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Abstract— It has been observed experimentally that the
mapping of global to detailed routing in conventional FPGA
routing architecture (2D array) yields unpredictable results. In
[8,10,13], a different class of FPGA structures called Greedy
Routing Architectures (GRAs), where a locally optimal switch
box routing can be extended to an optimal entire chip routing,
were investigated. It was shown that GRAs have good mapping

properties. An H-tree GRA [10] with W2+2W switches per

switch box (SpSB) and a 2D array GRA [13] with 4W2+2W
SpSB were proposed (W is the number of tracks in each switch
box). Here, we continue this work by introducing an H-tree

GRA with W 2/2+2W SpSB and a 2D array GRA with

3.5W2+2W SpSB. These new GRAs have the same good
mapping properties but use fewer switches. We also show a
class of FPGA architectures in which the mapping problem

remains NP-complete, even with 6(W-1)2+6W2 SpSB. This is

close to the maximum number of SpSB which is 6W2.

1.  Introduction

An FPGA is an array of pre-fabricated functional blocks and

wire segments with user-programmability of logic and routing
resources. Because of their fast turn-around time and economic
manufacturing cost for low volume designs, FPGAs have been a
rapidly growing medium for ASIC implementations. A popular
FPGA technology is based on Look-Up-Tables (LUTs) and static
RAM (SRAM) (e.g., Xilinx [14]). The routing architecture used in
this FPGA technology is described in [3,14] and is shown in Fig. 1.

Routing is crucial in the FPGA design automation process
because the feasibility of a design often depends on the routing
resources rather than on the logic gates. The conventional approach

to FPGA routing is a 2-step global/detailed routing scheme [3,4].
Thus, the ability to map an arbitrary global routing of all nets to a
feasible detailed routing is a critical problem. In this paper, we
investigate the following three global to detailed mapping proper-
ties imposed by the routing architecture:

Mapping Decision Problem (MDP) (predictable routing): Can
the decision, whether an arbitrary global route can be mapped to a
feasible detailed route be made in polynomial time?

Constant Mapping Ratio (CMR): Is there a constant ratio bound
on the number of tracks required to complete detailed routing over
global routing channel density?

Perfect Mapping (PM): Can a detailed routing using the same
number of tracks as the global routing be found (even by exhaus-
tive search)?

We will study these problems on two routing architecture, the
2D array routing structure with differing addition of switches, and
an H-tree routing structure (Fig. 3). In [13], the mapping problem
of a Xilinx style FPGA architecture with minimum switching flex-
ibility was formulated as a 2-D interval packing problem. It was
shown to be NP-complete and have no constant mapping ratio
bound for any architecture of that style and with the same
minimum hardware switching flexibility. In [10], the concept of a
greedy routing architecture (GRA) was proposed. A GRA is an
architecture with the property that a globally optimal routing of all
switch boxes can be extended from a locally optimal routing of a
single switch box. Since the locally optimal routing needs to be
extended to a global solution, a GRA has a routing order on its

switch boxes. The H-tree GRA [10] with W2+2W switches per
switch box (SpSB) has a perfect mapping with a polynomial time
algorithm. The routing order for the H-tree is from the root down to

the leaves.  Another GRA with 4W2+2W SpSB was proposed in
[13] and is a 2D array routing structure with a snake-like routing
order. This snake GRA also has a perfect mapping with a polyno-
mial time algorithm.

In this paper, we improve on the above results by creating an H-

tree GRA with W2/2+2W SpSB and a snake GRA with 3.5W2+2W
SpSB. Since the H-tree architecture is a type of hierarchical FPGA
[5], this indicates that hierarchical FPGAs may be a good choice in
situations where quick and/or predictable place and route is
needed. Having quick and predictable place and route is becoming
increasingly important as increasingly large numbers of FPGAs are
used in a single system. For example, in a million gate logic
emulation system like Teramac [1], using a commercial FPGA
such as the Xilinx 3000 and 4000 would have been impractical due
to the time and unpredictibility of place and route. Teramac instead
uses a custom FPGA chip (Plasma [2]) that allows quick (3
seconds) place and route. We also show an architecture with 6(W-

1)2+6 SpSB, in which the MDP is still NP-complete. Since this is
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close to the maximum number of SpSB of 6W2, this indicates that
even the addition of a substantial number of switches may not help
the worst case complexity of the MDP.

