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ABSTRACT

 

Aim

 

Nowadays, large amounts of species distribution data and software for
implementing different species distribution modelling methods are freely available
through the internet. As a result, methodological works that analyse the relative
performance of modelling techniques, as well as those that study which species
characteristics affect their performance, are necessary. We discuss three important
topics that must be kept in mind when modelling species distributions, namely
(i) the distinction between potential and realized distribution, (ii) the effect of
the relative occurrence area of the species on the results of the evaluation of model
performance, and (iii) the general inaccuracy of the predictions of the realized
distribution provided by species distribution modelling methods.

 

Location

 

Unspecific.

 

Methods

 

Using some recent papers as a basis, we illustrate the three issues
mentioned above and discuss the negative implications of neglecting them.

 

Results

 

Considering a potential-realized distribution gradient, different modelling
methods may be arranged along this gradient according to their ability to model any
concept. Complex techniques may be more suitable to model the realized distribution
than simple ones, which may be more appropriate to estimate the potential
distribution. Comparisons among techniques must consider this scenario. The
relative occurrence area of the species conditions the results of the evaluation scores,
implying that models of rare species will unavoidably yield higher discrimination
values. Moreover, discrimination values that are usually reported in the literature
may imply considerable over or underestimations of the distribution of the species.

 

Main conclusions

 

It is extremely important to establish a solid conceptual and
methodological framework on which the emergent field of species distribution
modelling can stand and develop.

 

Keywords

 

Accuracy, error, extent, potential distribution, realized distribution, relative

 

occurrence area, species distribution models, validation.

 

INTRODUCTION

 

Predictive models of species distributions are being increasingly

used to address questions related to the ecology, biogeography,

and conservation of species (see Peterson, 2007). On one hand,

a huge amount of distributional data are being gathered in

biodiversity data bases and made freely available through the

internet (see Soberón & Peterson, 2004 and http://www.gbif.org/).

On the other, a wide variety of modelling techniques specially

designed to model species distributions are currently available

(see Guisan & Thuiller, 2005), including a number of presence-

only freeware modelling tools (e.g. Bioclim and Domain, Busby,

1991; Carpenter 

 

et al

 

., 1993, respectively; http://www.diva-gis.org/;

Biomapper, Hirzel 

 

et al

 

., 2002; http://www2.unil.ch/biomapper/;

GARP, Stockwell & Peters, 1999; http://www.nhm.ku.edu/

desktopgarp/; Maxent, Phillips 

 

et al

 

., 2006; http://www.cs.

princeton.edu/~schapire/maxent/). Therefore, a good knowledge

of the performance of these techniques becomes extremely

important to help researchers and technicians to select the

method most appropriate to their purposes.

In a recent contribution, Tsoar 

 

et al

 

. (2007) compared the

performance of six species distribution modelling methods that
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require only presence data as input (i.e. profile techniques). The

value of this study could be of particular importance, since

usually the only reliable information on the distribution of

organisms is about their recorded presence. Contrary to presence

data, reliable absence data are rare and hard to obtain; confirming

that a species is absent from a locality is a difficult task (Gu &

Swihart, 2004) that becomes almost unaffordable in the case of

the coarse resolution grid cells used in most studies. After their

comparison, Tsoar 

 

et al

 

. (2007) reached two main conclusions:

(i) complex techniques (i.e. those that establish more flexible

relationships between the dependent and independent variables)

are better predictors than simple methods, and (ii) the distribution

data of species with restricted niches are modelled with higher

accuracy than that of generalist species. These two statements are

in agreement with the existing literature. Tsoar 

 

et al

 

.’s conclusion

on the complexity of techniques resembles the insight provided

by Elith 

 

et al

 

. (2006), who also concluded that methods able to fit

complex responses are preferred over simple techniques. Their

conclusion concerning the traits of the modelled species

coincides with several previous studies that found that predictions

are usually more accurate for the species with the smaller range

sizes and the higher habitat specificity (McPherson & Jetz, 2007

and references therein).

Here, we argue that the interpretation of the results found in

these comparative studies can vary if some methodological and

theoretical considerations are taken into account. We use the

discussion on both topics mentioned above as a means to reflect

on the theoretical concepts that underlie species distribution

modelling methodologies. We provide alternative and reasonable

interpretations of the above-mentioned results that outperform

the most widely agreed explanations.

 

ARE COMPLEX TECHNIQUES BETTER FOR THE 
PREDICTION OF SPECIES DISTRIBUTIONS THAN 
SIMPLE ONES?

