPS is a popular molecular dynamics (MD) appli-
cation that simulates a variety of atomic and molecular sys-
tems [60]. Whether LAMMPS is compute or memory-bound
depends on the selected settings and hardware [54], [83],
[84]. We chose to use the REAXC setting [85] to simulate a
chemical reaction. When REAXC is run in a distributed multi-
GPU setup with large simulation sizes, LAMMPS is compute-
intensive [54]. However, to compare LAMMPS variability
with SGEMM, we ran it as a single-GPU experiment, with
input configuration parameters (x, y, z) that determine GPU
occupancy and are limited by the 16GB device memory
on NVIDIA V100s. After careful tuning, we selected the
(8,16,16) input size, which lead to high GPU utilization,
while still remaining within device memory limits. Profiling
shows that LAMMPS has 42× higher DRAM utilization
than ResNet, while ResNet kernels utilized FUs 4.3× more

than LAMMPS. Thus, LAMMPS is memory-bound in our
experiments.

Each LAMMPS run is composed broadly of 2 types of
kernels, short-running (≤60µs long) and long-running kernels
(4 unique kernels, 20-200ms long). Long-running kernels
make up 98% of the total runtime of a LAMMPS job but
there are 4 unique long kernels interspersed with short ones.
Thus, similar to ResNet-50, median kernel duration is not a
good performance measure. We therefore use the sum of all
large kernel durations as our performance metric. All other
metrics are measured as specified in Section III.

Figure 18 presents LAMMPS’ aggregated box plots on
Longhorn for our 4 metrics. Interestingly, median power for
all LAMMPS jobs was ≤180 W (Figure 18c), in contrast to
more compute-intensive applications such as SGEMM, which
often touched V100 TDP. Moreover, similar to BERT and
ResNet-50, frequency quickly saturates to the maximum value
of 1530MHz (Figure 18a) and does not change throughout
the course of the job. Additionally, performance varies by less
than 1% in Figure 18b, which completely differs from BERT
(8%), SGEMM (9%), and ResNet-50 (22%). However, we still
observe power variability of 20% and temperature variability
of 8°C between Q1 and Q3 (Figure 18d). These observations
are in line with prior work [83] and emphasize that high energy
consumption is undesirable in a memory-bound application
because it is not accompanied by any significant increase in
performance. In part, this happens because the GPU’s memory
frequency is lower than the compute frequency, and even if the
application is memory-bound, this does not stress the TDP as
much as the compute-heavy applications. Overall, this suggests
that (i) SM frequency gets pinned in applications that are
less compute-intensive (ii) performance of such applications



Fig. 18: LAMMPS box plot summary results on Longhorn for (a) frequency, (b) performance, (c) power, and (d) temperature.

Fig. 19: PageRank box plot summary results on Longhorn for (a) frequency, (b) performance, (c) power, and (d) temperature.

is relatively more predictable with very low variability in
application runtime and (iii) significant temperature and power
variability are still observed across GPUs.
Takeaway 7: Similar to Takeaway 5, LAMMPS’ results show
that variability is application-specific with memory-intensive
applications seeing lower performance variance, but still
having significant power and temperature variability.

D. PageRank on TACC Longhorn

PageRank is a popular graph analytics algorithm that is
used in recommender systems, search engines, social network
analysis, and bibliometrics [86]. Although neither push- nor
pull-based graph analytics algorithms always provide the best
performance on GPUs [87]–[89], we focus on pull-based
algorithms because they are more widely used. The most
common PageRank algorithm utilizes Sparse matrix-Vector
(SPMV) computation [61], [86]. Since PageRank’s sparsity
is input graph dependent, its memory access pattern can be
highly irregular and often dwarfs the amount of compute,
making it both memory bandwidth-bound and highly irregular.
We chose an input graph that fully utilizes the SMs of a V100
GPU and provides sufficiently long kernels runtimes (Sec-
tion III). We ran PageRank with rajat30, an undirected graph
for circuit simulation [90]. The other configuration parameters
are the same as SGEMM on Longhorn. Like LAMMPS,
SPMV computations are also memory bound, but irregular.
Consequently, they do not stress memory as much: LAMMPS
has 4.24× higher DRAM utilization than PageRank. However,
PageRank kernels had 61% memory dependency stalls, versus
7% for LAMMPS and 3% for SGEMM. PageRank also had
negligible FU execution dependency stalls (12× less than
SGEMM), showing that PageRank is not compute-bound.