This paper is organized as follows.  In section 2 we introduce
basic terminology.  In sections 3 and 4 we study the Xilinx routing
structure after adding switches in various ways.  In section 5 we
investigate GRAs.  Finally we give conclusions in section 6.

2.  Routing Architecture and Terminology
In Fig. 1 we show a simple routing architecture for a two-

dimensional array of logic cells. Each logic cell is marked L and
can be configured to be a Look-Up-Table (LUT), flip-flop, etc.
[3,14]. Prefabricated wire segments run between the cells in
vertical and horizontal channels with each wire length spanning an
L block. Each routing track within a channel is assigned a track id
as shown in Fig. 1. Programmable routing switches are grouped
inside the connection (C) boxes and switch (S) boxes (Fig. 1b, 1c).
The C boxes contain routing switches that can be programmed to
connect logic block pins to wire segments. The S boxes contain
switches that allow one wire segment to be connected to another.
One switch can connect two wire segments. In Fig. 1c each dashed
line is counted as a single switch.

The flexibility of a C block, is defined to be the number of
tracks a logic pin can connect to. In this paper, we assume that the
flexibility of all C boxes is complete, i.e. each logic pin has a
switch to connect to any wire inside the C box containing the logic
pin. Therefore, the routing property of the architectures investi-
gated is dependent on the S box structures only. The flexibility of a
wire (track) of an S box is the number of other surrounding wire
segments this wire has a switch to connect to. For example,
consider Fig. 1c. Each wire on one side has 3 possible connections
to other sides (only track 1 switches are shown), therefore, the flex-
ibility of each track of this S box is 3. The population of an S box is
the number of switches contained in it.

We define a domain as a maximal set of wire segments such that
any two segments of the set are connectable through (S box)
switches.  Let D be the number of domains in a routing architec-

ture, and let Di represent the ith domain.

The 2-D routing structures can be divided into two major
classes: disjoint and non-disjoint architectures. A disjoint routing
architecture is a structure in which all S box switch connectable
wire segments on the chip are (disjointedly) partitioned into D > 1
domains such that each domain Di contains a particular number

(|Di|) of wire segments in each C box , and each wire of a domain

has an S box switch connectable to each same domain wire on
other neighboring S box sides. We refer to the number of wire
segments from a given C box in Di as the domain capacity of Di, or

|Di|. Thus the number of switches in an S box associated with a

domain Di is 6|Di|2. Any other type of routing architecture is a non-

disjoint routing architecture.  We further divide disjoint routing
architectures into two categories, uniform and non-uniform.  A
disjoint architecture is uniform if all domain capacities are the
same; otherwise, it is non-uniform. In a uniform disjoint architec-
ture, the domain capacity is represented by Dc.  For example, the

Xilinx 4000 [14] like routing architecture has uniform disjoint
domains, with Dc = 1.

     A net is a set of pins that are assigned the same signal and are
to be connected by wire segments. A global router decides through

which switch boxes and connection boxes each net will pass. A
detailed router assigns wire segments and switches to connect each
net based on the net path given in the global route.

     A channel density resulting from a global routing, Wg, is the

maximum number of global routes which run in parallel in any
channel.  Wd is the minimum number of tracks needed to route the

nets given the global routes. Note that the number of pre-fabricated
tracks, W, on a chip is fixed, so if Wd > W, routing cannot be com-

pleted. A mapping ratio (MR) is the value of Wd/Wg.

