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We consider three approaches for estimating the rates of nonsynonymous and synonymous changes at each site in a sequence
alignment in order to identify sites under positive or negative selection: (1) a suite of fast likelihood-based ‘‘counting
methods’’ that employ either a single most likely ancestral reconstruction, weighting across all possible ancestral recon-
structions, or sampling from ancestral reconstructions; (2) a random effects likelihood (REL) approach, which models var-
iation in nonsynonymous and synonymous rates across sites according to a predefined distribution, with the selection
pressure at an individual site inferred using an empirical Bayes approach; and (3) a fixed effects likelihood (FEL) method
that directly estimates nonsynonymous and synonymous substitution rates at each site. All three methods incorporate flexible
models of nucleotide substitution bias and variation in both nonsynonymous and synonymous substitution rates across sites,
facilitating the comparison between the methods. We demonstrate that the results obtained using these approaches show
broad agreement in levels of Type I and Type II error and in estimates of substitution rates. Counting methods are well suited
for large alignments, for which there is high power to detect positive and negative selection, but appear to underestimate the
substitution rate. A REL approach, which is more computationally intensive than counting methods, has higher power than
counting methods to detect selection in data sets of intermediate size but may suffer from higher rates of false positives for
small data sets. A FEL approach appears to capture the pattern of rate variation better than counting methods or random
effects models, does not suffer from as many false positives as random effects models for data sets comprising few sequences,
and can be efficiently parallelized. Our results suggest that previously reported differences between results obtained by
counting methods and random effects models arise due to a combination of the conservative nature of counting-based meth-
ods, the failure of current random effects models to allow for variation in synonymous substitution rates, and the naive
application of random effects models to extremely sparse data sets. We demonstrate our methods on sequence data from
the human immunodeficiency virus type 1 env and pol genes and simulated alignments.

Introduction

Determining the selection pressures that have shaped
genetic variation forms a major part of many studies of
molecular evolution. A common approach to this problem
involves estimating the rates of nonsynonymous (dN) and
synonymous (dS) substitutions. Estimates of dN signifi-
cantly different from dS provide convincing evidence for
nonneutral evolution. This approach is attractive as it does
not make any assumptions regarding the demographic his-
tory of the population, unlike many ‘‘neutrality tests’’
(Tajima 1989, 1996; Fu and Li 1993a, 1993b; Deng and
Fu 1996; Fu 1997; Misawa and Tajima 1997; Fay and Wu
2000), which compare estimates of effective population size
obtained using different measures of genetic variation.

Initial studies of selection pressure relied upon the
average dN/dS ratio for the region of interest, either using
distance-based methods (Li, Wu, and Luo 1985; Nei and
Gojobori 1986; Li 1993; Pamilo and Bianchi 1993;
Comeron 1995; Yang and Nielsen 2000) or maximum like-
lihood methods (Goldman and Yang 1994; Muse and Gaut
1994); however, such approaches lack statistical power to
detect positive selection as only a few sites may be under
selection. Subsequently, methods have been proposed to
study selection on a site-by-site basis. We classify these
approaches into three classes: those that count the number
of nonsynonymous and synonymous substitutions along
the phylogeny (counting methods), those that assume a dis-
tribution of rates across sites and infer the rate at which indi-
vidual sites evolve given this distribution (random effects

models), and those that estimate the ratio of nonsynony-
mous to synonymous substitutions on a site-by-site basis
(fixed effects models).

The first class, which we call counting methods,
involves estimating the number of nonsynonymous and syn-
onymous changes that have occurred at each codon through-
out theevolutionaryhistoryof the sample.This approachwas
first proposed by Suzuki and Gojobori (1999) and involves
reconstructing the ancestral sequences, for example, using
parsimony (Suzuki and Gojobori 1999) or likelihood-based
methods (Nielsen 2002; Nielsen and Huelsenbeck 2002;
Suzuki 2004); the latter can take into account the uncer-
tainty in the ancestral reconstructions. These methods are
attractive as they are computationally fast and hence can
be applied to large data sets and do not involve making
any assumptions regarding the distribution of rates across
sites. However, counting methods may lack power, espe-
cially for data sets comprising a small number of sequences
or low divergence, as the power of the test is limited by the
total number of inferred substitutions at a site. In addition,
counting the number of changes between ancestral states
may underestimate the true number of substitutions, and
hence, the number of changes inferred using this approach
may not accurately reflect the rate at which a site is evolving.

The second class of methods, originally described by
Nielsen and Yang (1998), involves fitting a distribution of
substitution rates across sites and then inferring the rate at
which individual sites evolve. When this site-by-site infer-
ence is based on the maximum likelihood estimates of the
rate parameters, this inference is known as empirical Bayes
(Nielsen and Yang 1998; Yang et al. 2000), whereas when
rate class assignments are based on the posterior distribu-
tion of rate parameters, this is known as a hierarchical
Bayes approach (Huelsenbeck and Dyer 2004); the latter
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acknowledges that the rate distribution parameters are sub-
ject to error, whereas an empirical Bayes approach treats
these parameters as known. Due to the computational com-
plexity of the models and the concern that the use of prior
distributions for parameters in a fully hierarchical Bayesian
approach may unduly affect the results, most studies have
employed an empirical Bayes approach to identifying sites
under selection. When the assumed and the true distribution
of rates are similar, we might expect that a random effects
model will have more power to detect positive or negative
selection than a fixed effects model or counting-based
methods. However, for small data sets, the errors in estima-
tion of the rate distribution may be large, such that empirical
Bayes approaches may give misleading results, while a
hierarchical Bayes approach may be very sensitive to prior
assumptions of the distribution of rate parameters.

The third class of methods involves fitting substitution
rates on a site-by-site basis. Such models are known as fixed
effects in the statistical literature. These models can be con-
sidered as an extension of the model proposed by Yang and
Swanson (2002), who considered two classes of sites speci-
fied a priori evolving under different dN/dS. Suzuki (2004)
proposed a model in which the ratio of nonsynonymous to
synonymous substitution rates was estimated for each codon
using maximum likelihood and a likelihood ratio test (on one
degree of freedom) was used to test whether this ratio was
significantly different from 1. Like counting methods, fixed
effects models make no assumption regarding the distribu-
tion of rates across sites. We might expect that such an
approach would give a more accurate (less biased) represen-
tation of substitution rates at a site than counting methods.
However, fixed effects models are typically slower than
counting methods and may be difficult to fit due to the large
number of parameters involved, as reported by Nielsen
(1997) in the context of models of nucleotide substitution.

There has been much discussion of whether counting
methods or random effects models are better approaches for
the analysis of selection pressure (Suzuki and Nei 2001,
2002, 2004; Sorhannus 2003; Wong et al. 2004). However,
a fair comparison between these approaches is not as
straightforward as it might initially seem. First, counting-
based methods implicitly allow for variable synonymous
rates across sites, whereas the fixed effects model of Suzuki
(2004) and the random effects models of Nielsen and Yang
(1998) and Yang et al. (2000) assume that the synonymous
substitution rate is the same for all sites. Yang and Swanson
(2002) found that the inclusion of variable synonymous
substitution rates between two classes of sites specified a
priori gave a much better fit to data sets of abalone sperm
lysin genes and human major histocompatibility complex
class I genes. Second, in order to determine how the
assumption of a rate distribution in a random effects model
affects the results, it may be more appropriate to compare
random effects models with fixed effects models, rather
than compare random effects models with counting-based
methods. Third, in order to compare between methods, they
should ideally be based on the same underlying model of
codon substitution.