 

In this paper, we deliberately avoid using the term 

 

niche

 

 to refer

to species 

 

distributions

 

. The concept of niche is often confused

(Real & Levin, 1991; Colwell, 1992), and necessarily implies the

understanding of the effects of biotic and abiotic factors on the

fitness of organisms (Kearny, 2006). Many factors can result in

the absence of a species from suitable habitats and/or its presence

in unsuitable ones (Pulliam, 2000). Hence, the combination of

statistical models with distribution data does not allow deriving

the realized niche of the species, and even less their fundamental

niches. Besides the current strong debate about the ‘geographical’

definition of the niche (see Soberón & Peterson, 2005; Araújo &

Guisan, 2006; Kearney, 2006; Peterson, 2007), Mike P. Austin

wrote ‘statistical models [...] can say little about the fundamental

niche’ (Austin, 2002; p. 104) and, in words of Jorge Soberón,

modellers calculate ‘abstract objects obviously 

 

related

 

 to niches’

(Soberón, 2007; p. 1121). In this sense, correlative statistical

models are able to project simulations of the distribution of

species into the geographical space, but are not able to provide

a description of species niches.

A good use of species distribution models requires a clear

distinction of the differences between potential and realized

distributions (see Soberón, 2007). While potential distribution

refers to the places where a species could live, realized distribution

does to the places where a species actually lives. Importantly,

both concepts refer to a particular moment or a discrete period

in time (usually, present time). Therefore, the places pertaining

to the potential or realized distribution of a species vary with

time. However, they do not vary in the same way. The potential

distribution of a species varies geographically with the oscillation

of climatic conditions, but is environmentally invariant. At the

same time, the realized distribution of the same species will vary

in both the geographical and the environmental spaces when

subject to the same climatic variations. In other words, while

it can be assumed that the potential response of a species to

environmental gradients is constant under some conditions, its

realized response is context dependent. Therefore, depending on

the question asked, we will be interested in describing or modelling

one characteristic of the species distribution or the other. Indeed,

these two concepts would be better approached using different

analytical frameworks (Soberón & Peterson, 2005; Jiménez-

Valverde 

 

et al

 

., 2007; Lobo 

 

et al

 

., 2007; see Fig. 1). For the models

to represent one of these two concepts or the other, they must be

calibrated and validated using the appropriate data.

The kind of absence data used for the calibration of the models

and the modelling technique used condition the characteristics

of the distribution of the focal species that are described by

model results (Fig. 1). Species distributions are not only con-

strained by abiotic (e.g. climate) factors. Rather, they are also

shaped by biotic interactions; dispersal constrains; anthropo-

genic effects; stochastic events; and other historical, unique, and

contingent factors (Pulliam, 2000; Soberón, 2007). These effects

can only be accounted for using data on the absence of the species

to restrict model predictions (Soberón & Peterson, 2005).

Hence, the realized distribution of a species cannot be estimated

without data on its absence from environmentally suitable

localities (Lobo, 2008). In addition, predictors must not only

Figure 1 A conceptual potential-realized 
distribution gradient showing the modelling 
techniques and the characteristics of the 
training (and evaluation) data that are more 
adequate to describe each portion of this 
gradient. The discontinuous lines in the 
extreme left of the gradient mean that the 
potential distribution is a hypothetical concept 
that is hard to describe without a high amount 
of evidence from different sources.
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include environmental variables (scenopoetic variables 

 

sensu

 

Soberón, 2007); it is necessary to incorporate other factors

that might be restricting the distribution of the species (e.g.

Lobo 

 

et al

 

., 2006). If, on the contrary, the goal is to estimate the

potential distribution of a species, the absences caused by non-

environmental factors must be avoided. Here, absence data must

come from environmental conditions that are known to be

unsuitable for the species (Chefaoui & Lobo, 2008). If information

on absence due to environmental constraints is not available,

two alternatives can be taken: (i) generate absences outside the

environmental domain where the species is present and use them

for model parameterization (see, for example, Jiménez-Valverde

& Lobo, 2007a); and (ii) use profile techniques such as those

evaluated by Tsoar 

 

et al

 

. (2007) in order to estimate the location

of climatically suitable places (see below and Fig. 1).

Validating these two distributional concepts is a different

issue. Estimations of realized distributions must be evaluated

using data of the realized distribution of the species, i.e. presences

as well as true absences caused by either environmental (sceno-

poetic) or non-environmental factors. However, these true

absences cannot be used to validate the estimations of potential

distributions. Rather, identifying all the localities that host

environmental conditions suitable for a species is impossible to

achieve. Therefore, the potential distribution of a species is a

hypothetical concept (see below) that could be partially evaluated

using new presence information, or preferably with either

physiological data (Kearny, 2006), translocation experiments,

or additional evidence from species invasions (see Sax 

 

et al

 

.,

2007). These alternative approaches, though, present their own

difficulties.