Figure 19 summarizes Longhorn variability for PageRank.
Similar to LAMMPS (Section V-C), PageRank has little fre-
quency variation and very little performance variability (1%)
across GPUs. However, we observed 22% variability in median
power across runs and a temperature variation of 8°C between
Q1 and Q3, as seen with LAMMPS.
Takeaway 8: Like LAMMPS (Takeaway 6), PageRank has
little frequency and performance variation. This suggests that
memory-bound workloads can use worse-performing nodes
without significant performance penalty.

VI. VARIATION ACROSS TIME, POWER BUDGET

Next, we analyze how variability changes across days of the
week and how the GPU power limit affects variability.

A. Variation Across Days of the Week

To determine if the variations we observed on these clusters
hold over time, we ran SGEMM on Summit on each day of
the week across a period of eight weeks. Figure 20 shows
a consistent trend across each day of the week: around 8%
variation. On Mondays, Wednesdays, and Fridays there is a
higher concentration of GPUs which consume below 290W.
However, even with more power outliers, performance on these
days is very similar to the rest of the week and Takeaways
1-3, as is also shown in Figure 5.

Longhorn also shows similar trends, as shown in Figure 21.
There is consistent performance variability across all days of
the week. Compared to Summit, however, the variation is
lower - around 3% each day. We also observe more outliers
on Mondays, Thursdays and Fridays than other days of the
week.



Fig. 20: Day of the week summary results for Summit. We see more power outliers on Mondays, Wednesdays, and Fridays.
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Fig. 21: Day of the week summary results for Longhorn. We observed performance outliers on Mondays, Thursdays and
Sundays.

Takeaway 9: The variability we observe is consistent through-
out the week, suggesting that regardless of when the experi-
ments are run, our observations hold.

B. Varying Power Limit

We also studied how varying a GPU’s power limit affects
variability. Varying the power limit (e.g., using nvidia-smi)

requires administrative access. Since we did not have ad-
ministrator (root) access on the large compute clusters, we
used the smaller CloudLab [46]. As discussed in Section III,
CloudLab has 12 NVIDIA V100 GPUs. Figure 22 shows
the performance variation as the power limit varies from
100-300W while running SGEMM. Interestingly, unlike prior



Fig. 22: Performance variation of SGEMM on NSF CloudLab
GPUs when varying the power limit.

work [30] performance variation was similar when pinning and
not pinning (Section IV-B). Rather, our variability results for a
300W limit are in line with those from the large clusters: 9%
variation. Moreover, as expected, the kernel durations increase
with lower power limits. However, variability and the number
of outliers also increase with lower power limits. For example,
at a 150W limit there is 18% variability versus 9% at a 300W
limit. Our conversations with GPU manufacturers indicate that
this is potentially occurring because GPU DVFS algorithms
are less optimized for extremely low power budgets, but
variability under power limits would become important if
future exascale machines are operating under a varying power
budget [91].

VII. CONCLUSIONS AND TAKEAWAYS

Modern compute clusters are embracing accelerator-rich
systems, especially GPUs. Although prior work has identified
how variability in CPUs affects these systems, it is unclear
how much GPU variability affects these systems. Thus, we
conducted a detailed study and analysis of how GPU vari-
ability affects a wide range of modern HPC and scientific
workloads across five computing centers of varying scales,
cooling methods, and GPU vendors. Our results show that
there is significant variability in these systems: up to 22%
for the applications, with outliers up to 1.5× slower than
the median GPU. This demonstrates the need to embrace
variability in future accelerator-based systems. We conclude
by highlighting several implications and mitigation strategies
that practitioners and researchers can pursue in the future:
Impact on Users: In addition to the performance variation,
inter-experiment variability is also important. For example,
when running SGEMM on Longhorn, 18% of the GPUs are 6-
7% (or about 150ms) slower than the fastest GPUs. Thus, users
running SGEMM-like single GPU experiments would have
an 18% chance of being assigned a slower GPU. In Summit,
again with SGEMM, 9% of the GPUs are 6-7% (or about
160ms) slower than the fastest GPUs. Thus, users running
a single GPU experiment on Summit have a 9% chance of
being assigned a slower GPU. Like Longhorn, Summit also
has variance within specific GPUs. Users running multi-GPU
experiments are even more likely to be assigned a slower GPU:
if a user requests 4 GPUs on Longhorn, 40%-50% of the time
they will be assigned a slower GPU.We also observed this in
our multi-GPU BERT and ResNet-50 experiments.

