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ABSTRACT

New applications such as algorithmic trading and high-performance
computing require extremely low latency (in microseconds). Net-
work operators today lack sufficient fine-grain measurement tools
to detect, localize and repair performance anomalies and delay spikes
that cause application SLA violations. A recently proposed solu-
tion called LDA provides a scalable way to obtain latency, but only
provides aggregate measurements. However, debugging application-
specific problems requires per-flow measurements, since different
flows may exhibit significantly different characteristics even when
they are traversing the same link. To enable fine-grained per-flow
measurements in routers, we propose a new scalable architecture
called reference latency interpolation (RLI) that is based on our ob-
servation that packets potentially belonging to different flows that
are closely spaced to each other exhibit similar delay properties.
In our evaluation using simulations over real traces, we show that
RLI achieves a median relative error of 12% and one to two orders
of magnitude higher accuracy than previous per-flow measurement
solutions with small overhead.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks]: Network manage-
ment

General Terms

Measurement, algorithms

Keywords

Active measurement, approximation

1. INTRODUCTION
Latency is one of the most fundamental properties of packet-

switched networks. End-to-end latency directly impacts several
critical Internet applications including multimedia applications such
as voice-over-IP, video conferencing and online games. While these
traditional applications often require end-to-end latencies within
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100s of milliseconds, several new types of applications that require
extremely low end-to-end latency (in the order of microseconds)
have emerged. For instance, high performance computing appli-
cations within data center networks [3], storage applications (with
industry moving toward Fiber Channel over Ethernet (FCoE) [20])
and, algorithmic trading applications [26] (together constituting multi-
billion dollar markets) all require low end-to-end latencies in the
order of few microseconds. A small increase in end-to-end latency
for trading applications can, for instance, lead to a loss of millions
of dollars in lost arbitrage opportunities [26].

To effectively manage low-latency applications, operators require
sophisticated tools and techniques for detecting, and more impor-
tantly, localizing delay spikes (i.e., finding the router responsible
for the high latency) and other performance anomalies in these net-
works. Once the problem is localized, they can potentially iso-
late the particular offending flow that is responsible for causing the
delay bursts, and reroute the traffic through other paths. In other
cases, the operators may upgrade their bottleneck links that are re-
sponsible for the underlying delay spikes. Of course, one could
argue it may be more important to devise router architectures that
guarantee low end-to-end latencies to begin with—indeed, some
switches such as those by Arista [9] and Woven [36] provide la-
tency guarantees within 10s of microseconds—in which case, the
need for fine-grained measurements is obviated. Unfortunately, an-
ticipating all types of performance problems and application inter-
actions that may occur in a production data center a priori is often
difficult; fine-grained measurements are therefore still required.

Detecting and localizing latency problems is surprisingly hard
today. Routers and switches by themselves offer very little la-
tency measurement and monitoring capabilities; SNMP counters
and NetFlow that routers come equipped with are grossly insuffi-
cient. SNMP counters provide coarse-grained statistics on a per-
port basis, but do not measure latencies. NetFlow provides ba-
sic statistics on a per-flow basis such as number of packets and
bytes, but not latency estimates. ISP network operators monitor
the health of their network by injecting active probes to measure
end-to-end delays and use tomographic techniques [37, 12] to infer
link and hop properties. Unfortunately, for the granularity of mea-
surements required, active probes need to be injected at extremely
high probe rate making them not suitable for these low-latency net-
works. Operators in these networks therefore resort to specialized
measurement appliances developed by vendors (e.g., London stock
exchange uses those manufactured by Corvil [4]). This type of
appliance however tends to be quite costly (around GB£90,000
for a 2×10Gbps box [2]). The high cost of such appliances is a
strong inhibitor to ubiquitous deployment across multiple points in
the network, or multiple ports of each router, especially within data
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center environments that are much more cost conscious than finan-
cial markets.

Recognizing these challenges, researchers have recently proposed
a new high speed router-level data structure called LDA [23] for
measuring delays within routers at high fidelity. LDA addresses
the scaling problem of active probes, and cost issue of commercial
monitors. While LDA provides a good start, it is by no means suf-
ficient as it is designed to provide aggregate measurements such
as average latency across all packets, but not on a per-flow ba-

sis. Experience indicates that concurrent flows may experience sig-
nificantly different latencies even when traversing the same given
router, and even over relatively short periods of time. Thus, differ-
entiated delay measurements are critical for diagnosing problems,
where the aggregate behavior of a router may appear normal, but
specific flows and applications may suffer from bad performance.

We illustrate this situation using two motivating examples that
are similar in spirit but differ in their context. In the first exam-
ple, consider a data center provider hosting several different appli-
cations, and a particular application experiences bad performance
say due to an offending application that is causing periodic bursts
of data (referred to as microbursts [6]). In such cases, aggregate
statistics such as average latency alone are insufficient, since av-
erages across several million packets may appear normal, while
the application is still hurting. A similar issue is the in-cast prob-
lem in data centers where synchronized bursts of packets fill switch
buffers causing high latencies or even packet loss because data cen-
ter workloads tend to be barrier-synchronized [35]. While specific
solutions may exist for known problems [35], the constant evolu-
tion of data centers in scale and diversity may potentially give rise
to several unforeseen performance problems. Our second example
considers trading networks, where it is possible for financial institu-
tions to obtain specific SLAs from service providers (such as guar-
anteed less than 100 µs) [1]. In such a context, it is important for
the service providers to be able to localize delay spikes and varia-
tions that may happen at any of the several hops between the trading
party and the stock exchange—diagnosing these customer-specific
problems requires not just aggregate, but flow-level measurements.

Having motivated the intuitive need for differentiated measure-
ments, a fundamental question that one may ask is, how much
variation exists over several different flows that are simultaneously
traversing a given router. In this paper, we explore this question by
conducting a measurement study using time-synchronized packet
traces collected between two interfaces of a real router, and simu-
lations of backbone traces using traditional queueing models. Our
measurement results reveal several fundamental insights: (1) We
observe a significant amount of performance diversity among sev-
eral contemporaneous flows (up to 2-3 orders of magnitude differ-
ence). (2) We observe that packets belonging to different flows
exhibit significant temporal similarity within short bursts.

We exploit the insights gained from our measurement study to
propose a new architecture called reference latency interpolation
(RLI) for obtaining per-flow latency measurements in a scalable
fashion. Our target is to accurately detect flow latencies in the order
of a few 10s to 100 microseconds on a per-flow basis. We wish
to detect both average as well as standard deviations of latencies
within a given flow. Thus, the contributions of this paper are:
• Measurement study of performance diversity and the temporal

localization of delay. Using real router traces and simulations, we
conduct a measurement study (§2) that reveals our fundamental
experimental insight—while concurrent flows can experience di-
verse performance at longer time scales due to traffic and conges-
tion burstiness, the delay experience by packets from different flow
within small localized windows is similar.

• Architecture for high-fidelity per-flow latency measurements. Based
on the findings in our measurement study, we propose an architec-
ture (§3) that pushes the state-of-the-art in scalable latency estima-
tion solutions beyond aggregate measurements, to provide per-flow
latency measurements.
• Evaluation using real traces and simulations. We extensively
evaluate the efficacy of our architecture (prototype implementation
described in §4) using a combination of real traces as well as sim-
ulations. In our evaluation, we observe that our RLI architecture
achieves a median relative error of 10-12% (§5.1), and up to one to
two orders of magnitude lower relative error than existing state-of-
the-art schemes under specific configurations (§5.2).