We investigate the use of counting methods and random
effects and fixed effects models for the detection of
positive and negative selection at a site. Our counting method

employs maximum likelihood ancestral reconstructions,
unlike Suzuki and Gojobori (1999), who employed parsi-
mony, and unlike Nielsen (2002) and Nielsen and
Huelsenbeck (2002), who took a Bayesian approach. Suzuki
(2004) proposed an ad hoc ancestral state reconstruction
method, which first reconstructs amino acid ancestral states
using an inefficient likelihood algorithm and then employs
parsimony to map codon states restricted by amino acid infer-
ences. A rigorous likelihood-based reconstruction performed
in the codon-state space allows us to test the impact of uncer-
tainty of ancestral reconstruction on the detection of sites
under positive and negative selection without making prior
assumptions regarding parameters such as branch lengths.
Our random effects maximum likelihood model allows var-
iation in both nonsynonymous and synonymous rates (cf.
Nielsen and Yang 1998; Yang et al. 2000). Our fixed effects
maximum likelihood approach also allows both nonsynony-
mous and synonymous substitution rates to vary on a site-by-
site basis (cf. Suzuki 2004) without specifying site classes a
priori (cf. Yang and Swanson 2002). All three approaches
incorporate a general model of codon substitution, which
allows us to rule out spurious results based on biased nucleo-
tide frequencies. We present applications of our approaches to
sequencedata fromthe human immunodeficiency virus type 1
(HIV-1) env (envelope) and pol (polymerase) genes and con-
duct a series of simulations to assess the statistical properties
of each testing approach.

Materials and Methods
Estimation of Phylogeny and Codon Substitution Model

Our implementations of counting, random effects, and
fixed effects models are all based on an underlying phylog-
eny and codon substitution model, which permits a fair com-
parison between these approaches. In this section, we present
a process by which an estimate of a phylogeny, codon fre-
quencies, and substitution parameters and associated branch
lengths can be obtained using a series of approximations to
reduce the amount of computational effort.

Estimation of Phylogeny and Nucleotide
Substitution Bias

We attempt to achieve a reasonable trade-off between
the computational effort and the quality of the estimates of
the phylogeny and a nucleotide substitution model using an
iterative process. An initial estimate of the phylogeny is
obtained by neighbor-joining (Saitou and Nei 1987) using
the Tamura-Nei distance (Tamura and Nei 1993). Our sim-
ulations and applications to many data sets (not included in
this paper) suggest that all the methods presented are robust
to some errors in phylogenetic tree reconstruction, although a
sensible effort to reconstruct a ‘‘good’’ phylogeny is always
advisable.

The estimated rate at which a site evolves may be influ-
enced by substitutional biases; hence, it is important to be
able to identify and correct for these biases, particularly
for larger data sets. Muse (1999) and Huelsenbeck, Larget,
and Alfaro (2004) demonstrated that evolution of many
genes is best explained by ‘‘nonstandard’’ models of nucleo-
tide substitution. We consider all models which form a par-
ticular case of the general reversible nucleotide model

Methods for Detection of Selection 1209



(Lanave et al. 1984; Tavaré 1986; Rodriguez et al. 1990),
whose instantaneous substitution rate matrix is defined by

QREV 5

* pCRAC pG pTRAT

pARAC * pGRCG pTRCT

pA pCRCG * pTRGT

pARAT pCRCT pGRGT *

0
BB@

1
CCA;

where pA, pC, pG, and pT denote the observed proportions of
respective nucleotides in the data and constitute the vector of
equilibrium frequencies for the Markov process whose tran-
sition probability matrix for time t . 0 is obtained by expo-
nentiating its rate matrix TREV(t) 5 exp[t 3 QREV]. Diagonal
elements are defined as qii 5 �

P
j 6¼i qij so that each row

sums to 0, and TREV forms a valid transition matrix for any
t . 0. Due to standard identifiability issues induced by the
reversible structure of the model, the substitution rate
A4G can be set to 1 and other rate bias parameters RAC,
RAT, RCG, RCT, and RGT represent the ratio of the correspond-
ing substitution rate to the A4G rate. We employ an iterative
procedure described in Kosakovsky Pond and Frost (2005) to
select the best-fitting nucleotide model and reconstruct a phy-
logenetic tree.

Fitting of a Codon-Based Substitution Model

In order to obtain a reasonable ancestral reconstruc-
tion, we utilize a codon-based substitution model based
on the Muse and Gaut (1994) model but augmented by
the best-fitting nucleotide model. The general rate matrix
element for this model defines the instantaneous rate of sub-
stituting a non–stop codon x with a non–stop codon y:

MG943REVx;yðdtÞ

5

0; x/y requires � 2 nucleotide

substitutions;

Rijpnydt; x/y is a synonymous substitution

of nucleotide iwith nucleotide j;

xRijpnydt; x/y is a nonsynonymous substitution

of nucleotide iwith nucleotide j:

8>>>>>>>><
>>>>>>>>:

To ensure reversibility, Rij 5 Rji. As we did for the
nucleotide model, without loss of generality, we set
RAG 5 1. pnydenotes the frequency of the ‘‘target’’ nucleo-
tide in the appropriate position of codon y (for instance, the
target nucleotide in an ACG/ACT substitution is T in
position 3). The model also provides the equilibrium
frequency of a codon composed of the nucleotide triplet
ijk. If we denote the frequency of nucleotide
n 2 fA;C;G; Tg at codon position m 5 1, 2, 3 as pmn ; then
the equilibrium frequency of codon ijk is the product of the
constituent nucleotide frequencies, scaled to account for the
absence of stop codons (TAA, TAG, and TGA for the uni-
versal genetic code) in the model:

pijk 5
p1

i p
2

j p
3

k

1 �
P

frequencies of stop codons
: ð1Þ

There are nine independent frequency parameters in this
model (in practice, they are estimated by the proportions
observed in the data).

The MG class models differ from their GY (Goldman
and Yang 1994) counterparts (used in Yang [1997], for
instance) in that GY models use py, i.e., the frequency of
the target codon in place of pny : While similar, the models
are not in general equivalent, and we have found that with
the same number of parameters, MG models tend to yield
better likelihood scores for most data sets, especially for
some codon alignments with significant compositional
biases, such as HIV-1 data sets (likelihood scores are pro-
vided in table 1).

Approximating Branch Lengths in a Codon
Substitution Model

Fitting the entire codon model (x, rate bias parameters
and branch lengths) to large data sets is time consuming;
thus, reasonable approximations are called for. The idea
of approximating codon branch lengths with values derived
from nucleotide models was previously investigated by
Yang (2000), who found that there was a high degree of
linear correlation between branch lengths derived from

Table 1
Model Fit and Approximation Quality

HIV-1 Envelope HIV-1 AZT-Treated Reverse Transcriptase HIV-1 Drug-Naive Reverse Transcriptase

MG94 3 REV log L 5 �1,121.4 log L 5 �5,941.21 log L 5 �18,310.28
x̂5 1:13 ð0:94; 1:34Þ x̂5 0:19 ð0:17; 0:21Þ x̂5 0:13 ð0:12; 0:14Þ

Selected model Matrix: (001101) Matrix: (010020) Matrix: (012232)
log L 5 �1,126.47 log L 5 �5,950.48 log L 5 �18,333.4
x̂5 1:25 ð1:04; 1:48Þ x̂5 0:19 ð0:17; 0:21Þ x̂5 0:14 ð0:13; 0:16Þ

Approximate model log L 5 �1,126.7 log L 5 �5,959.09 log L 5 �18,373.04
x̂5 1:25 ð1:04; 1:48Þ x̂5 0:20 ð0:18; 0:22Þ x̂5 0:14 ð0:13; 0:15Þ

GY94 model log L 5 �1,137.7 log L 5 �6,004.5 log L 5 �18,565.4
x̂5 0:91 x̂5 0:15 x̂5 0:11

Branch approximation c 5 0.971n 1 0.0007 c 5 1.01n � 0.0001 c 5 1.02n � 0.0002
r2 5 0.996 r2 5 0.949 r2 5 0.998
99.99% CI 99.99% CI 99.99% CI

SLAC comparison PS: e 5 0.998a � 0.002 PS: e 5 a � 3 3 10�6 PS: e 5 0.996a � 0.004
r2 5 0.996 r2 5 1 r2 5 0.9995
NS: e 5 1.004a 1 0.0004 NS: e 5 0.99997a 1 7 3 10�6 NS: e 5 0.995a 1 3 3 10�5

r2 5 0.995 r2 5 1 r2 5 0.9995

NOTE.—Estimates of x are given together with their 95% profile likelihood confidence intervals (CI). The linear regressions use the following notations: c, branch length

derived from a full fit using MG943 REV codon model; n, branch length derived from fitting the selected nucleotide model; e, SLAC P value for dN. dS (PS) or dN, dS (NS)

at a site derived from the full MG94 3 REV model; and a, SLAC P value for dN . dS at a site derived from the approximate codon model.
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nucleotide models and those found with codon models but
that nucleotide branch lengths appeared to be slightly
shorter that those in codon models with rate variation.
We estimated the length of a codon branch tbc as a multiple
of the corresponding nucleotide branch length tbn : t

b
c 5 Stbn

with the scaling parameter, S, shared by all branches in the
tree. The ratio of nonsynonymous to synonymous substitu-
tion rates, x, and the scaling parameter, S, are estimated by
maximum likelihood, which is very fast compared to the
full model fit.