Spatial Effects: For all of our experiments, we obtained exclu-
sive access to a machine and all its GPUs. This eliminated any
spatial effects from jobs running on neighboring GPUs. While
this is the typical allocation mode in modern supercomputing
clusters, spatial effects would be relevant for other scenarios
like cloud computing or enterprise clusters [92] where GPUs
are allocated individually. We plan to study both spatial and
temporal (i.e., variability due to a preceding job run on the
same GPU) effects in the future.
Blacklisting, Maintenance: Cluster operators can use our
study to improve the cluster’s operation and help develop
strategies for better maintenance. For example, our study has
already helped TACC’s operators identify and perform targeted
maintenance on problematic nodes with clearly underperform-
ing GPUs in Frontera and Longhorn. Performing periodic
variability benchmarking can help automate this.
Application-aware Frameworks: Since performance varia-
tion is application dependent, the next generation of HPC
allocation frameworks should take application properties into
account to mitigate variance. Similar to prior work [71], our
profiling indicates that metrics like FU utilization, DRAM uti-
lization, and memory stalls can be used by operators to classify
applications and modify schedulers to assign medium- and
high-compute intensity workloads on nodes with less variation.
Similarly, memory-bound applications can be run on higher-
variation nodes without incurring significant performance loss.
However, this may change in future as thermal performance
degrades below 14nm [93].
New Hardware and System Design: A major limiter to
further improving efficiency is the lack of standards for
exposing power information in modern accelerators. Thus, for
future systems, designers can build on the insights generated
by our benchmarks for current systems and apply co-design
that makes the hardware, software, and runtime layers aware of
the variance in the systems. To do this, we will need to design
a standard for accelerators to expose PM information from the
hardware to the software and runtime. Using this information,
we can develop techniques for global power management
that can enable optimal PM decisions across accelerators and
further reduce performance variability.
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[28] T. Patel, A. Wagenhäuser, C. Eibel, T. Hönig, T. Zeiser, and D. Tiwari,
“What does Power Consumption Behavior of HPC Jobs Reveal? :
Demystifying, Quantifying, and Predicting Power Consumption Char-
acteristics,” in IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS, 2020, pp. 799–809.

[29] D. Skinner and W. Kramer, “Understanding the causes of performance



variability in HPC workloads,” in Proceedings of the IEEE Workload
Characterization Symposium, ser. IISWC, 2005, pp. 137–149.

[30] T. Scogland, J. Azose, D. Rohr, S. Rivoire, N. Bates, and D. Hackenberg,
“Node Variability in Large-Scale Power Measurements: Perspectives
from the Green500, Top500 and EEHPCWG,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2807591.2807653

[31] T. R. Scogland, C. P. Steffen, T. Wilde, F. Parent, S. Coghlan,
N. Bates, W.-c. Feng, and E. Strohmaier, “A Power-Measurement
Methodology for Large-Scale, High-Performance Computing,” in
Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 149–159. [Online].
Available: https://doi.org/10.1145/2568088.2576795

[32] B. Acun, P. Miller, and L. V. Kale, “Variation Among Processors
Under Turbo Boost in HPC Systems,” in Proceedings of the 2016
International Conference on Supercomputing, ser. ICS ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2925426.2926289

[33] B. Acun and L. V. Kale, “Mitigating Processor Variation through Dy-
namic Load Balancing,” in IEEE International Parallel and Distributed
Processing Symposium Workshops, ser. IPDPSW, 2016, pp. 1073–1076.

[34] B. Acun, E. K. Lee, Y. Park, and L. V. Kale, “Support for Power Efficient
Proactive Cooling Mechanisms,” in IEEE 24th International Conference
on High Performance Computing, ser. HiPC, 2017, pp. 94–103.

[35] H. Menon, B. Acun, S. G. De Gonzalo, O. Sarood, and L. Kalé,
“Thermal aware automated load balancing for HPC applications,” in
IEEE International Conference on Cluster Computing, ser. CLUSTER,
2013, pp. 1–8.

[36] K. Zhang, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran,
and P. Beckman, “Minimizing Thermal Variation Across System Com-
ponents,” in IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS, 2015, pp. 1139–1148.

[37] J. Coplin and M. Burtscher, “Energy, Power, and Performance
Characterization of GPGPU Benchmark Programs,” in IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops,
ser. IPDPSW, May 2016, pp. 1190–1199. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPSW.2016.164

[38] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and Performance
Characterization of Computational Kernels on the GPU,” in IEEE/ACM
International Conference on Green Computing and Communications &
International Conference on Cyber, Physical and Social Computing,
2010, pp. 221–228.

