
Not Seeing the Forest for the Trees:
Novice Programmers and the SOLO Taxonomy

Raymond Lister
Faculty of Information Technology
University of Technology, Sydney
Broadway, NSW 2007, Australia

+61 (2) 9514 1850
raymond@it.uts.ac.au

Beth Simon
Computer Science and Engr.
Dept., University of California,
San Diego, CA 92093, USA

+1 (858) 534-5419
esimon@cs.ucsd.edu

Errol Thompson
Dept of Information Systems

Massey University, P.O. Box 756,
Wellington, New Zealand
+64 (4) 8015799 x6531

E.L.Thompson@massey.ac.nz

Jacqueline L. Whalley
School of Computer and Information Sciences

Auckland University of Technology
Private Bag 92006, Auckland 1020, New Zealand

+64 (9) 921 9999 x5203
jacqueline.whalley@aut.ac.nz

Christine Prasad
School of Computing and Information Technology

Unitec
Private Bag 92025, Auckland, New Zealand

+64 (9) 815 4321 x6015
cprasad@unitec.ac.nz

ABSTRACT
This paper reports on the authors use of the SOLO taxonomy to
describe differences in the way students and educators solve small
code reading exercises. SOLO is a general educational taxonomy,
and has not previously been applied to the study of how novice
programmers manifest their understanding of code. Data was
collected in the form of written and think-aloud responses from
students (novices) and educators (experts), using exam questions.
During analysis, the responses were mapped to the different levels
of the SOLO taxonomy. From think-aloud responses, the authors
found that educators tended to manifest a SOLO relational
response on small reading problems, whereas students tended to
manifest a multistructural response. These results are consistent
with the literature on the psychology of programming, but the
work in this paper extends on these findings by analyzing the
design of exam questions.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education - Computer Science Education.

General Terms
Measurement, Experimentation, Human Factors.

Keywords
Novice programmers, CS1, comprehension, SOLO taxonomy.

1. INTRODUCTION
CS1 is the beginning of a long and poorly understood process,
where students begin their journey from novice to expert.

Novices in every discipline make a similar journey, and there are
many studies of the differences between novices and experts in
various professional, scientific, and artistic disciplines [4,6].
Clearly, experts know more than novices, but research indicates
that experts also organize that knowledge into more sophisticated
and flexible forms. This is apparent in the classic studies of chess
players [3]. When asked to memorize board positions of several
chess pieces, novices tended to remember the position of each
piece in isolation, whereas experts organized the information at a
more abstract level, the attacking and defensive combinations.
When recalling board positions that arise naturally in a chess
game, experts outperformed novices, but when faced with
unnatural arrangements of chess pieces, the performance of the
experts decreased because the abstract patterns that the experts
typically used were not present in the unnatural arrangements.
For programming, the differences between novices and experts
have also been studied extensively, and tend to confirm the
findings from other disciplines [5,10,11,12,13,15]. Expert
programmers form abstract representations based upon the
purpose of the code whereas novices form concrete
representations based on how the code functions. In a study of
programming that reflected the earlier chess studies, Adelson [1]
showed that, when given typical tasks on well-written code,
experts outperformed novices, but when faced with unnatural
tasks, novices sometimes outperformed the experts.

1.1 The Leeds Working Group
The ITiCSE 2004 “Leeds” working group studied the reading and
tracing skills of novice programmers [9]. Data was collected from
615 students, spread across 12 institutions in 7 countries. The
students were asked to answer several multiple choice questions.
In this paper we review the Leeds Group findings for one of those
questions, Question 2, shown in Figure 1.
Someone answering Leeds Group Question 2 might (i) read
through the code, (ii) infer that the code counts the common
elements in two sorted arrays, (iii) count manually the number of
common elements in the two arrays, which is 3, and (iv) conclude
that the first option is correct. On a closer inspection of the code,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

however, it can be seen that the loop will terminate before the
element at position 0 in either array is considered. Therefore,
count will contain 2, the second option. In the Leeds study, 65%
of students answered correctly, while 21% chose the first option.

Figure 1. The Java version of Leeds Group Question 2.

Given that expert programmers form abstract representations of
code, programming teachers should not discourage students from
forming abstract representations. However, some of the 21% of
students who incorrectly chose the second option of Leeds Group
Question 2 may have been misled precisely because they formed
an abstract representation – that the code counted the number of
common elements in the two arrays. Furthermore, the authors
have found that when they show Question 2 to academics, they
also frequently make that same mistake. The issue then arises as
to whether questions like Leeds Group Question 2 are appropriate
reading problems for testing students.
In the next section, we review a general taxonomy of learning
outcomes, the “Structure of the Observed Learning Outcome”
(SOLO) [2]. We relate SOLO to code reading problems. We then
use the taxonomy to classify and evaluate the utility of questions
like Leeds Group Question 2, and some alternative code reading
problems.