Nevertheless, the distinction we make between potential and

realized distribution, as well as between the techniques that are

most appropriate to model one or the other, is not rigid. Rather,

such distinction occurs along a continuous gradient where the

position of each particular combination of data and modelling

technique is uncertain (see Fig. 1). Also, as stated above, it is

unlikely that any distributional data are able to reflect all the

environmental potentiality of the species due to the influence of

contingent factors. In addition, biodiversity inventories are often

spatial and environmentally biased (Lobo 

 

et al

 

., 2007), providing

a biased and incomplete picture of their responses to environ-

mental gradients (Hortal 

 

et al

 

., 2008). Therefore, the potential

distribution should be considered a hypothetical extreme of the

gradient described above, that can be approached only in an

ideal scenario where the distribution of the species is fully

in equilibrium with the environmental space defined by the

scenopoetic variables.

In such context, any comparison on the performance of

different presence-only modelling techniques must take into

account that such techniques generally provide distributions

close to the potential. Thus, if the outputs of these techniques are

evaluated using presence and true absence data (i.e. data on the

species’ realized distributions), it can be erroneously concluded

that the predictions from more complex techniques are more

accurate than those from simpler ones (as, e.g., Elith 

 

et al

 

., 2006

or Tsoar 

 

et al

 

., 2007 conclude). We argue that this result comes

from the nature of the evaluation data used and the nature of

the modelling techniques evaluated rather than from the true

accuracy of these techniques. Those techniques that are able to

establish the more complex relationships between dependent

and independent variables will overfit the presence data more

strongly. Unavoidably, this will result in predicted extents of

occurrence that are smaller than those suggested by simpler

techniques. Due to this, a greater number of the true absences

in the validation data will be predicted as absences by complex

techniques than by the simple ones.

Regardless of any conceptual misunderstanding, species

distribution models could provide good predictions if they fit the

evaluation data tightly. Sometimes it could be possible to forecast

a given part of the realized distribution of a species using methods

that are more adequate to describe its potential distribution.

In this case, it is necessary to be particularly demanding in the

evaluation of the agreement between observations and predic-

tions. However, the discrimination between ‘good’ and ‘bad’

models is based in subjective ranges of indices that measure only

if the agreement between predicted and observed distribution is

significantly higher than the expected by chance. For example, in

the case of the kappa statistic, values equal or smaller than 0.6 are

commonly thought to indicate reliable predictions (i.e. a good

agreement between observed and predicted distributions; see,

e.g. Elith 

 

et al

 

., 2006; Araújo & Luoto, 2007; or Tsoar 

 

et al

 

., 2007).

However, a kappa value of 0.6 can be obtained with degrees of

under- or overprediction of 40%, for a species that occupies half

of the territory (Fig. 2a). In the case of a rare species occupying

Figure 2 Predictive scenarios yielding a kappa score of 0.6. a1 and b1 represent the real distribution of two species (a and b), and a2, b2, and b3 
the predicted distributions. The presence of the species is represented in black, and its absence in grey. In the first example, species a occupies half 
of the considered territory, and a kappa value of 0.6 can be obtained when the model overpredicts the presence of the species by 40%. Note that, 
in this case, the inverse is also true, i.e. if black was absence and grey presence, the model would underpredict the presence of the species by 40%. 
In the second example, species b occupies 5% of the considered territory, and a kappa value of 0.6 is obtained when the model overpredicts the 
presence of the species by 102% (b2; i.e. the predicted geographical range is duplicated with respect to the real range), or when the model 
underpredicts the presence of the species by a 44% (b3).
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5% of the territory, a kappa value of 0.6 could mean an over-

prediction of 102% (i.e. the area of distribution is doubled) or

an underprediction of 44% (i.e. nearly a half of the distribution

of the species is not predicted) (Fig. 2b). Therefore, the adequacy

of models with these kappa values is questionable for both basic

and applied purposes. This is also a drawback of other commonly

used agreement measures such as area under the receiver operat-

ing characteristic curve (AUC) (see Lobo, 2008).

In sum, the evaluation of model results is biased towards a better

performance of complex techniques due to their potential to

overfit models to the training data. Certainly, identifying those

techniques that produce robust forecasts of the realized distribu-

tion of the species is a worthy and important task, even if the

techniques used are conceptually more appropriate to represent

the potential distribution. Indeed, the complex techniques

usually thought to be the most effective (e.g. Elith 

 

et al

 

., 2006;

Tsoar 

 

et al

 

., 2007) would be placed closer to the realized distribu-

tion end of the potential-realized adequacy gradient shown in

Fig. 1. The conceptual framework discussed above should

therefore be remembered when defining the objectives and

interpreting the results of species predictive models. The

performance of the models should be evaluated by examining

errors of omission and commission separately (i.e. presence

points predicted as absences and absence points predicted as

presences, respectively), and by taking into account the ratio

between the extent of occurrence and the whole extent of the

region of study (the relative occurrence area, ROA; Lobo 

 

et al.