[39] G. Ostrouchov, D. Maxwell, R. A. Ashraf, C. Engelmann, M. Shankar,
and J. H. Rogers, “GPU Lifetimes on Titan Supercomputer: Survival
Analysis and Reliability,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’20. IEEE Press, 2020.

[40] NVIDIA, “NVIDIA Tesla V100 GPU Architecture The World’s
Most Advanced Data Center GPU,” http://www.nvidia.com/object/
volta-architecture-whitepaper.html , NVIDIA, 2017.

[41] AMD, “AMD Radeon Instinct MI60,” https://www.amd.com/system/
files/documents/radeon-instinct-mi60-datasheet.pdf, 2018.

[42] NVIDIA, “NVIDIA Turing GPU Architecture Graphics
Reinvented,” https://images.nvidia.com/aem-dam/en-zz/
Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf, 2018.

[43] S. Bharadwaj, S. Das, K. Mazumdar, B. Beckmann, and S. Kosonocky,
“Predict; Do not React for Enabling Efficient Fine Grain DVFS in
GPUs,” 2022. [Online]. Available: https://arxiv.org/abs/2205.00121

[44] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,
“Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU,” in
42nd International Conference on Parallel Processing, ser. ICPP, 2013,
pp. 826–833.

[45] P. Meinerzhagen, C. Tokunaga, A. Malavasi, V. Vaidya, A. Mendon,
D. Mathaikutty, J. Kulkarni, C. Augustine, M. Cho, S. Kim, G. Matthew,
R. Jain, J. Ryan, C.-C. Peng, S. Paul, S. Vangal, B. P. Esparza,
L. Cuellar, M. Woodman, B. Iyer, S. Maiyuran, G. Chinya, C. Zou,
Y. Liao, K. Ravichandran, H. Wang, M. Khellah, J. Tschanz, and V. De,
“An energy-efficient graphics processor featuring fine-grain DVFS with
integrated voltage regulators, execution-unit turbo, and retentive sleep

in 14nm tri-gate CMOS,” in IEEE International Solid - State Circuits
Conference, ser. ISSCC, 2018, pp. 38–40.

[46] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The Design and Operation of Cloudlab,” in Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Conference,
ser. USENIX ATC, 2019, p. 1–14.

[47] TACC, “Texas Advanced Computing Center,” https://www.tacc.utexas.
edu/, 2021.

[48] SNL, “Sandia National Laboratories,” https://www.sandia.gov/asc/
advanced-simulation-and-computing/computational-systems/haaps/,
2022.

[49] ORNL, “Oak Ridge National Laboratory,” https://www.olcf.ornl.gov/
summit/, 2022.

[50] LLNL, “Lawrence Livermore National Laboratory,” https://hpc.llnl.gov/
hardware/compute-platforms/corona, 2022.

[51] M. Chandrasekhar, “AMD Radeon Community Update: More Control
Over GPU Power and Performance, Enhanced Thermal Monitoring,
Maximized Performance,” https://community.amd.com/t5/gaming/
amd-radeon-community-update-more-control-over-gpu-power-and/
ba-p/418629, 2019.

[52] SafeTemp, “AMD Radeon RX Vega 11 Max Temp,” https://safetemp.
blogspot.com/2021/11/amd-radeon-rx-vega-11-max-temp.html,
November 2021.

[53] “GPU Fan Speed Measurements,” https://groups.google.com/g/
cloudlab-users/c/mBhDK-MoWs8/m/KkijNWgeAAAJ.

[54] Lawrence Livermore National Labs, “CORAL-2 Benchmarks,” https:
//asc.llnl.gov/coral-2-benchmarks, 2020.

[55] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Igna-
towski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi, O. Kayiran, M. Meswani, I. Paul, M. Poremba,
S. Raasch, S. K. Reinhardt, G. Sadowski, and V. Sridharan, “Design and
analysis of an apu for exascale computing,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2017,
pp. 85–96.

[56] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler,
and W. J. Dally, “Scaling the power wall: A path to exascale,” in SC
’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014, pp. 830–841.