2. DELAY DIVERSITY AND LOCALITY
Before we set out to devise a scalable architecture for fine-grained

flow-level latencies within routers, it is important to ascertain that
one aggregate latency measure (for which efficient solutions such
as LDA [23] have already been proposed) is not sufficient. In this
section, we show that there exists significant diversity of perfor-
mance experienced by concurrent flows traversing the same link,
both through qualitative reasoning from the bursty nature of packet
arrivals, and through an experimental study. We also observe that
the same burstiness properties reduce performance diversity within
sufficiently short time intervals; we discuss the ramifications of this
observation for the design of a scalable architecture for per-flow
performance measurements.

2.1 Flow-level performance diversity
Under many circumstances, flow arrivals are bursty (flows do

not commence as a Poisson process) and flow durations are heavy-
tailed (as opposed to exponentially distributed) [29]. In such con-
ditions, congestion also tends to be bursty, being concentrated in
rarer longer bursts that would be the case for Poisson traffic. Con-
sequently, the performance experience of a flow depends strongly
on whether it encounters a congestion burst or not, and the com-
parative rarity of the bursts means that the normalizing effect of
temporal averaging only comes into play for long flows. A further
conclusion is that common statistics of delays encountered by a
stream of probes (such as their mean or certain quantiles) can vary
significantly from those encountered by flows traversing the same
link during the same measurement period.

Experimental demonstration. To demonstrate the existence of
performance diversity experimentally, we analyzed the packets de-
lays in four datasets described more fully in §4.1: SANJ, CHIC,
WEB468 and WEB700. While these are not data center traces, we
believe the observations hold true in general. Note that SANJ and
CHIC are derived from synthetic queueing times based on a simple
FIFO queueing model (more details about the queueing model in
§4.2) and real timestamps of packets arrival on an OC-192 inter-
face. Thus we expect it them to provide a realistic representation of
the queueing dynamics whose properties underpin our method. In
contrast WEB468 and WEB700 are derived from passage of syn-
thetically generated traffic through a real network with real routers,
with actual packet arrival and departure timestamps measured at
two interfaces of a router. This enables us to capture any effects
specific to complexities of actual as opposed to synthetic queueing.
Due to space limitations, we will report our results in greatest de-
tail for SANJ and CHIC, more briefly for the others, although all

confirmed the expected performance diversity.
To study the differentiated delay properties, we classified each

packet according to a 2-tuple key comprising the source and des-
tination IP addresses. Table 1 details the broad properties relevant
for our study (see Table 2 for other properties). We also capture

28



Trace Dur. 2-tuple Pkts/key Delay R
keys mean(ms)

SANJ 600s 4.8M 43.9 0.387 27,867
CHIC 600s 4.6M 28.8 0.287 8,052

WEB468 305s 169 15k 0.55 8.7
WEB700 305s 169 23k 3.70 5.5

Table 1: Traces: duration, number of src-dst keys, average

number of packets per key, global average delay of all packets,

and range factor R of per-key average delay.

the variability of packet delay across different keys by means of
the range factor R described below. WEB700 entails a 50% higher
packet rate, as seen from the packet counts over the same duration
and correspondingly, the mean delay is about an order of magni-
tude higher for WEB700. SANJ trace comprises a load about 63%
higher than CHIC; mean delay for SANJ, therefore, is about an
order of magnitude higher than for CHIC.

In order to further capture the variability of the per key average
delay, we calculated the mean delay for each key, and compute the
range factor R which we define as the ratio of 99th and 1st quan-
tiles of the mean delay per key. We used this measure to capture
nearly the full extent of the range, while excluding a small number
of outliers. For SANJ, the range spanned three orders of magni-
tude, for the others about 1 order. We found similar ranges for the
95%ile of the delay within each key in WEB468 and WEB700. We
conclude that a single delay statistic, such as an average or quan-
tile over a set of probes over the same duration, cannot accurately
account for the delay experienced by the range of traffic flows.

The differences in values of summary statistics between the traces
can be interpreted in the light of two factors. First, each keys of
WEB468 and WEB700 represents 10s of thousands of packets on
average, so there is considerable packet averaging possible. SANJ
and CHIC, due to the greater diversity of endpoint addresses, have
small numbers of packets per key. However the large range of mean
delays seen in SANJ and CHIC are not just an effect brought about
by averaging over small numbers of packets. If we restrict atten-
tion to the keys with more packets, specifically those with 100 or
more (about 85% of the total packets) the range factor is still 36 for
SANJ and 18 for CHIC, i.e., still over an order of magnitude.

2.2 Temporal localization of queueing delays
We have just seen how delay statistics of concurrent flows over

a 5 minute period can vary over an order of magnitude, and gave
a qualitative explanation in terms of bursty nature—both of packet
arrivals and congestion. However, this same burstiness addition-
ally leads us to expect that, within bursts of delay, packets should
experience more similar queueing delays. A theoretical argument
for such behavior has been given in the context of some relatively
simple traffic models in [25]. We now demonstrate this empirically,
by localizing time, and determining how closely the mean queue-
ing delay experienced by packets of a given flow over small time
window can be approximated by the mean delay experienced by
the packets of all other flows transmitting packets over the same
window. Note that we focus on queueing delay, since different
size packets encountering the same delay burst will incur differ-
ent serialization delays according to their size. Given ingress and
egress timestamps, ti and te respectively, of a packet of size b bits
at a resource served at service rate r bits per second, the associated
queueing delay is taken as d = te − ti − b/r. In the remainder of
this section, the term “delay” will be understood as queueing delay.
We will discuss the ramifications of our findings for the design of
performance measurements in §2.4.
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Figure 1: Scatter plot of local vs actual mean delay per source-

destination pair; SANJ and CHIC traces, localization intervals

0.1ms, 10ms, and 1s. Global average delay also shown as hori-

zontal line.

In our study, we divide time into fixed interval windows of the
same width, and for each key k and interval i, we record the num-
ber ni,k of packets present in interval i and their average queueing
delay di,k. The average queueing delay encountered by packets
during interval i is

d̃i =

∑
k
ni,kdi,k∑
k
ni,k

.

Now the average delay encountered by packets of key k is

Dk =

∑
i
ni,kdi,k∑
i
ni,k

.

Hence if our intuition is correct, replacing di,k by d̃i in the def-
inition of Dk, i.e., taking a weighted average of the di weighted
by the numbers of packets ni,k for key k in each intervals, should
yield a fairly accurate approximation of di, at least for sufficiently
narrow intervals. We call the result of the substitution localized

mean delay, in full it becomes:

D̃k =

∑
i
ni,kd̃i∑
i
ni,k

=

∑
i,j

ni,kni,jdi,j/
∑

ℓ
ni,ℓ∑

i
ni,k

Figure 1 displays scatter plots of the localized and true mean
delays per 2-tuple key for SANJ and CHIC, for localization win-
dows of 0.1ms, 10ms and 1s. For clarity, we show only 1 in 4,000
points. Observe closer agreement for smaller windows, while for
large windows the scatter appears to revert to a more horizontal re-
gression, reflecting normalization over longer windows. Note that
the localized mean delay is far better predictor of a key’s mean de-
lay than the global average packet delay, shown as a horizontal line.
We quantify the accuracy via the root mean square relative error
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Figure 2: Delay burst distributions for traces SANJ and CHIC.