3.  Mapping Property of Disjoint Architectures
In [13], only the Xilinx style architecture with Dc = 1 is

analyzed. In [10], it was shown that the mapping decision problem
is NP-complete for any uniform disjoint architecture with arbitrary
domain capacity when the number of domains is greater than 2. In
the case of 2 domains, if |D1|=|D2|=1 (W=2), the MDP can be

solved by a polynomial 2-colorable graph algorithm. However,
here we further show that the problem becomes NP-complete if the
capacity of any domain is increased. The result is stated in the
following theorem.

Theorem 1. The problem [MDP on 2-D non-uniform disjoint
routing architecture] is NP-complete for S box topology with D =
2, |D1| = W-1, and |D2| = 1 for any W > 2.

Proof: Reduction from the NP-complete [non-negated one-in-
three 3SAT] problem. We give the details in the appendix.

Combining the results of this theorem and [10], we conclude
that the MDP is NP-complete for a broad range of disjoint architec-
ture (uniform or non-uniform) even with the addition of a large
number of switches. This result holds for both 2-pin and multi-pin
routing cases. It was also shown in [10] that all 2-D disjoint routing
architectures, either uniform or non-uniform, have no constant
mapping ratio bound if Wg > max (|Di|), where |Di| is the domain

capacity of the ith domain. Consider a non-uniform disjoint routing
architecture with just two routing domains, one with capacity W-1
and the other with capacity one. In such a routing architecture, the

switch population of a switch box is 6(W-1)2+6, which is close to

the complete flexibility of 6W2; however, neither a polynomial
mapping algorithm nor a constant mapping ratio bound is achiev-
able for such an FPGA architecture.

4.  Extremal Routing Architectures
There are 6 kinds of side-to-side switch connection relations of

an S box as shown in Fig. 2. A one-to-one wire connection
mapping of different sides can be represented by a permutation
mapping. The identity permutation, I, represents the mapping
between wires of the same track id. A complete mapping is one in
which a wire on one side can connect to any wire on the other side

(requires W2 switches between the 2 sides).

If only the identity and complete mappings are used in switch
box designs (calledextremal switch-block structure), it was shown
[8] that, within this class of architectures, the switch box structure
using 3 complete mappings and 3 identity mappings forming a

cycle has the lowest number of SpSB (3W2+3W) that can yield a
polynomial mapping algorithm.  However, since this cyclic
extremal architecture has a worst mapping ratio of 3/2, it may take

3(3/2)2Wg
2+3(3/2)Wg, which is 6.75Wg

2+4.5Wg SpSB to



complete routing cases with global routing density of Wg. We will

illustrate more details in Section 5.3.

5.  Minimizing Greedy Routing Architectures
From the above results we conclude that blindly adding

switches to switch boxes will not, in the worst case, make an
FPGA more routable.  Thus the switches must be added in some
intelligent manner so as to ensure the routability of the final chip.
In [6] universal switch modules were studied.  These are switch
boxes that can route any given global routing around the switch
box (that satisfy the local routing constraints of this individual
switch box). But, this local optimality does not extend across the
entire chip. So even though each switch box is locally optimal, that
does not guarantee an optimal result across the entire FPGA chip.
The authors claim, as most FPGA net lengths are short, universal
switch modules can produce good routing results on practical
cases.

In the following we will develop GRAs achieving our desired
routing goals while using less switches than all other proposed
structures [8,13].  We will introduce a minimal 3-way switch box
structure, then use it as a basis to construct a 4-way switch box.
The 3-way switch box will be used in the H-tree GRA and
extended into the 4-way S box used in the 2D GRA.

5.1   H-tree Architecture and 3-way switch box
A GRA in the form of an H-tree (Fig. 3) using a 3-way switch

box with W2+2W switches which is polynomially routable with a
perfect mapping was proposed in [10]. The H-tree architecture is a
GRA because the 3-way switch boxes are designed to be able to
route any global routing with the top side already detailed routed.
By routing the H-tree from root down to leaves, each 3-way switch
box will always be routable, and thus the entire tree will be
routable.  In the following, we improve the 3-way switch box by

reducing the number of switches to W2/2+2W but maintaining the
polynomial routability with a perfect mapping. We furthermore

show that the removal of any switch in our W2/2+2W switch box
would result in losing the perfect mapping, thus the 3-way switch
box has a minimal number of switches.  Without loss of generality,
we assume W is even in the following discussion.