[57] NVIDIA, “cuBLAS,” https://developer.nvidia.com/cublas.
[58] “ResNet: Deep residual networks pre-trained on ImageNet,” https://

pytorch.org/hub/pytorch vision resnet/.
[59] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, ser. NAACL-HLT, J. Burstein, C. Doran, and T. Solorio,
Eds. Association for Computational Linguistics, 2019, pp. 4171–4186.
[Online]. Available: https://doi.org/10.18653/v1/n19-1423

[60] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,” Comp.
Phys. Comm., vol. 271, p. 108171, 2022.

[61] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” in IEEE Inter-
national Symposium on Workload Characterization, ser. IISWC, Sept
2013, pp. 185–195.

[62] NVIDIA Corp, “Profiler User’s Guide,” https://docs.nvidia.com/cuda/
profiler-users-guide/index.html, 2018.

[63] Advanced Micro Devices, Inc., “System Management Interface (SMI),”
https://rocmdocs.amd.com/en/latest/ROCm System Managment/
ROCm-System-Managment.html, 2022.

[64] AMD, “hipBLAS Library,” https://github.com/ROCmSoftwarePlatform/
hipBLAS, 2020.

[65] NVIDIA, “NVIDIA Tesla V100 GPU Architecture The World’s
Most Advanced Data Center GPU,” http://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2017.

[66] Y. H. Chou, C. Ng, S. Cattell, J. Intan, M. D. Sinclair, J. Devietti, T. G.
Rogers, and T. M. Aamodt, “Deterministic Atomic Buffering,” in 53rd



Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO, Oct 2020, pp. 981–995.

[67] NVIDIA, “cuDNN Frontend API,” https://github.com/NVIDIA/
cudnn-frontend#execution-plan-caching, 2021.

[68] “Job Step Viewer - Summit ORNL,” https://jobstepviewer.olcf.ornl.gov/
summit/871957-1.

[69] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang, G.-Y. Wei, and
C.-J. Wu, “MLPerf: An Industry Standard Benchmark Suite for Machine
Learning Performance,” IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020.

[70] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks,
D. Chen, D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang,
D. Kang, D. Kanter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi,
G. Pekhimenko, L. Pentecost, V. Janapa Reddi, T. Robie, T. St John,
C.-J. Wu, L. Xu, C. Young, and M. Zaharia, “MLPerf Training
Benchmark,” in Proceedings of Machine Learning and Systems,
I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2, 2020, pp.
336–349. [Online]. Available: https://proceedings.mlsys.org/paper/2020/
file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

[71] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “DVFS-aware
application classification to improve GPGPUs energy efficiency,”
Parallel Computing, vol. 83, pp. 93–117, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819118300243

[72] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” in Proceedings of the Third
International Conference on Learning Representation, ser. ICLR, 2015.

[73] G. M. Correia, V. Niculae, and A. F. T. Martins, “Adaptively Sparse
Transformers,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing, ser. EMNLP-IJCNP, 2019.

[74] N. Kitaev, Łukasz Kaiser, and A. Levskaya, “Reformer: The Efficient
Transformer,” in Proceedings of the Eighth International Conference on
Learning Representation, ser. ICLR, 2020.

[75] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A Lite BERT for Self-supervised Learning of Language Rep-
resentations,” in Proceedings of the Seventh International Conference on
Learning Representation, ser. ICLR, 2019.

[76] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
ser. EMNLP. Lisbon, Portugal: Association for Computational
Linguistics, Sep. 2015, pp. 1412–1421. [Online]. Available: https:
//www.aclweb.org/anthology/D15-1166

[77] T. Shen, T. Zhou, G. Long, J. Jiang, and C. Zhang, “Bi-Directional
Block Self-Attention for Fast and Memory-Efficient Sequence Model-
ing,” in Proceedings of the Sixth International Conference on Learning
Representation, ser. ICLR, 2018.

[78] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using Model Parallelism,” 2019.

[79] J. Zhu, Y. Xia, L. Wu, T. He, Di amd Qin, W. Zhou, H. Li, and T. Liu,
“Incorporating BERT into Neural Machine Translation,” in Proceedings
of the Eighth International Conference on Learning Representation, ser.
ICLR, 2020.

[80] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler,
“Data Movement Is All You Need: A Case Study on Optimizing
Transformers,” in Proceedings of Machine Learning and Systems,
A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3, 2021, pp.
711–732. [Online]. Available: https://proceedings.mlsys.org/paper/2021/
file/c9e1074f5b3f9fc8ea15d152add07294-Paper.pdf

[81] S. Pati, S. Aga, N. Jayasena, and M. D. Sinclair, “Demystifying BERT:
Implications for Accelerator Design,” 2021.