Proportion Q(x, d) of time spent in bursts of duration at least x,

in which delay was at least d, for d = (0.03, 0.1, 0.3, 1, 3, 10)ms.

(RMSRE) over all keys, shown in the plot key. Note that even for
the smallest localization time (0.1ms), the median number of pack-
ets per window was 21 (CHIC) and 35 (SANJ). Thus the accuracy
of the localized mean delay is not simply an artifact of comparing
a key’s packet with itself! Accuracy appears closer for SANJ than
CHIC, presumably a consequence of its higher offered load, as ev-
idenced by the longer mean delays in Table 1. We now relate these
differences specifically to the burst properties of delay episodes.

2.3 Burst properties of queueing delay
We can further account for the accuracy of the localized mean

delay by examining the temporal properties of delay bursts. For this
purpose, a burst of delay above d corresponds to a maximal set of
some number n of successive packets with arrival times t1, . . . , tn
whose delay exceeds d. In this case, the burst duration is taken as
tn+1 − t1 (or tn − t1 if packet n is the last packet in the trace).
We calculated the proportions Q(x, d) of the time spent a burst of
duration at least x in which the delay was at least d.

The displays of Q in Figure 2 account for the differences ob-
served between SANJ and CHIC. As reference delay we take the
global mean packet delay δ and ask what duration of bursts the
queue spends at least half its time above that level, i.e., what is
the duration τ for which Q(τ, δ) = 1/2? Provided there are suf-
ficiently many background packets in a window of duration τ , we
expect the local mean to be fairly accurate. For SANJ, δ = 0.39ms
leading to τ of roughly 10ms, while for CHIC, δ = 0.29ms lead-
ing to τ of roughly 0.1ms. In both cases this is within the small-
est window considered; the larger τ value for SANJ would seem
to account for its greater accuracy, apparent in the Figure 1. We
also found confirmation of our delay model in relating the burst
timescale to the accuracy of localized mean estimates for a given
window for the WEB700 and WEB468 traces (omitted for brevity).

2.4 Implications for measurement design
We now tie together the phenomena of performance diversity and

delay localization with the problem of per-flow delay estimation.
We argue in §3 that a brute force approach in which routers or other
devices timestamp every packet is neither necessary nor feasible to
produce ubiquitous per-flow delay measurements. The major con-
sequence of performance diversity is that performance statistics of
a given flow may differ significantly from those of another (such as
a background flow or a probe stream). However, the performance
statistics of two sets of packets will agree more closely, if their
packets transit at roughly the same times, at least within the typical
duration of delay bursts. The crucial observation is that, rather than
measuring the delay of each packet in flow directly, it can be suffi-
cient to infer its performance from that of a set of reference packets
provided the packet transmission times are sufficiently close.

Now, routers are particularly well placed to create measurements
from which to determine the transit delay times of packets. Routers
therefore can create a reference stream of packets on a link, giving
rise to a reference set of link delay measurements. Then the delay
of any given flow can be estimated by selecting measurements from
the reference stream that are localized to the packets of the flow un-
der study. This represents a big saving in measurement complexity
due to reuse: For different flows, different reference delay mea-
surements are selected as required from the reference stream. Ef-
fectively, we can improve the accuracy of the delay measurement of
a given flow, by increasing the number of samples contributing to
that measurement, specifically selecting those that are most likely
to be correlated with it. As an illustrative example, consider a flow
with 100 packets. If a sampling rate of 1-in-100 is used, the flow’s
latency measurements are computed using approximately 1 sample.
With our approach, we can compute the latency measurements with
all 100 packets, except each packet’s latency is estimated using the
reference stream (inducing a small amount of approximation error)
yielding more accurate results.

In view of the relations between estimation accuracy, delay burst
duration, and temporal localization width described above, the ap-
proach is contingent on having a probe stream that is sufficiently
dense to encounter a typical flows packets within bursts of delays
of interest. This is easier to accomplish for high loads, delays be-
ing higher and delay bursts being longer. But even when probes are
not sufficiently dense for this purpose—resulting in insufficiently
narrow localization—we found examples to display no worse ac-
curacy than a naive global average of the type that would be pro-
duced by non-local averaging over a probe stream. We remark that
a recent approach of leveraging background flow records for delay
estimation [25] suffers in this way, because it is inherently unable
to control the temporal disposition of reference measurements.

We believe the relevance of these findings for our study is not
in the absolute delay values detailed in Table 1, nor the particular
localization timescales found in our study. For example, higher
speed links may be expected to have shorter queueing delays and
hence, shorter timescales for the localization of packet delays. But
this effect is compensated for by the fact that a higher packet rate
link can be expected to accommodate a higher rate reference packet
stream, that can therefore sample delays at a finer granularity. Note
also that our findings are more relevant within financial and data
center networks, that tend to more stringent in the latency bounds
that in a general WAN. For example, a past study [10] found delay
jitter across two POPs to be mostly less than 1ms; however, this
value can mask the significant diversity amongst smaller delays at
the level of microseconds that would still impact performance on a
financial network.
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3. REFERENCE LATENCY INTERPOLATION
In our setting, we consider a stream of packets traveling from

a sender to a receiver (e.g., ingress and egress router interfaces),
and we are interested in estimating per-flow latencies. We assume
fine-grained time synchronization between the sender and receiver.
Within a router, this is straightforward as they both typically oper-
ate within the same clock domain. Even across routers, microsec-
ond precision time-synchronization can be achieved with the help
of primitives such as IEEE 1588 [15] that are increasingly being
deployed within routers. (Note that the error due to clock syn-
crhonization is an additive component to the estimates computed
by our architecture.) We first quickly discuss possible solutions
and see why they may not work well.

3.1 Problems with previous solutions
Naive approach. One way to obtain latency estimates is to main-

tain timestamps for each packet at the sender and receiver. For
estimating per-flow latencies, we just collect the timestamps for all
packets that belong to a given flow and aggregate them. The biggest
problem with this approach is scale: At 10 Gbps, the number of
packets is of the order of a few million per second making it expen-
sive in terms of number of timestamps maintained (memory), of
updating timestamps into specific data structures or packets them-
selves (processing), and transporting the timestamps from sender to
the receiver or wherever the latencies are computed (bandwidth).

Packets carrying timestamps: We can potentially embed times-
tamps within packets, but IP packets currently do not have a times-
tamp field while TCP options are typically meant for end-to-end
latencies. Embedding timestamps require changes to packet head-
ers, and may cause intrusive changes to the router forwarding paths
(that often involve third-party components such as TCAMs, switch
fabric ASICs) that vendors often refrain from adopting. In addi-
tion, adding packet headers to each and every packet can consume
significant extra bandwidth that is not desirable. For example, a 32
bit timestamp per packet (assuming minimum size packets of 40
bytes) could use up to 10% capacity.