Fig. 4a shows the structure of a 3-way switch box with W = 4.
This new 3-way switch box has an identity mapping between top-
right (Ti to Ri) and top-left side-pairs (Ti to Li), and each left track

Li can be connected to Ri+1, Ri+2, ..., Ri+W/2 (subscripts are always

mod W, but for clarity, the mod W will be omitted). This 3-way

switch box has W2/2+2W switches. Fig. 4b shows a routing
example using this 3-way switch box.

The connections between the left and right sides of the switch
box can be viewed as a bipartite graph G=(V,E), where each wire,
Li or Rj maps to a vertex vLi or vRj in the graph , respectively, and

there is an edge between vertex vLi and vRj iff there is a switch

connecting wire Li and Rj.  Then we define adj(v) to be the set of

vertices adjacent to v∈V, and adj(S), S⊆ V to be .

Lemma 1. Let G= (V,E) be as described above.  If S = {vLi |

i∈{x, x+1, ..., x+m} (mod W) and 1≤ i ≤ W}, then the number of
vRjs adjacent to S, |adj(S)| = min {W/2+|S|-1, W}.  For any other

kind of subset of vLis, S’, |adj(S’)|≥ min {W/2+|S’|, W}.

Proof: Consider a subset of vLis, S’’ = {vLi | i ⊆ {1...W}}.  If

S’’ is of the form S above, i.e. all tracks of S’’ are (continuously)
consecutive, then let vLx be the first in the sequence.  Since vLx∈S,

by the construction of the switch box {vRx+1, vRx+2, ..., Rx+W/2} ⊆
adj(S). The addition of a consecutive track (vLx+1) to S will

increase the size of adj(S) by one until it reaches the maximum
possible size, W.  The addition of the first non-consecutive track (if
S’’ is of the form S’ above) will increase the size of adj(S) by at
least two (up to maximum size W). The lemma follows.

5.2  One side predetermined 3-way routing problem

A 3-way switch box has incoming and outgoing nets in only 3
directions. To build a greedy routing structure which can propagate
an optimal local routing to an optimal entire chip routing, we
define the [ One-side predetermined 3-way routing problem ] as
follows:

Instance: A 3-way switch box routing structure, a global route
of nets on the 3 surrounding C boxes of the 3-way box, with
detailed route of one side predetermined.

Question: Does there exist a valid detailed routing of any global
route surrounding the given switch box?

Theorem 2. The 3-way switch box described above and its
variations can detail route any 3-way global routing with one side
predetermined.

Proof:  We will first consider the case where the predetermined
side is the top side and the other two sides are the right and left
sides (Fig. 4). With small variations, any side can be the predeter-
mined side and the other two sides can be any two of the remain
three sides of a 4-way S box.  Note that there are 4 kinds of nets
surrounding the 3-way switch box: a right-bend net (|>), a left bend
net (<|), a horizontal net (<->), and a 3-way net (<|>). Each top
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track can have been preassigned (detailed routed) to either a right-
bend net, a left-bend net, or a 3-way net.

We first consider the case with only 2 pin nets, (excluding the
<|> net).  Later we show that the <|> net can be reduced to the 2 pin
net case.  In the following, we use the matching theorem [9], which
states, given a bipartite graph G with vertex partition {S,T}, |S|≤
|T|, there exists a complete matching of S iff for every subset Q⊆
S, |adj(Q)|≥ |Q|.

To route the 3-way switch box, first the fixed top side is routed.
Without loss of generality, assume that there are at least as many <|
nets as |> nets to be routed.  Each <| (|>) net will occupy a wire Li

(Rj).  Thus after routing the top side, a subset of wires on the left

and right sides remain unused.  To ensure that any possible global
routing is detail routable with only W tracks, we must show that
the bipartite subgraph including the unused wires and their connec-
tions always has a complete matching.