Parameter space can be further reduced if nucleotide
bias parameters Rij in the codon model are approximated
with values from the best-fitting nucleotide model. This
approximation may be affected by the fact that for data sets
with high or low values of x the sampling of different
nucleotide substitutions may be seriously biased by the
structure of the genetic code.

Testing the Validity of the Approximations

While the approximations described above may not
hold in general, one can verify their validity, albeit at a
rather steep computational cost. A more accurate phylogeny
can be obtained by searching for phylogenies with a higher
likelihood. Nucleotide substitution biases and branch
lengths can be estimated using maximum likelihood within
the context of a codon substitution model rather than a
nucleotide substitution model. For the data sets utilized
in this study, as well as many others that we have analyzed
in other contexts, the approximations appear to be reason-
able; the use of approximate branch lengths and nucleotide
bias parameters does not result in a dramatic drop in model
goodness of fit (as measured, for example, by inclusion of
the approximation in the 99% confidence set around the
MLE derived from the full model), and there is a strong
linear correlation between the approximate and the maxi-
mum likelihood parameter estimates and P values for the
various tests (table 1; single-likelihood ancestor counting
[SLAC] results given; fixed effects likelihood [FEL] and
random effects likelihood [REL] are similar and not
included for brevity).

Counting Methods

Our counting method involves counting the number of
nonsynonymous and synonymous changes and testing
whether the number of nonsynonymous changes per non-
synonymous site (dN) is significantly different from the
number of synonymous changes per synonymous site (dS).

Single-Likelihood Ancestor Counting

Given an estimate of the phylogeny (topology and
branch lengths) and the codon-based substitution model,
we wish to infer the number of changes that have occurred
along the phylogeny. The simplest method involves recon-
structing ancestral sequences using the joint likelihood
reconstruction method in the codon-state space. Similar
methods were first proposed for protein data by Yang,
Kumar, and Nei (1995), and an efficient dynamic pro-
gramming algorithm due to Sankoff (1975) was adapted
to the context of phylogenetic likelihood by Pupko

et al. (2000). This reconstruction strategy avoids most
of the problems in the original Suzuki-Gojobori method
by disallowing stop codons, recovering a unique state
at each internal tree node, and fully incorporating synon-
ymous and nonsynonymous substitution structure into
ancestral state reconstruction. The computational cost of
this method is comparable to that of a single likelihood
function evaluation under the codon model and requires
less than a minute even for large (200–300 sequence) data
sets on a desktop computer.

Treating the reconstructed sequences as known, the
number of nonsynonymous and synonymous substitutions
per codon site as well as the average numbers of nonsynon-
ymous and synonymous sites per alignment column are
computed in the spirit of the Suzuki-Gojobori method.
Our counting scheme differs in that we exclude stop
codons, incorporate weighting of nucleotide substitution
biases estimated from the data, and permit ambiguous
codons in the data to be analyzed in one of two ways. First,
they can be resolved into the most frequent codon. This is
most appropriate when ambiguous codons may have arisen
due to sequencing errors or when there are many ambiguous
codons at a site. Second, the counts can be averaged over all
possible codon states, weighting by the relative frequency
of each state.

Given rate bias parameters inferred earlier, we con-
struct the rate matrix for the jump chain component of
the substitution process: B whose (i, j) element,
i, j2fA,C,G,Tg, describes the probability of substituting
nucleotide i with nucleotide j

B5

c1 0 0 0

0 c2 0 0

0 0 c3 0

0 0 0 c4

0
BBB@

1
CCCA

0 RAC 1 RAT

RAC 0 RCG RCT

1 RCG 0 RGT

RAT RCT RGT 0

0
BBB@

1
CCCA

3

pA 0 0 0

0 pC 0 0

0 0 pG 0

0 0 0 pT

0
BBB@

1
CCCA:

pn denotes the frequency of nucleotide n in the align-
ment, and scaling constants cj are chosen so that the sum of
each row in the matrix product is equal to 1. The matrix B is
a rescaled version of the ‘‘jump rate’’ matrix for the substi-
tution process inferred from nucleotide sequence data.

Given any codon translation table, for each non–stop
codon c 5 ijk, i, j, k 2 fA,C,G,Tg, we evaluate the quan-
tities ESc and ENc which are analogous to the number of
synonymous and nonsynonymous sites for codon c in
the Suzuki-Gojobori method. To accomplish this, we con-
sider all possible nine codons which can be reached from c
with a single-nucleotide substitution, discard all those
which are stop codons, and weigh the remaining ones with
their relative probabilities, defined in B. ESc is then obtained
as the sum of the weights of codons synonymous with c
and, analogously, ENc—the sum of the weights of codons
not synonymous with c.

For instance, if c 5 AAG (lysine in the universal
genetic code), there are eight non–stop codons reachable

Methods for Detection of Selection 1211



from c, one of them (AAA) is synonymous and seven
(CAG, GAG, ACG, AGG, ATG, AAC, AAT) are nonsy-
nonymous. Consequently,

ESAAG 5
BGA

BGA 1BGC 1BGT

; ENAAG 5
BAC 1BAG

BAC 1BAG 1BAT

1 11
BGC 1BGT

BGA 1BGC 1BGT

:

Note that, unlike that in the Suzuki-Gojobori method, ESs 1
ENs 5 3, only if none of the stop codons are accessible
from c (for instance, if c 5 GAT in the universal genetic
code). Such a restriction seems reasonable because muta-
tions to stop codons, while possible at the nucleotide level,
should be inaccessible in the codon framework.

Next, we extend the definitions of synonymous and
nonsynonymous sites to a tree branch. Suppose that a tree
branch b has codons p and c labeling its ends. If p5 c, then
ESb 5 ESc and ENb 5 ENc. If c is reachable from p by a
single-nucleotide substitution, then ESb 5 (ESc 1 ESp)/2
and ENb 5 (ENc 1 ENp)/2. If multiple substitutions are
needed, we consider all possible ‘‘shortest’’ paths, except
those which include stop codons, and average EN and ES
for every codon visited by the paths. For example, if
c 5 ATG and p 5 TAT, then there are three (out of four
possible) distinct paths with two substitutions which
do not include stop codons: ATG/TTG/TTT/
TAT; ATG/ATT/AAT/TAT; and ATG/ATT/
TTT/TAT. Clearly,

ESb 5
1

12
ð3ESATG 1 3ESTAT 1 2ESATT 1 2ESTTT

1ESTTG 1ESAATÞ;

ENb 5
1

12
ð3ENATG 1 3ENTAT 1 2ENATT 1 2ENTTT

1ENTTG 1ENAATÞ:

Given a tree T with branch lengths tb and an assignment of
ancestral states A; we can compute synonymous and non-
synonymous sites for the alignment column Ds,

ES½Ds j T ;A�5
P

b2T tbESbP
b2T tb

;

EN½Ds j T ;A�5
P

b2T tbENbP
b2T tb

:

Lastly, we reconstruct the numbers of synonymous,
NS½Ds j T ;A�, and nonsynonymous, NN½Ds j T ;A�, sub-
stitutions, inferred at site Ds by treating ancestral states A
as known quantities. We examine every branch b of T ,
with different codons p and c labeling its ends. If p and
c differ by a single-nucleotide substitution, we can imme-
diately decide whether or not it is synonymous. Otherwise
every shortest substitutional path which does not contain
stop codons is considered, and the numbers of synony-
mous and nonsynonymous replacements along the path-
ways are averaged. Adding these quantities over all
branches is the final step needed to arrive at
NS½Ds j T ;A� and NN½Ds j T ;A�:

Weighted Ancestor Counting

An alternative approach to counting nonsynony-
mous and synonymous substitutions for the maximum
likelihood ancestral reconstruction is to compute
expected values over possible ancestral state assignments
A. This approach is more thorough than using a single
ancestral reconstruction, especially in cases when the
reconstruction is poorly resolved, and was considered
in the context of discrete character states by Pagel
(1999). It also deals with ambiguous characters in a less
ad hoc way, by weighting each possible resolution with
an appropriate likelihood-derived score. The method is
more computationally intensive than the SLAC method
but still significantly less so than a random or fixed
effects approach.