LDA. If we are only interested in aggregate delay, we could just
maintain two counters at the sender and the receiver that maintain
the number of packets and their timestamp sum. At the end of
the interval, the sender could transmit these two counters to the re-
ceiver which can subsequently compute the average delay. This
is the basic idea exploited in a recently proposed data structure
called LDA [23]. In order to account for potential packet loss, LDA
uses a stage of sampling and multiple buckets (say 1,000) to ensure
that statistics are computed over a large number of samples. While
this idea works great for aggregate delays, it is unclear how to ex-
tend this idea for obtaining per-flow estimates. The trivial idea of
maintaining LDAs with many counters for each and every flow is
not likely to scale as the number of flows could be large. Even if
we could somehow provision storage for each and every LDA, the
sender counters for each flow need to be periodically transmitted
to the receivers. Thus, control bandwidth is going to be too high.
One could argue that per-flow measurements may be required only
for a small subset of “important” flows, in which case, maintaining
per-flow LDA (for that subset of flows) would be feasible. Unfor-
tunately, however, it is not often clear which set of flows need to
be chosen for per-flow measurements in advance. Besides, deter-
mining the right size of the LDA banks may be difficult in advance
since flow sizes are not known a priori.

We therefore need to consider alternate mechanisms to achieve
our goal. In particular, we can exploit the observations in our pre-
vious section (§2) that packets that belong to different flows experi-
ence similar delay when they are closely spaced within each other.

Reference
Packet

Interpolated
Delay

delay estimate
Error in D

e
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y Regular

packets

Time

Figure 3: Key idea in our architecture is to estimate packet

delays by interpolating the reference packet latencies.

3.2 RLI architecture
Intuitively, queueing delay, which is the major portion of delays

experienced in routers, can be thought of as a continuous function
(not necessarily monotonic) in busy periods where there are pack-
ets to send. In Figure 3, we show the variation of delay as time
progresses at the sender side. We can observe that the delay expe-
rienced by each of the regular packets can be estimated accurately
from a few reference delay samples (shown as circles in the figure)
by interpolating these reference packet delay samples (shown by
a dotted line in the figure). Further, the interpolation error can be
controlled by varying the number of reference points in the delay
curve, thus trading-off accuracy for resource usage. This is the key
idea exploited in our architecture.

Our architecture consists of two main components: a reference

packet generator at the sender side, and a latency estimator at the
receiver that maintains a few counters on a per-flow basis. The
reference packet generator injects reference packets with sender
timestamps periodically into the packet stream at the ingress inter-
face of a router. These reference packets would experience queue-
ing and other effects similar to that of the regular packets thus pro-
viding a stream of reference delay samples for the latency estimator
at the receiver end. The latency estimator estimates the delay of a
regular packet using these reference delay samples that are then
accumulated into the per-flow counters.

3.2.1 Reference packet generator

A key question concerns when to generate the reference packet.
One option is to inject them according to a Poisson distribution.
While in the past, Poisson-modulated probes have been advocated
by researchers [28] since they capture time averages very well, our
goal is not to compute the average behavior of the queue over a
given time. Instead, we wish to use these reference packets to esti-
mate individual packet delays, and thus, Poisson modulation is not
a requirement in our system. Furthermore, we wish to bound the
interprobe time in order to control the impact of probes on back-
ground traffic, whereas Poisson probes can have arbitrarily small
interprobe times.

There are three choices we first consider: The first is to inject one
reference packet for every n regular data packets (e.g., n = 1000).
Besides being simple to implement, this 1-in-n reference packet
injection has a bounded overhead in terms of number of additional
packets injected as a function of the total number of packets. The
problem, however, is that there could be periods of low utilization
when these reference packet can be spaced apart significantly, po-
tentially affecting the accuracy of the interpolation estimates. To al-
leviate this, an alternate solution is to inject an active probe packet

31



Algorithm 1 Reference packet injection rate adaptation

1: procedure CALCULATE-INJECTION-RATE

2: ⊲ reff : effective injection rate
3: ⊲ drp : duration between two reference packets (RPs)
4: ⊲ cb: byte counts of regular packets between RPs
5: ⊲ uest : moving-averaged link utilization
6: ⊲ umin , umax: minimum, maximum link utilization
7: ⊲ rmin , rmax: minimum, maximum injection rate
8: ⊲ α: EWMA smoothing factor
9: ⊲ lc: link capacity

10: uinstant ← cb/drp/lc
11: uest ← uinstant · α+ uest · (1− α)
12: cb ← 0
13: ueff ← uest , where umin ≤ uest ≤ umax

14: reff ←
√

1− (
ueff −umin

umax−umin
)2(rmax − rmin) + rmin

15: return reff
16: end procedure

every τ time period (e.g., τ = 1ms). While this can result in a
fixed worst case bandwidth requirement, this may provide worse
results when the utilization is higher, especially when the delay
variations are quite rapid. Lastly, we may combine these two ap-
proaches by injecting a packet every 1-in-n, or after τ seconds,
whichever comes first. Unfortunately, it is not clear how to iden-
tify the right value of τ . On one hand, keeping τ low increases
accuracy but causes too much overhead and starts to interfere with
regular packets. On the other hand, setting a high value of τ defeats
the purpose of setting an upper bound on the time-period.

Thus, we consider monitoring the utilization in a dynamic fash-
ion in order to determine at what time instants to inject the packets.
We find that this adaptive scheme performs better than either of the
fixed time based or count based schemes just described. Adapting
the probe rate to utilization enables us to get the best of both worlds:
limiting the probe rate at high utilizations, while getting sufficiently
frequent coverage at low utilizations. Still, adaptive schemes entail
a subtle trade-off because the adapter may lag in response to a high
rate burst of shorter duration than its adaptation timescale. In prac-
tice, however, we have not found such phenomena to degrade the
performance experienced by background traffic.

Although we expect the advantage of adaptation to be generic,
we now discuss the particular form of realization in our implemen-
tation. To keep track of link utilization and adjust reference packet
rate, we maintain small amount of state. Specifically, our adap-
tive scheme consists of two steps: updating link utilization and cal-
culating effective reference packet rate. Algorithm 1 presents the
pseudocode for the scheme. The algorithm is triggered right after a
reference packet is injected with the previously calculated effective
reference packet rate reff .

To estimate link utilization, we maintain a byte counter cb that
keeps track of the number of regular packets between two injected
reference packets. We also maintain the time interval drp between
the two injected reference packets. We calculate instantaneous link
utilization using these two variables and link capacity lc. We could
use the instantaneous link utilization uinstant directly to calculate
effective reference packet rate, but, in order to remove the effects
of short term fluctuations of estimated link utilization, we update
average link utilization uest using exponentially weighted moving
average (EWMA) with a smoothing factor, α. We reset the byte
counter immediately after link utilization estimation is done.

After updating uest , we calculate the next reference packet rate.
Our objective is to adapt reff as a function f of link utilization,
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Figure 4: Overview of our architecture.

where rmax = f (umin) and rmin = f (umax ), umin and umax

being configurable parameters. Thus, we bound ueff to ensure that
ueff always lies in between umin and umax . If uest is higher (lower)
than umax (umin), we set ueff is set to umax (umin). While there
could be many choices for the function f , we choose an elliptical
function (shown in line 14) and calculate reff . The rationale for
choosing this function is that, it typically targets accurate estima-
tion of latency under low to moderate utilization (i.e., decreases
reff slow when ueff is close to umin), but reduces rate signifi-
cantly at high utilization (as ueff approaches umax). For our eval-
uation, we set umin = 0.6 and umax = 0.85, while rmin and rmax

are set to 1-in-300 (0.0034) and 1-in-10 (0.1) respectively.