2. CODE COMPREHENSION AND SOLO
The SOLO taxonomy [2] describes the responses a student may
give to a task. SOLO is a general educational taxonomy, and has
not previously been applied to the study of how novices manifest
their understanding of small code reading problems. In this
section, we introduce the taxonomy, and offer our interpretation
of how the taxonomy applies to novices solving small code
comprehension problems.

With multiple choice questions, it is not possible to assign a
student’s response to a SOLO level when only provided with the
option chosen by the student. Knowledge is required of how the
student chose that option. The Leeds Group reported upon
transcripts from 35 students who were asked to “think out loud”
as they attempted the multiple choice questions [7, 9]. In this
section, we will use those reports on the Leeds Group transcripts
to illustrate the SOLO taxonomy.
The SOLO taxonomy describes five levels of student responses.
These five levels are described in the following five subsections.

2.1 Prestructural SOLO Response
This is the least sophisticated type of response a student may give.
In terms of reading and understanding a small piece of code, a
student who gives a prestructural response is manifesting either a
significant misconception of programming, or is using a
preconception that is irrelevant to programming. For example, the
Leeds group described a student who confused a position in an
array and the contents of that position (i.e. a misconception).
Novice misconceptions of programming constructs have been
studied extensively [12, 13], and are not the focus of this paper.

2.2 Unistructural SOLO Response
This is a response where the student manifests a correct grasp of
some but not all aspects of the problem. When a student has a
partial understanding, the student makes what the Leeds Working
group called an “educated guess”. In their transcripts, the Leeds
Group found evidence for guessing in 10% of all student answers
to questions, with approximately half of those being educated
guesses. However, guessing rates varied widely across all the
multiple choice questions, with the transcripts for one question
indicating that 30% of answers were guesses. The Leeds group
did not indicate what portion of that 30% were educated guesses.
Unistructural responses are not the focus of this paper.

2.3 Multistructural SOLO Response
This is a response where the student manifests an understanding
of all parts of the problem, but does not manifest an awareness of
the relationships between these parts – the student fails to see the
forest for the trees.
For example, for Leeds Group Question 2, a student may hand
execute the code and arrive at a final value for variable “count”,
but the student may not manifest an understanding of what that
code does. The Leeds Group noted a strong tendency for students
to hand execute the code of Question 2.
Note that a multistructural response may be either correct or
incorrect. A student may make an error while hand executing the
code, never-the-less the technique is multistructural.
The multistructural level, along with the next level, is at the focus
of this paper, and will be discussed again in a later subsection.

2.4 Relational SOLO Response
This is a response where the student integrates the parts of the
problem into a coherent structure, and uses that structure to solve
the task – the student sees the forest. For example, after perusing
the code in Leeds Working Group Question 2, a student may infer
that the code counts the number of common elements in the two
arrays, and calculate their answer without hand executing the

Consider the following code fragment:

int[] x1 = {1, 2, 4, 7};
int[] x2 = {1, 2, 5, 7};
int i1 = x1.length-1;
int i2 = x2.length-1;
int count = 0;

while ((i1 > 0) && (i2 > 0)) {
 if (x1[i1] == x2[i2]) {
 ++count;
 --i1;
 --i2;
 }
 else {
 if (x1[i1] < x2[i2])
 --i2;
 else
 --i1;
 }
}
After the above while loop finishes, “count” contains what
value?
a) 3
b) 2
c) 1
d) 0

code to completion. However, the Leeds Group found that few
students manifested such an understanding of what the code
computed
Note that a relational response may be either correct or incorrect.
A student may not notice that the loop in Leeds Working Group
Question 2 terminates before the first position in either array is
inspected; never-the-less the approach is relational.
Someone answering Question 2 may begin with a multistructural
response, and hand execute one or more iterations of the loop,
then realize what the code is computing, and jump to the answer
without completing the hand execution. Such a response is
relational. In fact, we would expect most students who answer
relationally to begin with such an approach.
In their analysis of their transcripts, the Leeds Group reported that
very few students manifested (by our definition in this paper) a
relational response, even among the top quartile students.
The relational and multistructural levels of the SOLO taxonomy
are the focus of this paper.