[82] A. H. Zadeh, Z. Poulos, and A. Moshovos, “Deep Learning Language
Modeling Workloads: Where Time Goes on Graphics Processors,”
in IEEE International Symposium on Workload Characterization, ser.
IISWC, IEEE. Washington, DC, USA: IEEE Computer Society, 2019,
pp. 131–142.

[83] V. Vecher, V. Nikolskii, and V. Stegailov, “GPU-Accelerated Molecular
Dynamics: Energy Consumption and Performance,” in Supercomputing,
V. Voevodin and S. Sobolev, Eds. Cham: Springer International
Publishing, 2016, pp. 78–90.

[84] H. Aktulga, J. Fogarty, S. Pandit, and A. Grama, “Parallel
reactive molecular dynamics: Numerical methods and algorithmic

techniques,” Parallel Computing, vol. 38, no. 4, pp. 245–259, 2012.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167819111001074

[85] T.-R. Shan, R. Wixom, C. Yarrington, and A. Thompson, “Atomistic
Simulation of Initiation in Hexanitrostilbene,” in APS Shock Com-
pression of Condensed Matter Meeting Abstracts, ser. APS Meeting
Abstracts, Jun. 2015, p. Y5.003.

[86] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web.” November 1999,
previous number = SIDL-WP-1999-0120. [Online]. Available: http:
//ilpubs.stanford.edu:8090/422/

[87] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, “To
Push or To Pull: On Reducing Communication and Synchronization
in Graph Computations,” in Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 93–104. [Online]. Available: https://doi.org/10.
1145/3078597.3078616

[88] G. Salvador, W. H. Darvin, M. Huzaifa, J. Alsop, M. D. Sinclair, and
S. V. Adve, “Specializing Coherence, Consistency, and Push/Pull for
GPU Graph Analytics,” in IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ser. ISPASS, 2020.

[89] T. Sorensen, S. Pai, and A. F. Donaldson, “One Size Doesn’t Fit All:
Quantifying Performance Portability of Graph Applications on GPUs,”
in IEEE International Symposium on Workload Characterization, ser.
IISWC, November 2019.

[90] SuiteSparse Matrix Collection, “Rajat/rajat30 circuit simulation matrix,”
https://sparse.tamu.edu/Rajat/rajat30, 2006.

[91] Office of Advanced Scientific Computing Research, “Energy Effi-
cient Hardware and Software Design Constrained to a Power En-
velope of 20 Megawatts,” https://science.osti.gov/-/media/grants/pdf/
lab-announcements/2013/LAB 13-02.pdf, 2021.

[92] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN
Training Workloads,” in 2019 USENIX Annual Technical Conference,
ser. USENIX ATC, 2019, pp. 947–960.

[93] K. Heyman, “DRAM Thermal Issues Reach Crisis Point,” https://
semiengineering.com/dram-thermal-issues-reach-crisis-point/, 2022.



APPENDIX A
ARTIFACT DESCRIPTION/EVALUATION

A. Abstract

This artifact provides container specifications and scripts
for reproducing experiments that measure and benchmark
variability of GPUs across different applications. The artifact
can be used to run different benchmarks across machine
learning, molecular dynamics and graph analytics. We also
include scripts that use vendor-specific profiling tools to
measure power (W), temperature (° C), frequency (MHz) and
performance (kernel runtime/iteration duration/total runtime
depending on application). The experiments, their correspond-
ing paper sections and the base framework/tools used to run
them are summarised in Table III.

Experiment Section Base Framework/
Tools Used

SGEMM on IV-A CUDA 10.1, nvcc 10.1
NVIDIA GPUs [57] NVProf 10.1, gcc 4.8.5

SGEMM on IV-D ROCm 4.0.1AMD GPUs [57]

ResNet-50 [58] V-A CUDA 10.1, NVProf 10.1
PyTorch 1.9

BERT [59] V-B CUDA 10.1, NVProf 10.1
PyTorch 1.9

LAMMPS [60] V-C CUDA 10.1, NVProf 10.1,
nvcc 10.1

PageRank [61] V-D CUDA 10.1, NVProf 10.1
nvcc 10.1

TABLE III: Summary of experiments in artifact.