3.2.2 Latency estimator

The receiver processes the reference packets (containing times-
tamps) inter-mixed with regular data packets to estimate per-packet
latencies. Our architecture does not require the receiver to maintain
counters for all flows in the network. Indeed, our architecture can
work on top of any existing framework for per-flow measurements
such as NetFlow, that maintain flow records (containing number of
packets, bytes, etc.) for a small subset of flows. For each of the
flows of interest (obtained using any flow sampling schemes), we
maintain three counters indexed by the flow key that keep track of
the following: (1) number of delay samples for the flow; (2) sum
of estimated delays for all packets of that flow; (3) sum of squares
of individual packet delays. This composite set of counters are
updated for all packets that belong to flows of interest. It is, there-
fore, important to implement these counters in high-speed SRAM
to scale to high line rates. (We discuss other alternatives later in
§6.)

Our latency estimator component also contains an interpolation

buffer (as shown in Figure 4) to store packets that have arrived be-
tween two reference packets. This requirement stems from the fact
that delay value estimated for each individual packet is a function
of the delay experienced by the two reference delay samples (cor-
responding to the reference packets). Of course, we do not need
to store the entire packet in the interpolation buffer; storing just
the flow key, the associated timestamp and byte count are sufficient
for each packet. The size of the interpolation buffer required can
be statically determined depending on the design of the reference
packet generator. If reference packets are generated according to
the 1-in-n scheme, the interpolation buffer need not be larger than
n. For other schemes, we can easily compute an upper bound on
the number of packets between two active probes. For instance, for
the 1-in-τ scheme, we can easily compute the number of minimum-
size packets for a given link capacity that can be transmitted in τ
seconds; this dictates the size of the interpolation buffer.
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While the presence of the interpolation buffer in our architec-
ture facilitates the use of both left and right reference packets to
estimate delay for a given packet (potentially allowing better accu-
racy), it requires additional complexity in state maintenance. At the
other end of the trade-off, we can imagine getting rid of the buffer
completely and estimate the delay of a packet as a function of only
the reference packet before the packet, but not after. This requires
no state in terms of the interpolation buffer, but requires remem-
bering the delay experienced by the reference packet, that can be
easily kept track of using a single counter.

3.3 Packet delay estimators
We formally describe our packet delay estimators in this sec-

tion. The first estimator called RLI estimator1 utilizes two refer-
ence packets for linear interpolation and works as follows.

RLI estimator. Let pai be an i-th reference packet. Let prj , j =
1, 2, . . . , n be a regular packet whose receiver timestamp is located
between al = pai and ar = pai+1 that represent the left and right
reference packets in the interpolation buffer. Let τr

j and brj denote
the receiver-side timestamp and a byte count of prj , and τl, τr rep-
resent the receiver-side timestamps of al and ar . Let b be the size
of reference packet and lc be the link capacity. Then the estimated

delay, d̂j for prj obtained by interpolating the delays of al and ar

(represented as dl and dr) is given as:

d̂j = dl + (τr
j − τl)

dr − dl
τr − τl

+
brj − b

lc
, j = 1, 2, . . . (1)

The third term on the right-hand side in Equation (1) compensates
for different serialization times by the difference in packet size be-
tween regular packets and reference packet. Whenever a new probe
packet arrives, al and ar are updated; subsequent interpolated de-
lays of new regular packets are computed with these new values as
given by Equation (1).

For each flow fk, three per-flow counters are maintained as we
discussed before. After the delay estimate is computed for the
packet prj , the counters corresponding to the flow to which prj be-
longs are updated as follows.

c(fk) = c(fk) + 1 (2)

m(fk) = m(fk) + d̂j (3)

v(fk) = v(fk) + d̂j
2

(4)

When a flow with a flow key fk expires, if m̃(fk), ṽ(fk), and
c̃(fk) represent the final values of the number of, mean and vari-
ance counters in flow memory, then the delay mean and variance of
a flow fk are:

E[dfk ] = m̃(fk)/c̃(fk) (5)

Var[dfk ] = ṽ(fk)/c̃(fk)
2 − E[dfk ]

2
(6)

where dfk denotes a random variable for delays of packets of a
flow with fk. These values are updated before exporting the flow
record.

RLI-L estimator. The RLI estimator requires storing packets in
an interpolation buffer until a reference packet arrives after which
each of the packets’ delays are updated, that requires additional
complexity. Thus, we consider an alternative estimator called RLI-
L estimator that instead of using both the left and right delay sam-
ples uses only the left delay estimate. In other words, for all regular
packets that appear between pai and pai+1 with delays dl and dr ,

d̂j = dl + (brj − b)/lc.
1We use RLI estimator to refer to the estimator and just RLI to refer
to the architecture.

Link: OC-192 (10 Gbps), Duration: 600s.

Name #flows #packets pkts/flow Date

CHIC 4.56M 131.42M 28.8 Apr. 30 17:00:00 2008 UTC

SANJ 4.87M 213.80M 43.9 Dec. 18 05:55:00 2008 UTC

Link: OC-3 (155 Mbps), Duration: 305s.

WEB468 0.143M 2.61M 18.25 Feb 6 02:06:58 2006 UTC

WEB700 0.214M 3.99M 18.65 Feb 6 02:15:32 2006 UTC

Table 2: Trace characteristics: CHIC and SANJ are OC-192

ISP traces. The other two are real router traces with synthetic

traffic (jointly referred to as WISC).

The per-flow counters are updated the same way as before in RLI
estimator. Because this estimator does not use both values, it is not
as accurate as the RLI estimator as we shall discuss in our evalua-
tion.
Shrinkage estimation. While linear interpolation is a simple means
to approximate the delay, linearity may not always be the best choice.
We therefore considered possible refinement of the delay estima-
tors, in particular using Shrinkage Estimation [11]. This is a stan-
dard method to improve accuracy of an estimator X by making a
convex combination of it with some fixed point X0, possibly 0, to
form X ′ = λX + (1− λ)X0 for some λ ∈ [0, 1]. In our case, the
approach is to shrink individual delay values towards an EWMA
estimate of the mean delay. It turned out that Shrinkage Estimation
provided only a very small improvement in estimation accuracy in
the results reported in §4. We consider exploring other non-linear
interpolation schemes as part of our future work.

4. EVALUATION METHODOLOGY
We evaluate our architecture in order to answer the following

questions. (1) How accurate is our architecture in estimating per-
flow latencies under different settings? (2) How does our archi-
tecture compare with previous solutions such as trajectory sam-
pling [14] and Multiflow estimator [25]? (3) What are the over-
heads involved in our measurement architecture? (4) Does the ar-
chitecture cause any interference with regular packets? In order
to answer these questions, we build a custom simulator that uses
packet header traces as input (using either synthetic or anonymized
IP addresses), and implements the reference packet generator and
latency estimator modules to simulate the architecture.

4.1 Data sets used for evaluation
Ideally, we need real packet traces with high-resolution times-

tamps of ingress and egress interfaces of a production router. Un-
fortunately, we have found no such public datasets, neither in the
target setting of a data center or trading network, nor otherwise.
The only known study to us, although in a backbone ISP context,
is the one by Papagiannaki et al. where they conducted extensive
studies of delays in real routers by collecting GPS synchronized
packet header traces from the Sprint network [27, 19], but the data
set itself is not public. In their study, the authors observe that packet
delays follow a Weibull distribution. However, our method exploits
the correlations of the delay across different packets, which are not
modeled in their study.