2.5 Extended Abstract SOLO Response
In this highest SOLO level, the student response goes beyond the
immediate problem to be solved, and links the problem to a
broader context. For example, a possible extended abstract
response to Question 2 may be a comment that the code will only
work for arrays that are sorted. While interesting, extended
abstract responses are not the focus of this paper.

2.6 Multistructural vs. Relational Responses
There is an extensive literature [5,10,11,12,13,15] indicating that
expert programmers integrate the parts of a program into a
coherent structure – the expert programmer sees the forest. If the
aim of a teacher is to test novice programmers on their ability to
form such a coherent structure, then the Leeds Group Question 2
is not a good question. The Leeds Group transcripts for this
question almost exclusively manifest a multistructural response.
However, it does not follow from the above paragraph that all
reading exercises need to elicit a relational response. If the aim
of a teacher is to ascertain whether a student has a correct
understanding of how while loops work (prestructural), or
whether a student is disciplined enough to hand execute a piece of
code (multistructural), then Question 2 is appropriate.
We are not advocating that students should be taught and tested in
a chronological sequence reflecting the ascending levels of the
SOLO taxonomy. The SOLO taxonomy is not a model of
cognitive development. We merely advocate a mix of assessment
exercises. At the very least, a teacher needs to be clear in their
own mind as to the objective of any assessment exercise.

3. EXPERIMENT 1: EXPERT READING
The Leeds Group only studied novice programmers. We believe
that experimental results for novice programmers are not best
evaluated in isolation. Instead, results for novices should be
compared to the results on the same task for more experienced
programmers.
We asked eight computer science educators to “think out loud”
while solving Leeds Group Question 2. Among these educators, a
relational response was considerably more evident than it was

among the students, but a relational response was not universal.
Five of the eight educators manifested a relational response.
Among that five, only three arrived at the correct answer, with the
other two missing the premature end to the loop. These results for
educators support our claim that Question 2 is not a good question
when the aim is to elicit a correct, relational response.

3.1 Qualitative Analysis
It is interesting to examine the transcripts of the five educators
who manifested a relational response. On their way to developing
a single coherent structure for the code, these educators first
articulated abstractions for parts of the code.
At the most basic level, the educators tended to articulate an
abstraction of the loop structure:

“going backward through these arrays.”
“we’re starting from the high end.”

In contrast, students, generally articulated nothing more than the
presence of a loop, and sometimes also a literal statement about
the terminating condition [7].
Several educators abstracted portions of the body of the loop, for
example:

“I’m always decrementing the index of the bigger one.”

Often, utterances like the above occur after a detailed examination
of the loop, or after hand executing one or two iterations.
There were also some extended abstract responses, for example:

“It looks like the code is assuming the arrays are in
sorted order from smallest to largest”.

It is apparent that, even when initially hand executing the code,
most educators are actively seeking to abstract beyond the
concrete code. In contrast, most novices did not seek to abstract.

4. EXPERIMENT 2: CODE EXPLANATION
Given that the Leeds Group Question 2 is not suited to eliciting a
relational response, then what sort of code reading question could
be used for that purpose? There are probably many possibilities.
In this section, we explore one possibility, the “explain in plain
English” style of question. An example of such a question is
given in Figure 2.

In plain English, explain what the following segment of Java
code does:
 bool bValid = true;

 for (int i = 0; i < iMAX-1; i++)
 {
 if (iNumbers[i] > iNumbers[i+1])

 bValid = false;
 }

Figure 2. An “explain in plain English” question.

The “explain in plain English” question from Figure 2 was given
to 108 students as part of their final exam in their first semester
programming course. This question was given as Question 10 in
the BRACElet study [14]. Students were required to provide a
written answer. The students were from two institutions.
Approximately 25% were non-native English speakers.
The student responses to this question were categorized according
to the SOLO taxonomy by three of the authors. To be classified