Consider a branch b directed from parent node bp to
descendant node bd in tree T and all possible assignments
of characters ðcpb; cdbÞ labeling b. We define the relative like-
lihood support of labeling ðcpb; cdbÞ along branch b as

RLSðcpb; c
d

bÞ5
LðDs j T ; p5 c

p

b; d5 c
d

bÞ
LðDs j T Þ :

Because
P

p

P
d RLSðc

p
b; c

d
bÞ5 1 for all branches b, RLS

can be interpreted as probabilities of labelings. If b is a ter-
minal branch and cdb is not the actual label of leaf bd (or if
the label of bd is ambiguous and cdb is not one of the possible
resolutions of the ambiguity), then the RLS for this labeling
is 0. Once the tree likelihood LðDs j T Þ has been computed
using the pruning algorithm of Felsenstein (1981), it is pos-
sible to evaluate each of the conditional likelihoods by tra-
versing only the path between node bd and the root of tree
T . The total computational cost for obtaining RLS for all
branches and labelings is OðNC4DegreeðT ÞDepthðT ÞÞ;
where C is the number of non–stop codons, N is the number
of sequences in the alignment, DegreeðT Þis the average
degree of tree T (2 in most cases), and DepthðT Þ is the
average distance (in numbers of branches) from the root
of the tree to its leaves. For ladder trees, their depth is pro-
portional to N, whereas for balanced binary trees it is pro-
portional to log2 N.

We observe that while the RLS of a branch labeling is
similar in concept to the conditional probabilities of observ-
ing a character at an internal tree node (Yang, Kumar, and
Nei 1995), the quantities computed here and the algorithm
used are different.

We extend the definition of synonymous and nonsy-
nonymous sites and observed substitutions for every branch
b by taking the sum of these quantities for every possible
branch labeling weighted by the RLS and employ these val-
ues for computing ES½Ds j T �; EN½Ds j T �; NS½Ds j T �,
and NN½Ds j T �:

This approach is equivalent to, but more efficient than,
computing the expectation over every fixed ancestral label-
ing A using its relative likelihood support. For example,

ES½Ds j T �5 1

LðDs j T Þ
X
A

ES½Ds j T ;A�LðDs j T ;AÞ:

Further details of the weighted ancestor counting
(WAC) algorithm, demonstrating that it averages over all
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possible ancestral states, are given in Supplementary Mate-
rial online.

Sampling Ancestral States

When it is desirable to estimate statistical properties of
functions of ancestral states, for example, to check whether
the mode (most likely ancestral state) is a reasonable
approximation to the full distribution of ancestral states,
conditional on the parameter estimates, we extend the sam-
pling method of Nielsen (2002) to codon characters, sample
from the distribution of character states at internal nodes,
induced by their relative likelihood support, and tabulate
quantities of interest to assess their distributional properties.

For completeness, we provide the outline of the algo-
rithm. For an internal node n, define the quantity
f ðn; cÞ—the likelihood of observing the subtree ‘‘rooted’’
at n, given that the character at n is c, where c indexes
all possible non–stop codons c. Note that all the f ðn; cÞ
can be evaluated in a single pass of the pruning algorithm
(Felsenstein 1981). The sampling algorithm traverses the
tree preorder, and samples character states at internal nodes
as follows.

Root

The root state is selected by sampling from the distri-
bution on c induced by

Prfroot5 cg5 pcf ðroot; cÞP
c pcf ðroot; cÞ

;

where pc refers to the equilibrium frequency of codon c.

All Other Internal Nodes

If cp is the character chosen for the parent node of n,
then the state at n can be sampled using the following dis-
tribution

Prfn5 cg5 Tnðcp; cÞf ðn; cÞP
c Tnðcp; cÞf ðn; cÞ

;

where Tnðcp; cÞ gives the probability of substituting codon
cp with codon c along the branch connecting n and its
parent.

Testing for Positive or Negative Selection

Given an estimate of the number of nonsynonymous
and synonymous changes and the number of nonsynony-
mous and synonymous sites at a codon, obtained using
one of the above methods, we wish to test whether dN is
significantly different from dS. We assume that the
observed number of synonymous substitutions per align-
ment site follows a continuous extension of the binomial
distribution: NS½Ds j T ;A�;EBinðN;PÞ, where

N5NS½Ds j T ;A�1NN½Ds j T ;A� and

P5
ES½Ds j T ;A�

ES½Ds j T ;A�1EN½Ds j T ;A�:

We need to extend the distribution to real values because
neither NS½Ds j T ;A� nor NN½Ds j T ;A� are in general

integers. The definition of the extended binomial distri-
bution EBin(N,P) can be found in the Supplementary
Material.

Finally, dS and dN at site Ds are defined by setting
dSðDsÞ5NS½Ds j T ;A�=ES½Ds j T ;A� and dNðDsÞ5
NN½Ds j T;A�=EN½Ds j T ;A�: Site Ds is classified as pos-
itively selected if (1) T̂5 dNðDsÞ � dSðDsÞ.0 and (2) the
probability of observing T � T̂; computed using the
extended binomial distribution, is sufficiently small. Neg-
atively selected sites can be identified in an analogous fash-
ion. Note that the sites where no substitutions were inferred
cannot be classified with this scheme.

We note that the extended binomial distribution is an
approximation to the true distribution of nonsynonymous
and synonymous under the hypothesis of neutrality (Durrett
2005). In the Supplementary Material, we compare P values
derived using the extended binomial distribution with P
values derived from simulating the null distribution (i.e.,
dN 5 dS), which shows a broad agreement (r2 5 0.81)
for our data set of HIV reverse transcriptase sequences iso-
lated from treatment naive individuals. Together with the
broad agreement of the counting-based methods
(employing the extended binomial distribution) with like-
lihood-based methods, these results suggest that the
extended binomial is a useful approximation, although fur-
ther studies of the conditions under which the approxima-
tion is warranted would clearly be beneficial.

Fixed Effects Likelihood

A likelihood-based analogue of the site-by-site count-
ing methods involves estimating the ratio of nonsynony-
mous to synonymous substitution rates for each site in a
sequence alignment. Simultaneously optimizing a poten-
tially large (several hundred or more) number of rate and
nuisance parameters such as branch lengths would involve
prohibitive amounts of computation and be subject to con-
vergence problems in obtaining a maximum likelihood sol-
ution; instead, we fix estimates of branch lengths and
substitution rate bias parameters as discussed previously
and fit the nonsynonymous and synonymous rate parame-
ters for each site independently. The rate matrix for the
model used in the FEL method is

MG94
*
3REVx;yðdtÞ

5

0; x/y requires � 2 nucleotide

substitutions;

asR̂ijpnydt; x/y is a synonymous substitution of

nucleotide iwith nucleotide j;

bsR̂ijpnydt; x/y is a nonsynonymous substitution

of nucleotide iwith nucleotide j:

8>>>>>>>><
>>>>>>>>:

We treat all shared model parameters U (the tree top-
ology, branch lengths, and nucleotide rate biases) as
known, and hence, each branch of the phylogenetic tree
provides a realization of the substitution process described
by the two-parameter rate matrix MG94* 3 REV. Because
the standard phylogenetic framework assumes independ-
ence of evolutionary processes between tree branches, if
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all the ancestral states in a standard unrooted bifurcating
tree on N sequences were known, then there would be
2N � 3 independent realizations of the substitution process
(not identically distributed because branch lengths are, in
general, different). However, because we must weight over
unknown ancestral states, the effective sample size will be
smaller.