 

2008). This latter is an evaluation that studies comparing

the performance of different species distribution modelling

techniques do not report.

 

ARE THE PREDICTIONS FOR SPECIALIST 
SPECIES MORE RELIABLE THAN FOR 
GENERALISTS?

 

Species with restricted environmental tolerances and/or distribu-

tions are usually reported to be well predicted (e.g. Tsoar 

 

et al

 

.,

2007). Several biological explanations for this pattern have been

proposed (see McPherson & Jetz, 2007 and references therein).

Here, we argue that these good performances are usually the

result of the properties of the data used for validation, due to the

correlation between the ROA of the species in a given territory

and the environmental tolerance of the focal species. The ROA is

a function of the extent of the studied territory. Thus, the smaller

the ROA, the greater the number of absences far from the environ-

mental domain of the presences will be available and the better

the models will describe distribution data. This phenomenon

was described by Lobo 

 

et al

 

. (2008) as being analogous to the

artificial inflation of the explanatory capacity in a clinical study

by selecting a control population that includes a number of

people that are naturally resistant to the disease. Due to this,

species with smaller ROA will show better performance in most

validation metrics, a result that is merely an inevitable product of

the data used for validation.

The immediate consequence is that the models developed for

two species with different ROAs are not comparable (see Lobo

 

et al

 

., 2008). These models provide information about different

processes, in the same way as the information on the same species

provided by distribution models differs according to the scale

(both of extent and resolution) at which they are performed.

Indeed, the conclusion that the distributions of rare and

specialist species are easier to model accurately than common

and generalist ones (e.g. Segurado & Araújo, 2004; McPherson

& Jetz, 2007; Tsoar 

 

et al

 

., 2007) might be a trivial result. Rather

it is an artefact caused by the comparison of model performances

for different species within the same extent, provided that rare/

specialist and common/generalist gradients are extent-dependent

concepts. In other words, a good validation result can be

obtained simply by increasing the extent of analysis and thus

decreasing the ROA of the species, independently of their actual

range size.

Note here that ROA is not equivalent to the generally used

term of prevalence; strictly speaking, prevalence is the ratio of the

number of presences to the total number of data points used in

model training (i.e. it is a property of the data sample; Jiménez-

Valverde & Lobo, 2006). Thus, species with small ROAs can have

high prevalence values, and vice versa. On the other hand, ROA

is intimately related with marginality (i.e. the degree of departure

of the conditions inhabited by the species from the mean environ-

mental conditions of the studied region) due to the spatially

autocorrelated structure of nature. However, marginality is a

concept with a biological meaning that relates the extent of the

studied area and the distribution data with the environmental

variables used as predictors. The use of ROA instead of marginality

or other related concepts designed with the purpose of providing

biological explanations is preferable, because it highlights the

artefactual effect of extent in model results.

 

CONCLUDING REMARKS

 

Predictions of species distributions based on correlative models

can help to understand the spatial patterns of biological diversity.

The literature developing and comparing these modelling

techniques increases steadily, as well as the number of studies

applying these techniques. We believe that as the availability of

distribution data and modelling software increases, so does the

danger of developing and applying distribution models without

a solid conceptual background. Therefore, the field of species

distribution modelling needs a serious reflection about the

conceptual basis that underlies species distribution models, as

well as about the true meaning of their predictions. An increasing

number of recently  published studies are questioning and

discussing important conceptual and methodological aspects

of species  distribution models (e.g. Soberón & Peterson, 2005;

Araújo & Guisan, 2006; Jiménez-Valverde & Lobo, 2006,  2007b;

Kearney, 2006; Real 

 

et al

 

.,  2006; Austin, 2007; Soberón, 2007; Lobo

 

et al

 

., 2008; Raes & ter Steege, 2008). Here, the different effects

of the quality of predictors, quality of the distributional data,

and of the adequacy of the species distribution  modelling

techniques can be analysed using virtual species, in order to avoid

the effects of confusing  factors (Austin 

 

et al

 

., 2007; Jiménez-

Valverde & Lobo,  2007b; Meynard & Quinn, 2007).
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To summarize, the design of future works evaluating, com-

paring, and applying species distribution modelling techniques

should be rooted in a good understanding of their conceptual

background. Indeed, the results of these works should be inter-

preted with caution and a critical eye. If species distribution

models are to be a common-use tool for biodiversity research

and conservation assessment, the foundations of their application

must be much more solid than they are now.
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