as a relational response, a student had to manifest an
understanding that the code checks whether the array is sorted.
One third of students provided such a relational response.
We also categorized responses from eight educators. In contrast to
the majority of students, seven of the eight educators manifested a
relational response.
Half of the students provided a multistructural response. In such a
response, a student describes how the code works, frequently line-
by-line, without indicating that the code checks whether the array
is sorted.
The instruction “explain in plain English” is ambiguous –
intentionally so, for reasons discussed in this paragraph – and so it
might be argued that a student could have provided a relational
response but instead elected to provide a multistructural response.
If a student had the potential to provide both relational and
multistructural responses, then why did the student not provide
both? In fact, many students did supply both, and those students
were categorized as having provided a relational response. If
many of the students who only gave a multistructural response did
so because they understood that to be the more appropriate
response for the instruction “explain in plain English”, then why
did seven out of eight educators provide a relational response?
We noted earlier that when answering Leeds Group Question 2,
most of the educators actively sought to abstract beyond the
concrete code, whereas students did not. For someone who
actively seeks to abstract from concrete code, it is natural to
provide a relational response to the instruction “explain in plain
English”. For someone who does not seek to abstract, the focus of
attention is on the individual lines of code as separate entities, not
on the relationships between those lines of code. We believe that
if a student is to be adept at writing code, and debugging that
code, then the relational response needs to become the natural and
most obvious way of explaining what code does – just as the
relational response appears to be the natural and obvious mode of
explanation for seven of the eight educators.

4.1 SOLO Response by Quartile
As another part of their exam, the 108 students who answered the
“explain in plain English” question from Figure 2 also answered
nine multiple choice questions. These nine questions are similar
to the Leeds Group questions (two of the nine are Leeds Group
questions). A complete description of the nine questions is
available elsewhere [14, 16].
Figure 3 shows the distribution of SOLO response for the
“explain in plain English” question, broken into four quartiles,
according to how well the students did on the nine multiple choice
questions (i.e. there are 27 students in each quartile). The first
quartile is the top quartile. Approximately one half of students in
the top two quartiles manifested a relational response to the
“explain in plain English” question, but multistructural responses
dominated in the lower two quartiles.
Figure 3 may illustrate why the weaker students in many CS1
classes struggle to write code. If we assume student responses to
the “explain in plain English” question are a reasonably consistent
reflection of how the students reason about code, then it is
apparent in Figure 3 that many of the weaker students do not
naturally abstract from concrete code to ascertain the purpose of
that code.

5. RELATIONAL DEBUGGING
Some readers may consider Leeds Question 2 to be a “trick”
question, because the code does not compare the lowest two
positions of the arrays. On the other hand, some may argue that
teachers should test students’ ability to recognize such “tricks” –
to test students’ ability to debug incorrectly functioning code. We
can alter Question 2 so that it is a debugging question that
requires a relational response, as illustrated in Figure 4.
On the other hand, part of good relational thinking is the
identification of boundary conditions. In that context, Leeds
Question 2 as it is currently expressed may reward abstract
thinking in appropriately prepared students. Part of the
preparation may be a warning to students that they need to
identify and pay attention to boundary conditions in the exam
questions.

0
10
20
30
40
50
60
70

Q1 Q2 Q3 Q4

%
 o

f a
ns

w
er

s

Relational Multistructural
Unistructural Prestructural

Figure 3. Performance on BRACElet Q10 by performance
quartile, for the combined two institutions. (N=108) Quartile 1
is the top performing quartile.

Figure 4. Leeds Question 2, rewritten as a debugging question.

6. TEACHING ISSUES
This paper has focused upon testing students on their capacity to
reason abstractly about code, and not teaching techniques for
developing that thinking. Space limitations prevent a discussion
of that vital issue, so we refer the reader to other sources [8, 10,
11, 12, 13]. We recommend the recent work on roles of variables
[8] as a particularly promising approach.

Consider the following code fragment:

 <code as given in Figure 1>

The above code is meant to count the number of equal
numbers in the two arrays. There are three equal numbers in
the two arrays, but when the above code finishes, the
variable “count” contains 2. The bug is due to an error in
one line or in two lines. Nominate the buggy line(s), explain
what is wrong, and provide a corrected version of the
lines(s).