To test whether site s is under selection, we perform a
likelihood ratio test by fitting a single parameter H0: as5 bs
versus a two parameter HA: as 6¼ bs and employing the
asymptotic v2

1 distribution of the likelihood ratio test to
assess significance. Simulation results (see Supplementary
Material) indicate that the asymptotic v2

1 approximation is
appropriate for this test.

Although more computationally demanding than the
counting-based methods described above, this approach
trivially lends itself to parallelization: the fitting of each site
can be performed independently of other sites. The compu-
tational cost of the FEL method grows linearly in the num-
ber of sequences and the number of unique alignment
columns (patterns) in the data set. The method is suffi-
ciently fast to be able to process gene-size alignments of
several hundred sequences in a few hours on a small cluster
of computers.

Random Effects Likelihood

We also compared the results of the heuristic counting-
based methods and FEL described above with a random
effects model, which allows rate variation in both nonsy-
nonymous and synonymous rates and a general underlying
nucleotide substitution model. Unlike the fixed effects
model, the relatively small number of parameters in a ran-
dom effects model permits simultaneous optimization of all
parameters. We assume three classes of nonsynonymous
rates and three classes of synonymous rates for the analyses
presented here. We consider two measures for determining
whether a site is under positive (or negative) selection: pos-
terior probabilities (Nielsen and Yang 1998; Yang et al.
2000) and empirical Bayes factors, the ratio of posterior
and prior odds of having x . 1 (or ,1) at a given site.
All model parameters are held at their maximum likelihood
estimates during the computation of posterior probabilities
and Bayes factors.

While our random effects model is somewhat similar
to the M3 (discrete categories) model of Yang et al. (2000),
the major differences are the following.

(1) We explicitly allow both synonymous and nonsynony-
mous substitution rates to vary from site to site. Lack of
this provision may lead to a high rate of false-positive
results.

(2) Weuseamoregeneralnucleotide substitutionmodel.The
use of a poor nucleotide substitution model may lead to
some differences in the results; in any case, the computa-
tional cost of determining the best-fitting nucleotide
model or fitting the MG94 3 REV model is low.

(3) We model character frequency components of the rate
matrix differently, which can give improved model fits.

In order to speed up the fitting of the full likelihood
models with rate variation, we developed a simple scheme

which allows the likelihood function to be distributed
across multiple computer nodes (Kosakovsky Pond and
Frost 2005). An additional speedup may be achieved by fix-
ing branch lengths at values estimated by the nucleotide
model as described previously and estimating only rate bias
and distribution parameters. While offering an immense
reduction in optimization times (more than 100-fold for
very large data sets), the simplification does not seem to
impact the conclusions of the method for our example data
sets dramatically, although this may not hold in general for
other data sets.

Sequence Data

In order to test our approaches, we consider three data
sets of HIV-1 sequences of varying sizes. The first com-
prises 13 sequences of the C2-V5 region of the envelope
gene (Leitner, Kumar, and Albert 1997; Leitner and Albert
1999), analyzed for positive selection in Yang et al. (2000).
The second data set includes 81 subtype B sequences of the
reverse transcriptase gene (positions 1–220) isolated from
individuals treated with the azidothymidine (AZT) nucleo-
side reverse transcription inhibitor. The third data set
includes 298 subtype B sequences of the reverse transcrip-
tase gene (positions 1–220) isolated from untreated individ-
uals. The last two data sets were obtained from the Stanford
HIV Drug Resistance Database (http://hivdb.stanford.edu).
Mutations present in only one sequence were replaced by
the consensus (as these are likely to reflect sequencing
errors), and identical sequences (matching ambiguous
nucleotides) were removed from the alignment. Alignments
and trees used in this study may be downloaded from http://
www.hyphy.org/pubs/qnd.tgz.

Implementation

All sequence manipulations and analyses were per-
formed with the HyPhy software package (Kosakovsky
Pond, Frost, and Muse 2005). The parallel implementation
of the rate variation models was run on an 18-processor
Linux cluster. Additionally, a web-based interface to the
SLAC, FEL, and REL methods running on a cluster of
computers is available at http://www.datamonkey.org
(Kosakovsky Pond and Frost 2005b).

Results
Statistical Properties of the Methods

We first conducted a series of simulations to assess the
rates of false-positive (Type I) and false-negative (Type II)
errors produced by each of the methods on various simu-
lated data sets.

Recent results (Yang and Swanson 2002; Kosakovsky
Pond and Frost 2005; Kosakovsky Pond and Muse 2005)
suggest that many commonly analyzed sequences (HIV-1,
hepatitis C, mammalian mitochondrial sequences, primate
lysozyme) exhibit nontrivial site-to-site variation in synon-
ymous substitution rates. Previous studies (Anisimova,
Bielawski, and Yang 2001, 2002) have found that the like-
lihood approach of Nielsen and Yang performed well in the
absence of synonymous rate variation; in this paper, we are
primarily interested in the behavior of the methods when
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both synonymous and nonsynonymous rates vary from site
to site. In the Supplementary Material, we provide an exam-
ple of the relative performance of SLAC, FEL, REL, and
Nielsen-Yang methods on a simulated alignment that does
not include synonymous rate variation.

The methodology of Kosakovsky Pond and Muse
(2005) allows one to test for the presence of synonymous
rate variation in sequence data. Essentially, one fits the full
REL model followed by a restricted REL model which does
not allow for synonymous rate variation (similar to the M3
model of Yang et al. [2000]) and performs a likelihood ratio
test. Because the models are nested, a v2 approximation can
be used to assess significance. In a later section we demon-
strate that biological alignments of sufficient size analyzed
in this manuscript support the model which allows synon-
ymous rate variation.

Data Generation

We wanted to study the effects of the number of
sequences in the alignment and the amount of sequence
divergence on the performance of the methods. These
parameters control how much information is available
for inference at every site. We also examined the effect
of using an incorrect topology and substitution model on
the performance of the methods. Sequences were generated
parametrically under an MG94 3 REV model with the
HyPhy (v0.99b) software package (Kovakovsky Pond,
Frost, and Muse 2005). Substitution model parameters were
set at RAC 5 0.5, RAT 5 RCG 5 RGT 5 0.25, RCT 5 1.5,
approximately based on estimates from HIV-1 pol align-
ments. Base frequencies used were those collected from
an alignment of 55 subtype C HIV-1 reverse transcriptase
sequences. We used symmetric bifurcating trees with 8, 16,
32, 64, or 128 tips, with branch lengths samples randomly
from an exponential distribution with several different
means k such as 0.02 (e.g., single subtype HIV-1 pol trees),
0.15 (e.g., between-species primate mitochondrial DNA
trees) and 0.5 (large divergence). Sequence length was
set at 250 codons, which represents a fairly typical align-
ment length gathered from published selection analyses.
Forty different data sets were simulated for each collection
of parameter values (thus, at least 10,000 alignment sites
were tested per set of simulation parameters). Because none
of the methods can meaningfully infer selection at constant
sites, such sites were excluded during result processing. All
data employed for this study can be obtained from the http://
www.hyphy.org/pubs/qnd_sims.tgz. HyPhy scripts used
for simulations are available from the authors upon request
(some require a message passing interface cluster environ-
ment cluster environment). Some of the simulation (32
sequence balanced trees) settings were similar to those
reported as ‘‘difficult’’ for random effects models in Suzuki
and Nei (2002).