In the absence of ideal traces, we resort to two other types of
traces. First, we used traces of the passage of synthetic traffic
across a real router collected by the authors of [33] in their evalua-
tion of a new active probing tool. Traffic is synthetically generated
using the Harpoon traffic generator [32] over a dumbbell topology
with an OC-3 bottleneck link. Even though the traffic sources are
synthetic, they are subject to real router forwarding paths, queue-
ing and other behavior, and thus are quite realistic. The router em-
ployed the RED queueing policy during collection of these traces.
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Figure 5: CDF of mean per-flow delay estimates using RLI estimator for different utilizations and different traces.

Ingress and egress timestamps are recorded for each packet, hence
the delay incurred in traversing the router is computed by subtrac-
tion. The data set referred to as WISC consists of two traces with
different utilization levels, summarized in Table 2.

Second, we used backbone header traces published by CAIDA
[31] that include actual packet arrival times of real packets at an
interface, and then simulate the passage of these packet arrivals
through a queue. The traces are summarized in Table 2. Each trace
records packet arrivals during a 600 second period on OC-192 (i.e.,
10 Gbps) backbone links of a tier-one ISP. The IP addresses in the
trace were anonymized. The traces denoted as CHIC and SANJ
represent those collected at Chicago, IL and San Jose, CA respec-
tively. For the experiments described below, we classified packets
according to the standard 5-tuple comprising source and destination
IP addresses, port numbers and protocol fields. (Note the distinc-
tion with the 2-tuple keys employed in §2.)

4.2 Simulator
While the ideal prototype implementation would use a real router,

router architectures are typically proprietary making it hard to make
any changes. Further, to demonstrate the effectiveness of our archi-
tecture, we mainly need sender and receiver timestamps for indi-
vidual packets that pass through a real router; the internal details
of routers are not important for our evaluation. Thus, we build
a simulator by extending an open-source NetFlow platform called
YAF [8] for our simulation. NetFlow, the de facto passive mea-
surement solution, already supports flow-level collection of basic
statistics such as number of packets, bytes, etc. Thus, extending
YAF automatically provided us with the flow creation, flow update,
and flow expiry mechanisms in regular NetFlow. We added support
for the injection of reference packets from the sender side, the in-
terpolation buffer at the receiver, and latency estimator along with
three additional counters we maintain for the latency estimates on a
per-flow basis. We implement the adaptive reference packet injec-
tion algorithm based on keeping track of the utilization as described
in Algorithm 1. Since most real routers use RED, we simulate RED
queue management strategy.

In the queueing model employed for simulation with CHIC and
SANJ, we control the packet loss and delay by configuring queue
length and drain rate. We fix the drain rate in terms of bytes per
second. By fixing this one parameter, the drain rate, we can au-
tomatically control both the delay as well as the loss distribution.
Following the guidelines in [18], we chose a queue size of 10,000,
minth = 4, 000 and maxth = 9, 000, queue weight wq = 0.002
and maximum drop probability, maxp = 1

50
for all traces. Note

that while our simulation is open-loop, i.e., we do not see TCP
backoff effects even when we drop packets using RED, both WEB468
and WEB700 traces are generated by configuring a real router with
RED, and as such, will expose all the relevant TCP backoff dynam-
ics associated with RED.

For WISC traces, since we cannot easily inject reference packets
into the simulation, we rely on a simple packet marking scheme that

denotes the nearest regular packet as a reference packet whenever
it needs to be injected. Compared to adjusting the packet times-
tamps to simulate the injection of a reference packets, our packet
marking scheme is much less intrusive. We believe that it does not
affect the accuracy of our architecture, because the delays are still
real packet delays. Effectively, the reference packet times are just
slightly offset from what they would be in an actual realization.

4.3 Other solutions for comparison
Trajectory sampling. First, we consider trajectory sampling pro-
posed by Duffield et al. to sample packet trajectories [14]. While
the original intent is different, we can add a timestamp with each
packet label sampled at a router, and aggregate samples that belong
to a given flow for latency estimates. The estimator just computes
the difference of timestamps at two adjacent locations (similar to
the naive timestamp idea discussed in §3).
Multiflow estimator. Second, we consider a new estimator called
Multiflow estimator (MFE) proposed by Lee et al. in [25]. MFE
exploits the fact that NetFlow already maintains timestamps of start
and end packets for each (sampled) flow. Two adjacent routers us-
ing consistent hash-based sampling will collect same flow records
with same start and end packets, giving two delay samples. Given
that the simple averaging of just these two samples is not an ac-
curate estimator, MFE computes the average of all delay samples
(referred to as background samples) that may potentially belong to
other flows within the start and end of the flow. The spirit behind
this estimator is grounded in a similar observation as ours in §2.

5. RESULTS
We divide our results into three major parts: First, we evaluate

the accuracy of our RLI estimator, both mean and standard devia-
tion estimates, for different traces and different utilizations. Sec-
ond, we compare our architecture with other solutions such as the
trajectory sampling and MFE described in §4.3. Finally, we evalu-
ate the overheads involved in our architecture.

5.1 Accuracy of RLI
To evaluate the accuracy of RLI, we primarily focus on the rela-

tive error (defined as |true− estimated|/true) of mean and stan-
dard deviation estimations of each flow with the ground truth.
Accuracy of mean latency. We plot the cumulative distribution
function (CDF) of the relative error of mean delay estimates for all
the flows in Figure 5 for different utilizations and traces. In our
evaluation, we consider the WEB468 as a moderate utilization sce-
nario with about 55% link utilization, while WEB700 comprises
the high utilization scenario (about 88% utilization). We do not
have access to a lower utilization trace in the WISC data set, hence
we do not show the curve for WISC in Figure 5(c). For high and
moderate utilizations, we can observe that median relative error of
latency estimates among all flows is around 10-12%. The 75%ile
relative error is also less than 20% in these two cases. For low uti-
lization, median relative error of estimates is around 30%. Across
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Figure 6: Average relative error of per-flow delay mean esti-

mates binned by true flow delays and sizes.

different curves, we observe that the accuracy is largely similar
both for real router packet traces (WISC) as well as our backbone
traces (CHIC and SANJ traces).

In general, we observe that the accuracy of RLI appears better
for high utilization than low utilization cases. To put this result
in perspective, we observe that true value of the median delay di-
rectly depends on the utilization levels (under high, moderate and
low utilizations, average per-flow latencies are approximately 390,
11.4, 1.0µs for CHIC trace). Recall that the utilization levels in our
simulations are governed by the queue drain rate; if the drain rate is
low (high), utilization is going to be low (high). Low utilization au-
tomatically translates into low per-packet queueing delay for most
packets, and hence, most flows. In other words, serialization time
is a more dominant factor in latency than queueing delay. Further,
serialization time varies depending on packet size, which in turn
causes more jitter in interpolation process; errors in low utilization
are, therefore, more significant than in high utilization.

We envision that our architecture is more suitable for isolating
the router where a flow experienced bad end-to-end performance;
we therefore care about flows for which the delays are significantly
higher than the rest. In other words, for small delays (e.g., 10µs),
a relative error of 100% is not nearly as significant as compared to
flows which experience higher delays (e.g., 100µs). Thus, while
one could argue that network operators may operate typically at
low utilizations, the accuracy of RLI is itself oblivious to the exact
utilizations, and mainly depends on the absolute latency of a given
flow. The fact that the accuracy of our architecture appears signif-
icantly better in the higher utilization case is merely a reflection
of the fact that the number of high latency flows is higher in this
case. (This also explains our rationale in designing our adaptive
reference packet injection strategy to reduce the rate as utilization
grows significantly.) In order to bring this out in more detail, we
group flows by delays and flow sizes.