Quartile1 Quartile2 Quartile3 Quartile4

7. CONCLUSION
This paper demonstrates that the SOLO taxonomy is a useful
organizing framework for comparing work relevant to the testing
of novice programmers via reading problems. Much of the work
in the 1980s [12,13] focused on novice preconceptions and
misconceptions of programming constructs, while the recent
Leeds Working Group [9] focused upon the ability of students to
reliably hand execute code. These are aspects of programming on
which teachers should test their students. However, to focus
solely upon those aspects of programming is to focus upon the
three lower levels of the SOLO taxonomy; the prestructural,
unistructural, and multistructural levels. Teachers also need to test
their students in a way that is intended to elicit a relational
response. In providing such a response, a student manifests an
ability to read several lines of code and integrate them into a
coherent structure – to see the forest, not just the trees. The
literature on the psychology of programming [1, 5, 10, 11, 15]
indicates that novices need to develop such a skill if they are to
develop as programmers. We do not advocate the exclusive use
of questions designed to elicit a relational response. Instead, we
merely advocate that teachers use a suite of assessment strategies,
and test students at all levels of the SOLO taxonomy.
In our view, students who cannot read a short piece of code and
describe it in relational terms are not intellectually well equipped
to write similar code. We are not advocating that students must
first be taught to read code, and examined on their ability to
manifest a relational response, before they ever write a line of
code, but we do advocate a mix of reading and writing tasks.
The Leeds Group paper [9] ends with a proposition for a follow-
on experiment – that students be given both reading tasks and
writing tasks, to see if student performance on reading and writing
correlate. We offer the following refinement to that experiment.
The reading tasks should also group students on whether they
tend to respond multistructurally or relationally. The reading
performance of each of those groups should be correlated with the
writing tasks. We suspect that the correlation for the students who
tend to respond relationally will be higher than for the students
who tend to respond multistructurally.

8. ACKNOWLEDGMENTS
The authors thank the members of the Leeds Working Group and
BRACElet project. We also thank Gordon Grimsey for assistance
in data collection, and Cornelia Box for assistance in writing.

9. REFERENCES
[1] Adelson, B. When novices surpass experts: The difficulty of

a task may increase with expertise. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 10, 3 (1984),
483-495.

[2] Biggs, J. B. & Collis, K. F. Evaluating the quality of
learning: The SOLO taxonomy (Structure of the Observed
Learning Outcome). New York, Academic Press, 1982.

[3] Chase, W. C., & Simon, H. A. Perception in chess. Cognitive
Psychology, 4 (1973), 55-81.

[4] Chi, M. T. H., Glaser, R. & Farr, M. J. (Eds.) The nature of
expertise. Hillsdale, NJ, Lawrence Erlbaum Associates,
1988.

[5] Corritore, C. & Wiedenbeck, S. What Do Novices Learn
During Program Comprehension? Int. J. of Human-
Computer Interaction, 3, 2 (1991), 199-222.

[6] Ericsson K, and Smith, J. (Eds) Toward a General Theory of
Expertise : Prospects and Limits. Cambridge University
Press,England, 1991.

[7] Fitzgerald, S., Simon, B., Thomas, L. Strategies that
Students Use to Trace Code: An Analysis Based in
Grounded Theory. In Proceedings of the 1st International
Workshop on Computing Education Research (ICER2005)
(Seattle WA, USA, October 1-2, 2005), 69-80.

[8] Kuittinen, M, and Sajaniemi, J. Teaching Roles of Variables
in Elementary Programming Courses. In Proceedings of the
9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE’04)
(Leeds, UK, June 28 - 30, 2004), 57–61.

[9] Lister, R., Adams E.S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J.E., Sanders, K.,
Seppällä, O., Simon, B. and Thomas, L. A Multi-National
Study of Reading and Tracing Skills in Novice
Programmers. SIGSCE Bulletin, 36, 4 (2004), 119-150.

[10] Rist, R. Learning to Program: Schema Creation, Application,
and Evaluation. In Fincher, S and Petre, M. (Eds) Computer
Science Education Research. Routledge Falmer, 2004.

[11] Robins, A., Rountree, J. & Rountree, N. Learning and
teaching programming: A review and discussion. Computer
Science Education, 13, 2 (2003), 137 - 172.

[12] Soloway, E. and Iyengar, S., Eds Empirical Studies of
Programmers. Ablex, NJ, USA,1986.

[13] Soloway, E. and and Spohrer, J. (Eds) Studying the Novice
Programmer. Lawrence Erlbaum Associates, Hillsdale, NJ,
1989.

[14] Whalley, J, Lister, R, Thompson, E, Clear, T, Robbins, P,
Prasad, C. (2006) An Australasian Study of Reading and
Comprehension Skills in Novice Programmers, using the
Bloom and SOLO Taxonomies. In Proceedings of the
Eighth Australasian Computing Education Conference
(ACE2006) (Hobart, Australia, January 16-19, 2006), 243-
252. http://crpit.com/Vol52.html [April 2006]

[15] Wiedenbeck, S., Fix, V. & Scholtz, J. Characteristics of the
mental representations of novice and expert programmers:
An empirical study. International Journal of Man-Machine
Studies, 39 (1993) 793-812.

[16] http://online.aut.ac.nz/Bracelet/shared.nsf