Type I Errors

To determine the rates of Type I error (false positives)
for detecting positively selected sites, we simulated data
assuming neutrality (dN/dS 5 1 at every site of the align-
ment) and analyzed them with SLAC, FEL, and REL meth-

ods. We note that this is (intentionally) a rather extreme
case, and biological data sets are likely to exhibit rate var-
iation, with many sites under purifying selection. In order to
graphically compare the methods on the same scale (P val-
ues/posterior probabilities), we mapped Bayes factors (BF)
for the REL method to a scale between 0 and 1 by 1/BF. In
Supplementary Material (figs. 1–3), we show that the rates
of Type I error in this scenario are well controlled by the
nominal P value/posterior probability/Bayes factor in
almost all scenarios. The counting methods appear to be
susceptible to saturation effects of high sequence diver-
gence and alignment size. This finding appears to contradict
the claims made by Suzuki and Gojobori (1999), who found
counting methods to always be conservative. This discrep-
ancy is likely due to the fact that the original SG method
could not handle highly variable sites, which are certain
to arise in our simulation scenarios and contribute to infer-
ence errors and, possibly, to numerous differences in imple-
mentation details—for instance, parsimony-based ancestral
sequence reconstruction can underestimate the number of
substitutions at a site. Furthermore, counting methods
remain conservative when sequence data exhibit rate var-
iation, as demonstrated in the following section. It is worth
noting that this simulation regime is the worst possible sce-
nario for counting methods because they are likely to suffer
from overfitting of synonymous rates at each site.

Power and Type II Errors

To determine the rate of Type II error (false negatives),
as well as to assess the rate of Type I error in a more com-
plex scenario, we simulated data sets with a rather complex
pattern of site-to-site rate variation: both the baseline muta-
tion rate and the strength of selection varied among sites.
Specifically, each simulated alignment contained 375
codons with the following distribution of rates:

� 225 negatively selected sites: 75 codons with as 5 1/3
and bs 5 1/30 (xs 5 0.1), 75 codons with as 5 1 and
bs 5 0.2 (xs 5 0.2), and 75 codons with as 5 3 and
bs 5 1.5 (xs 5 0.5);

� 75 neutral sites: 25 codons with as5 bs5 1/3, 25 codons
with as 5 bs 5 1, and 25 codons with as 5 bs 5 3; and

� 75 positively selected sites: 25 codons with as 5 1/3 and
bs5 4/3 (xs5 4), 25 codons withas5 1 and bs5 3 (xs5
3), and 25 codons with as 5 3.0 and bs 5 6.0 (xs 5 2).

In this scenario, there are three independent values for
as (1/3, 1, and 3) and seven independent values for bs (1/30,
0.2, 1/3, 4/3, 1.5, 3, and 6).

In order to fairly compare different methods with the
same set of simulation parameters, we need to ensure that
the Type I error rates are the same for the methods being
compared. Setting nominal a-levels to the same threshold
will not, in general, suffice for the rates of false positives to
be the same. A simple way to resolve this predicament is to
employ receiver operating characteristic (ROC) curves (cf.
Green and Swets 1966), which map the proportion of mis-
identified sites (false positives) to the proportion of cor-
rectly identified sites (true positives), for all possible
nominal a-levels (P values, posterior probabilities, or
Bayes factors) of the test. In essence, ROC plots illustrate
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FIG. 1.—ROC curve mapping true positives versus false positives for detecting sites with dN. dS. Rates are recapitulated using average dN� dS at a
site inferred by each of the methods. The reference gray line represents the true values of dN � dS. Symmetric trees with average branch length of 0.05
substitutions/site/unit time. Fifty replicates were analyzed for each setting.
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FIG. 2.—True- and false-positive rates as functions of nominal a-levels. P values were used for SLAC and FEL, and posterior probabilities and
mapped Bayes factors were used for REL. Gray lines provide expected Type I error rates based on the a-level of the test.
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what would have happened had we been able to choose
a-levels of each test optimally. When plotted in the same
coordinates, a test whose ROC plot dominates all others
is superior, because for a fixed rate of Type I errors, it is
able to achieve maximal power among all tests on the data
in question. However, for practical purposes, it is also
important to examine the performance of the test with
the critical level determined by its nominal P value, poste-
rior probability, or Bayes factor. For comparative purposes,
we also included results from the widely used M8 model
(Yang et al. 2000) modified to use the MG94 3
(012232) model; this model considers variation in nonsy-
nonymous rates only as a mixture between a beta distribu-
tion and a point mass.

Relative Performance

ROC curves for various numbers of sequences suggest
that SLAC, REL, and FEL perform comparably (ROC
curves roughly overlap for both positively and negatively
selected sites) and gain power with increased numbers of
sequences (fig. 1). For sufficiently large data sets (64
sequences or more), even the fast, conservative SLAC
method has excellent power (Supplementary Material). It
is interesting to note that while REL gives similar or better
performance than SLAC or FEL for the 16-, 32- and 64-
sequence data set, it performs worse than SLAC or FEL
for the small 8-sequence data set. Given that the only differ-
ence between REL and FEL is in the assumption of a rate
distribution in the REL approach, it appears that the poorer
performance of REL is due to errors in the estimation of the
rate distribution influencing the inferred rates at individual
sites. Note that the M8 model, which does not allow for the
synonymous variation present in the data, performs pro-
gressively worse than other methods with increased num-
bers of sequences (especially noticeable for 64 sequences)
because it assigns many of the sites with elevated rates (but
dN/dS , 1) as positively selected more and more reliably
(also see next section). For eight sequences, M8 performs
about as well as all other approaches, probably because
there is insufficient sequence data for synonymous rate var-
iation to have a noticeable impact.

Estimation of Rates

We considered the ability of each method to accu-
rately estimate the difference in nonsynonymous and syn-
onymous substitution rates at each site. For all three
methods, SLAC, REL, and FEL, variation in the estimates
was lower for larger data sets. Although all methods gave
broadly similar estimates for substitution rates, SLAC
tended to underestimate the substitution rates; FEL gave
estimates of rates that were close to the true values, but
with a lot of variation, especially for small data sets;
and REL gave biased estimates of rates, but with less var-
iation than FEL (fig. 1). For this scenario of rates, this is due
to a combination of (1) the shrinkage of rate estimates
toward the discrete rate categories assumed in the model
and (2) the misspecification of the REL model—the simu-
lated data were generated using a model that cannot be fully
fitted using three categories of nonsynonymous rates. We

have also analyzed simulated data in which the number
of rate categories used to fit the data was the same as
the number of categories used to generate the data; in this
case, the REL model also gives biased estimates of rates due
to shrinkage effects (results not shown). We note that, in
general, we do not know the true distribution of substitution
rates across sites. The M8 model of rate variation gave poor
estimates of substitution rates due to failure to account for
synonymous variation; sites evolving at high synonymous
rates are falsely identified as having an elevated nonsynon-
ymous rate.

Single-Likelihood Versus Weighted Ancestral Counting

We compared the estimated nonsynonymous and syn-
onymous rates and associated P values (for dN , dS and
dN . dS) for SLAC, which uses a single maximum likeli-
hood reconstruction, and WAC, which weights over all pos-
sible reconstructions. Rate estimates and associated P values
were extremely similar for the two approaches, suggesting
that the use of a single reconstruction does not lead to biased
results compared to weighting across all reconstructions, at
least for the simulation scenario presented here, while requir-
ing far less computational effort. For example, using an
alignment on 32 sequences, false-positive (FP) and true-pos-
itive (TP) rates of detecting sites under positive selection (as
functions of P values) exhibited excellent linear correlation:
FPWAC 5 0.986 3 FPSLAC 1 0.0003 (r2 5 0.997) and
TPWAC 5 1.031 3 TPSLAC 1 0.0002 (r2 5 0.998).