B. Artifact Metadata

• Persistent ID: DOI: 10.5281/zenodo.7010207
• GitHub URL: https://github.com/hal-uw/gpu

variability sc22 artifact
• Artifact name: Artifact: Characterizing Variability in

Large-Scale, Accelerator-Rich Systems
• Run-time environment: Singularity
• Dependencies: See Section A-C1

C. Description

The artifact is organized into directories per-experiment
(and GPU vendor) to allow any subset of the paper’s ex-
periments to be reproduced independent of one another. We
include separate singularity scripts for each experiment. These
scripts pull container images, install all dependencies and
compile library code into respective application binaries. Di-
rections to run each application using these scripts can be
found in the respective application’s README.md file. At the
end of the READMEs, we also provide troubleshooting/FAQ
sections for common errors that users could encounter, and
how to resolve them.

1) Prerequisites: The following hardware and software
dependencies must be satisfied to run the experiments suc-
cessfully:

• Machine/compute node with an NVIDIA/AMD GPU
• Relevant GPU drivers are installed
• Singularity is installed

All the build and run scripts have been tested with Singular-
ity v3.7.2-4.el7a on either NVIDIA V100 (Volta), RTX 5000
(Turing), or AMD MI60 GPUs.

2) Installation: The artifact repository can be accessed
through the persistent DOI https://doi.org/10.5281/zenodo.
7010207. The main README file in the artifact provides step-
wise instructions on cloning the repository and points to per-
application instructions for running different experiments.

3) Customization: Each experiment can be customized for
different GPU architectures, different input sizes, and different
iterations/time steps. For instance, all of the NVIDIA scripts
assume a Volta V100 GPU by default, but the scripts can
be configured differently if the user has a different GPU.
The Prerequisites section in each application-specific
README provides further details on how to customize respec-
tive experiments.

APPENDIX B
OUTLIER ANALYSIS: SGEMM ON ORNL SUMMIT

A. Row H Results

Our results in Section IV-C show that outliers exist in
Summit. To understand these outliers better, we more deeply
examined the results within Summit’s row H and found addi-
tional interesting trends. Behavior varies significantly across
the different columns in row H, despite being located near
one another. For example, Figure 23 shows that 7 of the 29
columns in row H have no frequency, performance, power, or
temperature outliers. In the remaining columns that do have
at least one outlier, the vast majority of the outliers come
from columns 13, 14, 28, 33, 36, and 50. Columns 33 and
36 in particular have a very large number of outliers; both
columns have frequency, performance, power, and temperature
outliers (the remaining columns have outliers in 1-3 of these
categories).

Figure 24 shows that despite several columns having outliers
in multiple metrics, these outliers are not always well corre-
lated. Note that, since we do not have sole access to Summit
and are not guaranteed access to a specific node when enqueu-
ing a job, the number of runs for different nodes in the scatter
plots ranges from 1 (column50-node08, column50-node12,
and column50-node15) to 16 (column28-node13). Neverthe-
less, correlating multiple metrics yields further interesting
insights. Perhaps unsurprisingly, performance and frequency
(Figure 24a) are often well correlated – i.e., as frequency in
a given GPU decreases, performance also increases. However,
the correlation between performance and temperature (Fig-
ure 24b), performance and power (Figure 24c), and power and
temperature (Figure 24d) show significantly less correlation.
In particular, the power outliers show fascinating trends when
correlated with performance: although the outliers all take
approximately 2510 ms to complete, their power consumption
across the different nodes is very different – ranging from
250 - 285W, despite running for the same amount of time.
Interestingly, every GPU in the scatter plots appears to have
at least one outlier. For example, rowh-col28-n13-3, shown in
purple in Figure 24c, appears to be representative of a GPU



(a) Performance

(b) Frequency

(c) Power

(d) Temperature
Fig. 23: Summary results for Summit Row H, showing variation in performance (kernel duration), frequency, power and
temperature as reported by NVIDIA’s profiler, when running the GPUs unthrottled at the TDP value of 300W.



(a) Performance v. Frequency (b) Performance v. Temperature

(c) Performance v. Power (d) Power v. Temperature

Fig. 24: Scatter plots for GPUs in Row H of Summit showing possible correlations between (a) temperature and performance
(kernel duration), (b) frequency and performance, (c) power and performance, and (d) temperature and power. The color
indicates the GPU. Only GPUs with at least one reported power level < 290 W are included.