Let G=(V,E) be as described above.  Let G’=(V’,E’) be the

subgraph created from the remaining wires.  Let V’ = vL’∪ vR’ ,

where vL’ = {vLi |  wire i is an unused wire on the left side} and

vR’ = {vRi |  wire i is an unused wire on the right side}.  Further-

more  let vL = {vLi |  wire i is a used wire on the left side} and vR

= {vRi |  wire i is a used wire on the right side}.  Then we have the

following facts.  If vLi∈vL then vRi∉vR, also if vRi∈vR then

vLi∉vL. We call this the mutual exclusive property. For example, if

the L2 wire has been used for a <| net, it must be connected to the
T2 wire, then the R2 wire must be unused because a |> net
connected to R2 must also use the T2 wire.

Since there are at least as many <| nets as |> nets, we must have
|vL| ≥ |vR| which implies |vL’|≤ |vR’|.  Since we can have at most
W <| and |> nets, we have |vL| + |vR|≤W which implies |vR|≤ W/
2. Also |vL’|+|vL| = W which implies W-|vL’|≥ |vR|.  Thus we have
|vR|≤ min{W/2, W- |vL’|}

If we take any subset S⊆ vL’ in G’ then |adj(S) in G’|= |adj(S)
in G - vR|≥ |adj(S) in G| - |vR|.  To satisfy the matching theorem
we must show that |adj(S) in G’|≥ |S|. There are three possible
cases.

If |S|≤ W/2 and S = {vLi | i∈{x, x+1, ..., y-1, y} (mod W) and

1 ≤ i ≤ W} then by lemma 1, |adj(S) in G|= W/2+|S|-1. If |vR| < W/
2 then the matching theorem is satisfied, but if |vR|=W/2, we get
|adj(S) in G’|≥ W/2+|S|-1 - W/2= |S|-1.  This does not satisfy the
matching theorem.  However, looking  into the contents of vR we
find that vRx ∈ vR. This follows because |vR| = W/2 implies |vL| =

W/2. Then the mutual exclusive property between vR and vL
implies that vR’ and vL’ must also be mutually exclusive. Thus
since vLx ∈ vL’, we have vRx ∉ vR’ and so vRx∈ vR. Furthermore

vRx does not belong to adj(S) in G’ because |S|≤ W/2. Therefore

|adj(S) in G’| = |adj(S) in G - vR| = |adj(S) in G| - |vR| + |{vRx}| =

W/2+|S|-1 - W/2 + 1 = |S|.  Thus the matching theorem is satisfied.

If |S|≤ W/2 and S is not of the form {vLi | i∈{x, x+1, ..., y-1,

y} (mod W) and 1≤ i ≤ W}, then by lemma 1, |adj(S) in G| = W/
2+|S|, since |vR|≤ W/2 we get |adj(S) in G’|≥ W/2+|S|-W/2 = |S|,
and the matching theorem is satisfied.

If |S| > W/2 then by lemma 1, |adj(S) in G| = W, since |vR|≤
W-|vL’| we get  |adj(S) in G’|≥ W-(W-|vL’|) = |vL’| ≥ |S|, since S⊆
vL’. The matching theorem is satisfied.

Now let us consider the routing cases including <|> nets. Such
routing instances can be converted to a 2 pin instance as follows.
First each <|> net is replaced by a <-> net. Then we add <-> nets to
the routing instance until the right or left side of the switch box will
be fully used after routing (i.e., number of nets routed through the
side will be W).  Without loss of generality assume that the left
side of the switch box is fully used. Then the above 2 pin analysis
shows that this 2 pin routing instance is routable. Furthermore,
each <|> net specified (on top side pins) can be connected as a <|
net to the left side plus a <-> net. We are assured that the left side
wire which the <|> net connects to is connected to a <-> net
because the left side of the switch box is fully used. This completes
the 3 way connection. Finally the unused <-> nets are removed. We
give such a routing example in Fig. 4b.