The Choice of Cutoff for Statistical Significance

For the SLAC and FEL methods, the rates of Type I
and Type II errors for a given P value were rather similar
(fig. 2), especially for large data sets, although both meth-
ods were conservative (Type I error much smaller than the
nominal P value). For small data sets, SLAC was more con-
servative than FEL. REL appears to have false-positive
rates similar to those stipulated by nominal a-levels (at least
for small a-levels), regardless of whether they are based on
mapped Bayes factors or posterior probabilities (fig. 2).

Applications to Biological Data

We applied counting methods and fixed effects and
random effects models to three biological data sets of
HIV-1 sequences, comprising different numbers of
sequences. We first obtained approximate estimates of
the phylogeny and the patterns of nucleotide and codon
substitution bias for each data set (table 1). For all three
data sets, nonstandard models of nucleotide evolution
were selected. Approximate branch lengths were
extremely similar to maximum likelihood branch lengths
(with correlation coefficients greater than 0.9), and the use
of approximate branch lengths did not result in a large
drop in goodness of fit as measured in terms of likelihood.
The use of a GY model of codon substitution (Goldman
and Yang 1994) resulted in a worse fit than an MG model
of codon substitution (Muse and Gaut 1994) for all three
data sets (table 1); hence, an MG model was used as a basis
for our analyses.
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HIV Envelope Sequences

We first considered a small data set consisting of 13
HIV-1 sequences of the viral envelope gene, each 91
codons long, analyzed by Leitner and coworkers (Leitner,
Kumar, and Albert 1997; Leitner and Albert 1999), who
found that the phylogenetic topology and branch lengths
accurately recapitulated the known transmission history
of HIV in these individuals. In Yang et al. (2000), many
models of nonsynonymous rate variation were fitted to
these data, and 3–10 sites were found to be under positive
selection depending on the choice of the model.

Both SLAC and WAC yielded similar results for sites
under selection (table 2), although inference at some highly
variable sites appeared susceptible to uncertainties in ances-
tral state reconstruction. For example, at codon 28, which
both SLAC and WAC identified as being under positive
selection with P value of 0.12, the estimates of dN � dS
and the P value for dN. dS had a large confidence interval
based on 1,000 ancestral samples (table 2). At a significance
level of 0.06, the FEL test also picked out this site as being
under positive selection, with a higher estimate of dN� dS.
In the REL method, synonymous rates as and nonsynony-
mous rates bs were sampled from two independent general
discrete distributions with two bins (estimated at Prfas 5
0.0g 5 0.55 and Prfas 5 2.23g 5 0.45) and three bins
(estimated at Prfbs 5 0.0g 5 0.29, Prfbs 5 1.04g 5
0.54g and Prfbs 5 4.8g 5 0.17), respectively, and all
parameters, including branch lengths, were optimized.
The test for synonymous rate variation was inconclusive
with likelihood ratio test (LRT) just failing to reject the null
of constant synonymous rates (P 5 0.13), while Akaike’s
Information Criterion (AIC) barely chose the model with
synonymous rate variation (2,251.36 vs. 2,251.48). Using
a Bayes factor cutoff of 50, four sites (26, 28, 51, 66) were
predicted to be under positive selection and 10 sites were
predicted to be under negative selection. This Bayes factor
cutoff corresponded to extremely high posterior probabil-

ities (table 2). Using a posterior probability cutoff of 0.9,
11 sites were identified as being under positive selection
and 13 sites were identified as being under negative selec-
tion. Due to small size of the alignment, we caution that P
values of the tests should be treated as nominal.

A possible difference between REL and the other two
approaches is that when identifying the rates at individual
sites using an empirical Bayes method, the parameters of
the rate distribution are treated as known. As we demon-
strate in the Supplementary Material, this effect can be dra-
matic and can account for most of the differences among the
methods for this small data set.

HIV-1 pol Sequences

As an example of an intermediate size data set, we ana-
lyzed an alignment of 81 sequences of part of the HIV-1 pol
gene which encodes reverse transcriptase. These sequences
were isolated from virus from individuals who had been
treated with the reverse transcriptase inhibitor AZT; hence,
genetic variation in these genes is likely to reflect selection
for drug resistance.

Two of the three classes of methods agreed on seven
sites (35, 64, 69, 200, 207, 211, 215) under positive selec-
tion (table 2 in Supplementary Material). Of these, muta-
tions at site 215 are known to confer strong resistance to
AZT (Larder and Kemp 1989) and mutations at position
69 are known to contribute to AZT resistance in combina-
tion with mutations at other sites (Fitzgibbon et al. 1991;
Winters and Merigan 2001). The REL method predicted
the largest number of sites (11) to be positively selected,
including all but one of those found by other methods.
The hypothesis of constant synonymous rates was rejected
both by LRT (P�0.001) and AIC (11,316.1 vs. 11,392.3).
A larger data set also led to reduced relative errors both in
distribution parameters and ancestral state estimates when
compared to the small HIV-1 envelope data set. This obser-
vation is consistent with the much better agreement

Table 2
Positively and Negatively Selected Sites in HIV-1 Envelope Data Identified by At Least One of the Methods

Counting Methods Likelihood Methods

Codon SLAC WAC Sampler FEL REL

3 �1.92 (0.30) �1.92 (0.30) �1.92:�1.92 (0.30:0.30) �2.67 (0.11) �1.98 (121.90; 0.9928)
4 N �2.05 (0.30) �2.07 (0.30) �2.05:�2.05 (0.30:0.30) �5.73 (0.05) �1.98 (216.54; 0.9959)

13 N �7.45 (0.03) �7.21 (0.03) �9.53:�6.73 (0.01:0.03) �23.70 (0.00) �1.98 (315.29; 0.9972)
20 N �6.26 (0.07) �6.02 (0.08) �6.26:�1.81 (0.07:0.45) �18.95 (0.01) �1.07 (39.56; 0.9782)
26 3.78 (0.25) 3.85 (0.24) 3.10:4.46 (0.21:0.35) 4.96 (0.20) 4.08 (61.24; 0.9819)
28 P 6.06 (0.12) 6.23 (0.12) 5.86:8.03 (0.04:0.16) 9.84 (0.06) 4.08 (6,196.99; 0.9998)
40 �3.39 (0.31) �2.67 (0.38) �3.39:2.49 (0.31:0.73) �10.00 (0.00) 2.10 (10.06; 0.8988)
43 �1.71 (0.33) �1.71 (0.33) �1.71:�1.71 (0.33:0.33) �1.24 (0.16) �1.98 (487.40; 0.9982)
45 N �2.56 (0.26) �2.63 (0.26) �4.27:�2.56 (0.11:0.26) �8.30 (0.04) �1.07 (59.48; 0.9854)
47 N �3.09 (0.22) �3.11 (0.22) �3.09:�3.09 (0.22:0.22) �7.50 (0.04) �1.98 (148.32; 0.9941)
51 4.27 (0.31) 4.33 (0.31) 4.20:5.04 (0.24:0.34) 5.83 (0.22) 4.08 (208.93; 0.9946)
61 �3.83 (0.24) �3.85 (0.24) �3.83:�3.83 (0.24:0.24) �1.92 (0.32) �1.07 (110.90; 0.9921)
66 1.24 (0.57) 2.61 (0.46) �4.55:6.69 (0.11:0.90) �8.14 (0.37) 2.10 (335.13; 0.9966)
77 N �3.83 (0.16) �3.85 (0.16) �3.83:�3.83 (0.16:0.16) �19.53 (0.02) �1.98 (229.98; 0.9962)
78 N �1.72 (0.39) �1.72 (0.39) �1.72:�1.72 (0.39:0.39) �4.74 (0.08) �1.98 (55.37; 0.9843)
89 N �3.13 (0.18) �3.14 (0.18) �3.13:�3.13 (0.18:0.18) �6.95 (0.03) �1.98 (153.68; 0.9943)

NOTE.—The first number for every method is an appropriately scaled dN � dS, so that they are directly comparable. The number in parentheses show P values for the

appropriate test and the Bayes factor values for the REL method; posterior probabilities are also included for reference purposes, although they are not used in site classification.