Grouping flows by delays. In Figure 6(a), we plot average relative
error of delay mean estimates by grouping relative errors based on
true per-flow delay. In the figure, we only plot high utilization con-
dition, because 99.99% of per-flow latencies found in both moder-
ate and low utilization scenarios are quite low for both traces (at
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Figure 7: Average relative error of per-flow delay standard de-

viation estimates binned by true deviations.

most 90µs and 10µs respectively). Since we are more interested in
the high delay flows, for brevity, we mainly focus on the top 50%
that start at an average latency of about 100µs all the way until
about 30ms.

We can observe from Figure 6 that RLI is quite accurate in mea-
suring latencies of flows that exhibit large delays. Average relative
error of mean delay estimates is close to 12% for flows with true de-
lay greater than 100µs (in the SANJ trace). For the CHIC trace, we
found that 75% of flows having about 100µs latency have less than
18% relative error in CHIC trace, slightly higher than the SANJ
trace. Of course, relative errors typically go down as the true de-
lay increases as the denominator is getting bigger. The important
thing, however, is that absolute error is not growing proportionately
and remains relatively small and bounded; thus, our solution can be
quite effective in measuring flow-specific delay spikes of the order
of a few 100µs very efficiently—exactly the level of SLA specifi-
cations that Cisco provides in its trading floor architecture [1].

Our real router trace, WISC, shows similar trends with CHIC and
SANJ in that as true delay increase, average relative error decreases
significantly. Specifically, for top 20% of delays which is around
3ms true delays, RLI achieves less than 11% average relative errors.
Recall that the WISC trace is collected over an OC-3 link, that is
64 times less capacity than the OC-192 backbone traces. Thus,
intuitively, 100µs delay in the OC-192 trace translates loosely to
around 6.4ms in the WISC trace, for which the error in the delay is
around 8-9%, similar to the backbone traces.

Grouping by flow sizes. As we have considered flows with large
delays before, operators may also care more for larger flows, for
which latency effects may be more pronounced than smaller ones
(say with fewer than 10 packets). Thus, in Figure 6(b), we plot the
average relative error for flows binned by their sizes. In our results,
we found that the top 20% of flows had more than 10 packets in
our backbone traces—average relative error for these is less than
11%. For larger flows, the error is even lower (around 3% for flows
larger than 100 packets). Flow-size distributions in WISC traces
are synthetic; hence, we did not plot the corresponding curve.

Accuracy of delay standard deviation. While good accuracy in
average latency estimates is nice, it is important to be able to esti-
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Figure 8: Comparison with other solutions on SANJ trace with

a packet sampling rate of 0.1%.

mate the variation in delays accurately, at least for the flows where
such a measure is important, i.e., those that exhibit high amount
of standard deviation. We follow a similar approach as we did for
mean delay to compute a CDF of the standard deviation estimates
(shown in Figure 7(a)). From the figure, we can observe that the
median error is less than 12% with some small fraction of flows
exhibiting high relative error. We also computed similar CDFs for
the moderate and low utilization cases (not shown for brevity). As
in the case of mean, the standard deviation estimates were more
accurate for the high utilization case as compared to the low uti-
lization scenario. In all utilization cases, when the true value of
the standard deviation is quite low, we found that the relative error
was really high—the exact proportion of flows that exhibited low
standard deviation changed depending on the utilization character-
istics. To show this, we bin the flows into different groups based on
their true standard deviation and plot the average relative error in
Figure 7(b). As before, we can observe that the average relative er-
ror in detecting standard deviations greater than 100µs is less than
20%, and for higher standard deviations, it is even lesser.

5.2 Comparison with other solutions
We compare our architecture with previously proposed solutions

discussed in §4.3, trajectory sampling and MFE, and also study the
advantage of using RLI estimator compared to RLI-L estimator. In
these experiments, we introduce a sampling rate of 0.1% in order to
keep the trajectory sampling overheads relatively small. While the
MFE and RLI estimator (both variants) do not care about the packet
sampling rate directly, it affects the set of flows created; typically,
random packet sampling leads to the creation of flow records for
relatively large flows or ‘elephants’. Thus, to make the accuracy
comparison consistent (on the same set of flows), we subject our
RLI to the same sampling rate as both trajectory and MFE. Note
that for RLI, we estimate and update the packet latency counters
for all the packets (similar to sample-and-hold [17]) that match the
flow after the flow is created.

We plot the CDFs comparing the relative errors of mean delay
estimates (standard deviation graphs look very similar) across dif-
ferent schemes in terms of relative error in Figure 8(a) for the high
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Figure 9: Scatter plots comparing the flow latency estimates

output by MFE with RLI.

utilization case. Trajectory sampling clearly performs the worst,
in part because it contains very few samples on a per-flow basis.
The relative error for about 50% of the flows is larger than 80%;
the estimates therefore are not reliable at all. MFE performs bet-
ter than trajectory; the fact that it takes advantage of intermediate
background samples from other flows into consideration allows it
to refine its estimates, allows it to approach the global mean ob-
served during the duration of that particular flow.

RLI performs the best among all with most estimates well within
1% relative error—representing two and half orders of magnitude
improvement over trajectory sampling (500x) and almost two or-
ders improvement over MFE. We observe a similar trend with the
standard deviation estimates (not shown in the figure). RLI-L, that
uses no interpolation buffer and assigns the delay observed because
of the left reference packet as the estimate, performs better than
both MFE and trajectory, but loses some amount of accuracy (about
half an order of magnitude) compared to RLI. This is the price RLI
pays in the form of an interpolation buffer to hold packets.

We also compare these solutions across a wide range of utiliza-
tions in Figure 8(b). We observed similar trends, with RLI out-
performing the rest significantly; the gap between RLI and the rest
is significantly more pronounced at higher utilizations where the
absolute delays tend to be high for which the accuracy of RLI is
much better. Still, RLI estimates are more than an order of magni-
tude more accurate than MFE in many cases.

Scatter plots in Figure 9 compare the true and estimated delays
for individual flows for both RLI and MFE. The key difference be-
tween RLI and MFE is the presence of extra timing information for
each and every intermediate packet that belongs to that particular
flow. This timing helps RLI estimate the delay significantly better
using a local estimate (as discussed in §2) compared to the MFE
scenario, where it crudely approximates based on the sampled first
and last packets of the background flows. The difference can be
clearly observed in all our results, with RLI outperforming MFE
by one to two orders of magnitude in terms of the relative error.

5.3 Overheads of RLI
We quantify the direct and obvious overheads associated with the

reference packet traffic, and indirect effects of the reference packet
traffic on actual per-flow latencies and losses. In Figure 10(a), we
show the fraction of link capacity used by the reference packet traf-
fic for different link utilization levels. As we can observe, the band-
width consumed by reference packet traffic is quite small. At low
utilization, where the reference packet traffic is injected at relatively
higher rate (at roughly 1-in-10 packets), still, the overall bandwidth
consumed is about 0.1%. As utilization increases, the bandwidth
consumption falls down steeply to 0.007% at 90% utilization.