Note that in the above proof, (also for lemma 1) there was
nothing special about the top side having the fixed routing.  Thus
the above proofs also apply if the right side (left side) of the switch
box has the predetermined routing and the identity mapping to the
top and left sides (top and right sides).  If we also consider rotation
of the switch box, we can conclude that we have created a family
of switch boxes that solves the [ One-side predetermined 3-way
routing problem ].

Since bipartite matching can be done in polynomial time, we
have shown that this 3-way switch box, used in an H-tree architec-
ture  can achieve a perfect mapping in polynomial time. Q.E.D.

We can further claim that, in fact, this structure is also the
minimum routing structure to achieve the described routing
problem.

Theorem 3. The 3-way switch box described above is the
minimum structure solving the [ One-side predetermined 3-way
routing problem ].

Proof : It is clear that none of the W top-right switches can be
removed since it is the minimum switch set needed to route the
case of W |> nets. (Similarly, the top to left W switches is
minimal).

It can also be shown that W/2 is the minimum number of hori-
zontal switches needed of each left side track. And any left side
track Lx must at least be connectable to a right side track subset Y,

s.t. Y = {Ry | } and |Y|≥ W/2. Otherwise there will be a

routing case ( with W/2 of each of the |>, <|, and <-> 2-pin nets)
unroutable. We will prove this by showing that it is always possible
to construct such a unroutable case.

Suppose that adj(Lx) = {Ry | y∈ Y, Y ⊆ {1, 2, .., W}} and |Y| =

W/2 - 1. Then it is always possible to construct a Y’, s. t. x∈ Y’, Y
⊆ Y’, and |Y’| = W/2. Let us now assign all Tis, where i∈ Y’, to be

|> nets; all Tjs, where j∈ X’ = {1, 2, .., W} - Y’, to be <| nets, and

lastly we add W/2 <-> nets.  Thus we have W/2 of each of |>, <|,
and <-> nets in  this routing instance.  To route this set of nets, all
of the wires (Li, Ri, Ti where  i∈{1, 2, .., W}) must be used. Thus

Lx must be used to connect a net.  But Tx is used by a |> wire and

all connectable right tracks of Lx have been used in connecting |>

nets, thus Lx cannot be used to connect any net and this routing

instance is not routable. The structure shown in Theorem 2
possesses the minimum number of switches in each of the 3 side-
to-side connections. Q.E.D.

It is also interesting to observe that due to the mutual exclusive
property of this routing structure, any switch connecting Li and Ri,

1 ≤ i ≤ W, would not contribute in any minimum routing structure

°

°

°

y x≠



of this routing problem. We can somehow consider such kind of
switches asdon’t care switches in this routing problem.

5.3   An Improved 2D array GRA

The above developed 3-way switch box that can route any
global routing involving 3 sides can be used to create a 4-way box
that can route any global routing of 4 sides by trivially adding a

complete mapping from the 4th side to the other 3 sides. This 4-
way switch box can be used in a 2D array routing structure. To
route such a chip, the first step is a 3-way routing on the 3 C boxes
(left, bottom, and right) around each S box and propagating the
routing in a row-by-row linear sequence (originally proposed in
[13]) across the whole chip.

For example, in Fig. 5a, a 3-way routing is started from the C1
box, which is considered as the predetermined side and the C2 and
C3 boxes are considered as the other two sides of the 3-way switch
box. Then the process repeats from C3, which is now treated as the
predetermined (detailed route fixed) side of S2 box, and propagates
the routing to C4 and C5 boxes. The 3-way routing keeps going
until it reaches the end of the row (C9 box here). Similarly, the
whole process starts all over again from the next row, which starts
from C10 box, ..etc. The final step of the routing is to connect the
three left over side-to-side connections (Fig. 5b) around each
switch box by using the 3 complete mapping connections. This
step has to be done on every S box so as to finish the originally
assigned 4-way global route. The same routing method can be
applied if the routing S boxes are replaced by the extremal routing
S boxes, however, as shown in the routing example Fig. 5c, a worst
case mapping ratio of 3/2 could be happened.