that consistently does not show outliers: it usually completes
in 2353 ms while consuming 295 - 299W. However, it has
an outlier where it consumes 264W and completes in 2510
ms. Rowh-col14-n18-1, shown in blue in Figure 24c, is more
consistent than rowh-col28-n13-3, except that it consistently
has outliers: it completes in 2510 ms while consuming 269 -
273W. Other GPUs show more divergent behavior, including
runs that are outliers and runs that are not outliers. For ex-
ample, rowh-col36-n11-4, shown in lime green in Figure 24c,
has runs that consume up to 30W different power while taking
between 2385 and 2510 ms to complete (even though the
range of temperatures for this GPU is less than 3°C). This
is perhaps unsurprising, because rowh-col36-n11-4 has wider
variance in frequency (68 MHz, Figure 24a2) than other GPUs.
In particular, this GPU exhibits large swings in frequency,
power, and performance – the water cooling appears to be
doing its job since the temperature variation is small, but this

2In Figure 24a, we jitter the yellow point from (2510, 1312) to (2508,
1312) to make the frequency range of 68 MHz for this GPU (rowh-col36-
n11-4) easily noticeable.

is not preventing the GPU from having large variations in
behavior.

These interesting results led us to further examine the
behavior across multiple runs on one of the same GPUs. In
particular, we selected rowh-col36-node10-3 (shown in gray in
Figure 24), because this GPU exhibits significant variation and
contains power outliers. Figure 25 also shows a time-series of
continuous measurements for power and frequency from two
runs on this GPU. We can see that this GPU clearly exhibits
outlier behavior, since the maximum power consumption only
reaches 259W. Even more interestingly, we see that this GPU
is always utilizing the same frequency across both runs – 1312
MHz, despite the instantaneous power consumption rising and
falling as the kernels progress. In particular, the startup power
consumption is lower, showing that the GPU is able to increase
its power consumption as it reaches the steady state in a
given kernel invocation. However, the frequency consumption
does not rise with it, unlike what we observed in TACC.
Nevertheless, given the large number of outliers, across all
metrics, row H exemplifies the outliers across Summit. Yet,



(a) Power

(b) Frequency
Fig. 25: Time-series plots showing continuous measurements for (a) power and (b) frequency for two distinct runs of one GPU
in Row H of Summit with at least one reported power level < 290W. The GPU plotted is rowh-col36-n10-3.

because each node in a column of row H contains multiple
GPUs, in Appendix B-B we further sub-divide, analyze, and
examine the behavior of row H, column 36, since this column
exhibits numerous outliers across all metrics.

B. Row H, Column 36 Results

Figure 26 shows the performance, frequency, power, and
temperature breakdown across multiple runs for each node in
row H, column 36. Similar to Appendix B-A, the breakdown
within row H, column 36 shows that the outliers come from
a specific subset of the nodes: 7 nodes (nodes 2, 6, 8, 10, 11,
13, 14, and 18) have at least one outlier, while the remaining
9 nodes do not have any. This further reinforces the difficulty
in drawing conclusions from the cluster-wide summary, but
also highlights the need to intelligently zoom in on specific
problematic row-column pairs, given the vast amount of data
across the 27,648 GPUs. In particular, nodes 10 and 11 show
the most outliers across frequency, performance, and power.
This is corroborated by Figure 24, which shows rowh-col36-
node10-3 (gray) and rowh-col36-node11-4 (lime green). These
GPUs have a wide disparity in results (including points which
are outliers and not outliers), as discussed in Appendix B-A. In
particular, these nodes have large outliers in performance (up
to 2510 ms) and power (255W in several cases). However,
neither of these nodes have any temperature outliers, unlike
our prior findings on TACC. Interestingly, all temperature
outliers occur on rowh-col36-node2 – which does not have
any frequency, performance, or power outliers, but which runs

at up to 73°C. Thus, water cooling does not appear to be
completely successful in keeping this node’s GPUs within
the desired range. Overall, these results highlight how several
nodes repeatedly cause outlier results across several metrics,
and do not always fit the established patterns we observed
on other clusters. Like other clusters, frequency is usually
a consistent issue for the variations. However, the results
for rowh-col36-node2 show that variations can be caused (in
Summit) by temperature alone. Compared to Vortex, Summit
also showed considerably more variation (potentially due to
gathering data across a larger amount of time and larger
number of GPUs), despite Summit and Vortex both using
water cooling. Thus, relying on water cooling alone to reduce
variation does not appear to be sufficient.



(a) Performance (b) Frequency

(c) Power (d) Temperature
Fig. 26: Summary results from Summit Row H Column 36, showing variation in performance (kernel duration), measured
frequency, power and temperature as reported by NVIDIA’s profiler, when running the GPUs unthrottled at the TDP value of
300W.