Low bandwidth is nice, but it is also important for the reference
packet traffic to not interfere too much with regular traffic, although
some amount of interference is unavoidable. To quantify this, we
measure the difference between the average latency experienced
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(c) Impact to packet losses

Figure 10: Quantifying overheads in RLI and the interference of reference packet packets on regular flows.

by a flow with and without our architecture. In Figure 10(b), we
show the cumulative fraction of flows which experienced a partic-
ular amount of additional delay for the high utilization case, where
interference is (expectedly) the most predominant. It is natural to
expect that flows will potentially experience a positive additional
delay (curves x-PI, PI means positive interference). However, we
also found about 10% flows for which the average delay went down
(curves x-NI, NI is negative interference).

From the distribution of both these types of flows (PI and NI),
we observe that there exist flows that appear to have a significantly
high (by 20-30ms in one case!) as well significantly low (by almost
the same amount) delay in the presence of reference packet traffic
compared to when they were absent. Further investigation revealed
a significant difference in the number of packets that were dropped;
for flows with reduced packet delay, a lot of packets that were not
dropped before were getting dropped in the presence of reference
packet traffic. Similarly, for flows that experienced increase in de-
lay, we observed the opposite phenomenon, where packets that
were getting dropped before somehow survived, although with a
huge delay. Put differently, both these incidents—a packet getting
dropped or getting delayed significantly—are really related to how
close to being full the queue is. Reference packets cause a small
perturbance to only the packets at the fringe, with some dropped
packets getting converted to high delay and vice-versa; thus, the
interference is therefore quite minimal.

In terms of overall loss, we find that our architecture introduces
very little increase in the loss rate as can be seen in the Figure 10(c).
On the whole, we can find that the packet loss rate differs by at most
0.001% even at almost 80% utilization for either traces. SANJ trace
experienced slightly more losses than the other because the arrivals
are a little bit more bursty in that trace.

6. IMPLEMENTATION
We now outline how our architecture can be implemented in

routers. While the packet generator component itself can be imple-
mented in software as the reference packet rate is not too high, it
needs a precise timestamp at the sender side for which hardware is
preferable. Our adaptive reference packet generation scheme main-
tains a little bit of state in the form of a few utilization counters that
can be accommodated within the line-card ASICs. While the ref-
erence packets need not be routable (IP headers are not necessary),
they need to be transmitted from each interface to every other inter-
face and therefore need interface identifiers. (Typical routers main-
tain a small internal header anyway that can be overloaded for this
purpose.) Because the two interfaces are operating within the same
time-domain we may not need extra time synchronization (e.g., us-
ing GPS clocks). On the receiver side, we mainly require three
hardware counters on a per-flow basis for flows of interest. Given

the high line rates, counters need to be in SRAM. One can also
leverage the hybrid SRAM-DRAM architecture commonly used in
managing counters [30] and packet buffers [21], to ensure that high
speed counter updates happen in SRAM that are flushed periodi-
cally to cheaper DRAMs. Another solution is to report per-flow
measurements only for a subset of flows, by sampling or with the
help of other mechanisms (e.g., ProgME [38]).

We could potentially compute the per-flow measurements by mir-
roring all the packets from the receiver to a PC (using span ports
available on routers and switches or, using OpenFlow [7]), or to a
network appliance capable of processing them (dedicated for these
fine-grained measurements). Of course, since the line rates are
high, we still need the counter-update functionality within hard-
ware, for which we could leverage FPGA-based solutions (e.g.,
NetFPGA [5] handles 4 Gbps), or high-speed network processor
boards (e.g., Intel IXP 2800). The main advantage of these solu-
tions is that they provide an easy path to deployment today, with-
out having to wait for router vendors to adopt the architecture to
facilitate per-flow measurements, although, we believe, that would
be the ultimately preferable. A big win for our architecture com-
pared to commercial boxes such as those by Corvil [4] is that we do
not require both senders and receivers to obtain measurements; our
solution allows obtaining measurements directly at the receiver.

7. RELATED WORK
While designing router-based passive measurement solutions is a

well-established area of research, designing solutions for fine-grain
latency estimation is a relatively new line of research. This is in part
due to the relatively recent advent of applications such as data cen-
ter and algorithmic trading applications that demand sophisticated
tools to assist in debugging and troubleshooting their performance.

There exists a lot of literature (e.g., [37, 12, 39]) on tomogra-
phy techniques to infer hop and link characteristics from end-to-
end measurements (conducted using tools such as [34]) and topol-
ogy information. They provide aggregate measurements, but not
on a per-flow basis. In this context of flow measurement, there
have been a wide variety of solutions proposed (e.g., [38, 17, 16,
22]) that employ sampling to control flow selection. Our latency
measurement approach proposed in this paper should, for the most
part, work seamlessly in many of the sampling frameworks; we
have shown how our results compare with other solutions in the
context of random packet sampling used by sampled NetFlow.

Duffield et al. proposed trajectory sampling in [14], and using
them for inferring loss and delay in [40, 13], which we have dis-
cussed before. Lee et al. [25] exploit the two timestamps already
stored on a per-flow basis within NetFlow to obtain a crude estima-
tor called Multiflow estimator for per-flow latency estimates. Since
it is related to our goal, we compare the efficacy of this solution
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with our architecture in our evaluation. Researchers have in the
past conducted measurement studies to understand single-hop de-
lays [27, 19] and delays across PoPs in [10]. They do not propose
any architecture for measuring per-flow delays however.

A very recent and one of the most relevant efforts is the design
of a data structure called LDA by Kompella et al. in [23] and an
architecture that encompasses LDA in [24]. While LDA enables
fine-grained network latency measurements in the context of new
and emerging class of data center and algorithmic trading networks,
it only provides aggregate measurements that, as we argued in this
paper, is not sufficient since concurrent flows tend to exhibit sig-
nificant performance diversity. It would be an interesting future
direction to design new data structures more similar to LDAs that
can achieve per-flow measurements in a scalable fashion.

8. CONCLUSION
Many new applications such as algorithmic trading and data cen-

ter applications demand low end-to-end latency in the order of mi-
croseconds. While special purpose measurement devices can help
network operators detect latency spikes and other performance anoma-
lies, the high cost of such devices is a strong inhibitor to ubiqui-
tous deployment. A recent solution, LDA, provides a scalable and
low-cost alternative to delay measurement, but only for aggregate
traffic, and is hence insufficient for isolating problems that affect
specific applications or flows.

We propose a scalable architecture called RLI for obtaining per-
flow latency measurements across interfaces within routers. Our
architecture is based on two key ideas. First, packets within a given
burst encounter similar queueing and other behavior and hence, ex-
hibiting similar delays. Thus, we inject periodic reference packets
at the sender with a timestamp that the receiver can use as a refer-
ence latency sample. Second, the delay experienced by packets that
arrive between multiple reference packets can be approximated by
linearly interpolating the delays of the two reference packets. Using
simulations on packet traces, we find that RLI achieves a median
relative error of 10-12% (§5.1), and one-two orders of magnitude
lower relative error compared to previous solutions (§5.2). An-
other big win for RLI comes from the fact that measurements are
obtained directly at the receiver without the need for sender-side
packet timestamps for all the regular data packets, in contrast to
solutions that require correlating large numbers of packet times-
tamps collected from multiple points. Our architecture is simple to
implement and is cost effective making it practical for ubiquitous
deployment. We believe that it offers a compelling alternative to
high-end expensive monitoring boxes for network operators.
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