Based on this approach, perfect routing can be guaranteed and

the number of SpSB is 3.5Wg
2+2Wg, which is less than the

previous result of 4Wg
2+2Wg [13] and the extremal structure that

requires 6.75Wg
2+4.5Wg SpSB to complete the worst case routing.

Here we express the switch count in terms of Wg to reflect the

effect of the worst case mapping ratio.

6.   Conclusion
In the past, routing analysis on the Xilinx style FPGA architec-

ture has been based on localized [6] or global-wise but limited to
minimum switch flexibility structures [13] or limited to extremal
structures [8]. In this paper, we further investigated these funda-
mental routing problems on the Xilinx style FPGA architecture
with increased switching flexibility. Intuitively speaking, more
hardware routing switches should bring better global to detailed
routing mappability. However, we have found that purely adding
switches does not necessarily reduce the complexity of these
routing problems and bring better worst case mapping ratio. In par-
ticular, for a disjoint routing architecture with switch population of

6(W-1)2+6W, neither a polynomial routing mapping algorithm nor
a constant mapping ratio bound can be achieved. On an extremal
structure, which is non-disjoint, the lowest switch structure

yielding a polynomial routing mapping algorithm is 3W2+3W.
However, due to its worst mapping ratio of 3/2, it requires switch

population of 6.75Wg
2+4.5Wg to guarantee routing completion for

all routing cases with global routing density of Wg. On the other

hand, we show that it is possible to achieve polynomial routing and

perfect routing with a switch population of 3.5Wg
2+2Wg on a

GRA. So far as these investigated routing properties are concerned,
the GRA seems to be superior to other currently known architec-
ture design styles.
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Appendix

Theorem A.1. The problem [MDP on 2-D non-uniform disjoint
routing architecture] is NP-complete for S box topology with D =
2, |D1| = W-1, and |D2| = 1 for any W > 2.

Proof:  To prove this theorem, we first show a proof for the
special case W = 3, and then show how it is extended to the general
case.

Lemma A.1. The problem [MDP on 2-D non-uniform disjoint
routing architecture] is NP-complete for S box topology with D =
2, |D1| = 2, and |D2| = 1.

Proof. This problem is certainly in NP.  We will show that the
NP-complete [non-negated one-in-three 3SAT] problem [7] is
polynomial time reducible to the [MDP on 2-D non-uniform
disjoint routing architecture] problem. We first state the [non-
negated one-in-three 3SAT] problem:

Input: Set U of variables, collection C of clauses over U such
that each clause c∈C has |c| = 3, and no c∈C contains a negated
literal.

Query: Is there a value assignment for U such that each clause
in C has exactly one true literal?

Let the clauses in C be numbered from 1 to |C|, and let the
variables in U = {x1, x2, x3, ...., x|U|}, where |U| is the number of

variables in U. We represent each variables xi by a net xi and

associate each clause ci = {xj, xk, xl} with a diagonally placed C

box through which the nets {xj, xk, xl} pass. To complete the
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global routing all the segments of the same net are connected using
vertical routes.  There is a solution to the [non-negated one-in-three
3SAT] if and only if there is a solution for the [MDP on 2-D non-
uniform disjoint routing architecture] as follows.  If a literal xi is

assigned the value true (false) in a valid non-negated one-in-three
3SAT solution, then the net xi will be assigned to the domain D2

(D1) to form a feasible detailed routing for the routing decision

problem.  Conversely if net xi is assigned to D1 (D2) in a feasible

detailed routing then the variables xi is assigned a value false (true)

to satisfy the boolean formula.    This works because the routing
domain constraints in the routing instance are the same as the
variables value assignment.  Q.E.D.

In Fig. 6, we show the corresponding global routing instance of
the [non-negated one-in-three 3SAT] instance: (x1 + x2 + x3) (x2 +

x4 + x5) (x1 + x3 + x5) for the illustration of the above proof.

This lemma can be easily extended to the theorem by noting
that the [Non-negated on-in-K KSAT] problem is NP-complete for
any fixed K≥ 3.

[Non-negated one-in-K KSAT]

Input: Set U of variables, collection C of clauses over U such
that each clause c∈C has |c| = K, and no c∈C contains a negated
literal.

Query: Is there a value assignment for U such that each clause
in C has exactly one true literal?

The case for K≥ 3 can be proved inductively by showing a
reduction of the [Non-negated one-in-K KSAT] problem to an
equivalent [Non-negated one-in-(K+1) (K+1)SAT].  The basic idea
of converting an instance C (collection of clauses) of KSAT to that
of (K+1) SAT is to introduce a new variable z1 that must be
assigned a false value to each clause in C. This is done by adding
such a new variable z1 and by adding to C three new clauses {y1,

y2, .. , yk, z1}, {y 1, y2, .. ,yk, z2} and {y1, y2, .. , yk-1, z1, z2} con-

sisting of new variables y1, y2, ..., yk, and z2. Given K = W, the

reduction to our problem [ MDP on 2-D non-uniform disjoint
routing architecture ] with |D1| = W-1 and  |D2| = 1 is the same as in

Lemma A.1. Q.E.D.

References:

[1] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, and G.
Snider, “Teramac - Configurable Custom Computing,” FPGAs for
Custom Computing Machines, 1995.

[2] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, and G.
Snider, “Plasma: An FPGA for Million Gate Systems,” Interna-
tional Symposium on FPGAs, pp. 10-16, 1996.

[3]S. Brown, R. Francis, J. Rose, and Z. G. Vranesic, “Field Pro-
grammable Gate Arrays,” Kluwer Academic Publishers, 1992.

[4] S. Brown, J. Rose, and Z. G. Vranesic, “A Detailed Router for
Field-Programmable Gate Arrays”, IEEE Trans. on CAD,  V11:5.
pp. 620-628, May 1992.

[5] V.C. Chan and D. M. Lewis, “Area-Speed Tradeoffs for Hierar-
chical Field-Programmable Gate Arrays,” International
Symposium on FPGAs, pp. 51-57, 1996.

[6] Y.W. Chang, D.F. Wong, and C.K. Wong, “Universal Switch
Modules for FPGA Design,” ACM Trans. on Design Automation,
pp. 80-101, Jan. 96.

[7] M. Garey and D. Johnson, “Computers and Intractability - a
Guide to the Theory of NP-Completeness,” W.H. Freeman and
Company, 1979.
[8] Y. Takashima, A. Takahashi, Y Kajitani, “Detailed-Routability
of FPGAs with Extremal  Switch-Block Structures,” Euro. Design
& Test, pp. 160-164, 1996.
[9] S.G. Williamson, “Combinatorics for Computer Science,” CS
Press, 1985.
[10] Y.L. Wu, and D. Chang, “On the NP-completeness of Regular
2-D FPGA Routing Architectures and a Novel Solution,” Proc.
Int’l Conf. on CAD, pp. 362-366, 1994.
[11] Y.L. Wu and M. Marek-Sadowska, “Graph Based Analysis of
FPGA Routing,” EURO-DAC with EURO-VHDL, pp. 104-109,
1993.
[12] Y.L. Wu, S. Tsukiyama, and M. Marek-Sadowska, “On Com-
putational Complexity of a Detailed Routing Problem in Two-
Dimensional FPGAs,” 4th Great Lakes Symp. on VLSI, pp. 70-75,
1994.
[13] Y.L. Wu, S. Tsukiyama, and M. Marek-Sadowska, “Graph
Based Analysis of 2-D FPGA Routing,” IEEE Transactions on
CAD., pp. 33-44, Jan. 1996.
[14] “The Programmable Logic Data Book,” Xilinx, 1994.

L

L L

L

LL

Fig. 6 An example global route (Wg = 3, N = 5)

X1

X2

X3

X2

X4

X5

X1

X3

X5

corresponding to the clauses:
(X1+X2+X3)(X2+X4+X5)(X1+X3+X5)