The entries for the Sampler method show 95% quantiles for the distribution of dN� dS and appropriate P values based on 1,000 ancestral samples. When a test is significant, the

corresponding cell entry is given in bold. The letter next to the codon number represents consensus identification (‘‘P’’ for positive and ‘‘N’’ for negative).
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between likelihood and counting methods than in the pre-
vious example.

When scaled to represent the expected number of
nucleotide substitutions per codon site, dN – dS estimated
by all the methods at putative positively selected sites were
quite similar, with especially good agreement at the sites
where all methods also inferred statistically significant dN
� dS . 0 (table 1 in Supplementary Material). In contrast,
the M8 model, in addition to having a much lower likelihood
than the REL model that included synonymous variation,
disagreed with the other methods at a number of sites that
exhibited high numbers of synonymous changes. The M8
model classified position 70, for example, as one of the
7.3% of sites under selection (dN/dS 5 1.87), with a high
posterior probability (0.997) and Bayes factor (4,048). How-
ever, based on a maximum likelihood reconstruction, this
site had a high number of synonymous changes (6), com-
pared to 12 nonsynonymous changes. When scaled by the
number of synonymous and nonsynonymous sites at this
position, SLAC gave an estimate of dN � dS 5 �0.97 (P
value for dN � dS . 0 5 0.77). FEL gave similar results,
with an estimate of dN � dS 5 �4.75, with a P value for
negative selection of 0.18. Our REL model estimated dN
� dS to be �1.5, with a posterior probability of only 0.27
and a Bayes factor of only 3 for dN � dS . 0. While the
estimate of dN � dS at an individual site varies by SLAC,
FEL, and REL method, all methods agree that there is insig-
nificant evidence for positive or negative selection at this
site, whereas the M8 model, by failing to account for the high
synonymous substitution rate at this position, concludes that
there is extremely strong evidence for positive selection.

HIV-1 Drug Naive pol Sequences

For the final example, we chose a large data set with
297 sequences of part of the HIV-1 pol gene which encodes
reverse transcriptase. These sequences were isolated from
virus from individuals who had not taken reverse transcrip-
tase inhibitors; hence, genetic variation in these genes is
likely to reflect selection from the cellular immune
response, rather than antiviral drugs. The hypothesis of con-
stant synonymous rates for this alignment was rejected both
by LRT (P�0.001) and AIC (34,917.0 vs. 35,371.1).

Two out of three methods concurred in predicting
seven (35, 135, 177, 200, 202, 211, 215) sites as positively
selected (table 2 in Supplementary Material), three of which
(35, 200, 211) were also found to be under selection in the
first reverse transcriptase alignment. REL predicted the
most (15) number of positively selected sites. We observe
that at many of these sites, both SLAC and FEL approached
significance, and given their somewhat conservative nature,
they are likely to agree with REL if more sequences were
available. REL, on the other hand, may be susceptible to
increased shrinkage effects if the assumed and the true dis-
tribution of rates are in poor agreement.

Discussion

We have presented an exposition of detecting positive
selection on sites in a sequence alignment using counting
methods and maximum likelihood models which treat
rate variation as either fixed or random effects. By basing

counting-based methods on ancestral reconstruction using a
codon-based substitution model, close comparisons can be
made between fast heuristic methods and slower maximum
likelihood–based methods. Simulation studies suggest that
all three methods presented have well-controlled error rates,
and by running a more computationally complex method on
data sets of small or moderate sizes more power can be
gained. We found it encouraging that, given sufficient bio-
logical data, all methods arrived at very similar conclusions,
both on real and simulated data, and the main difference in
the methods appears to lie in the conservative or liberal
nature of the test statistic. When we accounted for this dif-
ference, using ROC curves, the performance of all methods
on simulated data was virtually identical.

Failure to model variation both in synonymous and
nonsynonymous substitution rates can, under some scenar-
ios, lead to misleading results and should be avoided unless
constancy of synonymous rates can be ascertained. All
methods presented in this paper are able to adequately
model such variation, whereas current implementations
of fixed effects (Suzuki 2004) and random effects (Nielsen
and Yang 1998; Yang et al. 2000) approach do not. If syn-
onymous substitution rates are constant across sites, then
site-by-site methods such as SLAC and FEL lack power
compared to random effects approaches. We note that
our REL method, which can incorporate synonymous sub-
stitution rate variation, still performs well in this scenario as
the distribution of synonymous rates is estimated to be
approximately uniform across the sequence alignment.

Failure to take biases in the underlying substitution
process into account can result in altered estimates of non-
synonymous and synonymous substitution rates. Addition-
ally, it is possible that none of the ‘‘named’’ models
adequately describe the evolution of a particular organism,
and thus, nonstandard models should be considered. The
impact of choosing an incorrect model of the underlying
nucleotide substitution process can have a small, but detect-
able, effect on the power to detect selected sites.

Having made simplifying assumptions for all meth-
ods, such as using approximate branch lengths and rough
phylogenies, we were able to dramatically reduce computa-
tional effort involved in the methods, without a significant
sacrifice in goodness of fit. These simplifications are not
essential to the methods and can be removed in favor of
more accurate, albeit more time-consuming, approaches.

To determine the robustness of counting-based meth-
ods to the use of a single ancestral reconstruction, as was
originally proposed in Suzuki and Gojobori (1999), we
implemented two algorithms which take the uncertainty
in ancestral reconstructions into account; the first averages
over all possible reconstructions, while the second samples
from all possible reconstructions. We found that inferences
based on a single most likely ancestral reconstruction gave
results extremely similar to those based on weighting over
possible reconstructions at a much lower computational
cost. For smaller data sets, the uncertainty in the number
of changes that have occurred at a site can be substantial.
This can result in results from single or weighted ancestral
constructions being either too liberal or conservative
depending on the structure of the data; for small data sets,
it may be advisable to run a sampling-based approach in
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order to assess how uncertainty in reconstructions affects
the results. For large data sets, the results of the three differ-
ent counting methods appear to converge, at least for the
data sets studied in this paper and based on simulation
results. We recommend SLAC for data sets that are large
(over 40 sequences) as SLAC is a very fast method, and
the conservative nature of the test suggested by our simu-
lations of nonneutral data is mitigated by its application to
large data sets. Moreover, the speed of counting methods
makes it possible to perform extensive Type I and Type
II error simulations in the time it would take to perform
a single fit of a random effects model.

Differences between empirical Bayes and counting-
based methods of estimating substitution rates at a site
may arise due to errors associated with estimation of the rate
distribution. These errors are likely be substantial, especially
for small data sets, as shown by wide profile likelihood inter-
vals, and can result in large numbers of falsely positive infer-
ences of selected sites (Supplementary Material), especially
when using posterior probabilities rather than Bayes factors
to infer positive selection. In such cases, a hierarchical Baye-
sian approach (Nielsen and Huelsenbeck 2002) may be more
appropriate, but care must be taken in order that the results
are not overly influenced by the choice of prior distribution
on the rate parameters. For intermediate data sets (20–40
sequences), we recommend the use of our FEL method;
by estimating the rates of nonsynonymous and synonymous
substitution at each site directly, the need to assess errors in
the underlying distribution of rates across sites is avoided,
together with a performance advantage over REL in terms
of speed and over SLAC in terms of power as a function
of the nominal a-level of the test.

Our results contribute to the discussion of whether
counting-based methods or random effects models are
preferable in the identification of sites under positive
or negative selection (Suzuki and Nei 2001, 2002,
2004; Sorhannus 2003; Wong et al. 2004). Our results
suggest that differences between the counting method
of Suzuki and Gojobori (1999) and the models of Yang
et al. (2000) may arise due to a number of factors: (1) the
highly conservative nature of counting-based methods,
(2) the failure of previous random effects models to incor-
porate synonymous rate variation, (3) misspecification of
the rate distribution in a random effects model, and (4) the
failure to explore the sensitivity of results obtained using
an empirical Bayes approach to errors in the estimation of
the parameters of the rate distribution. With the exception
of the extent to which the test statistic (P values, Bayes
factors, or posterior probability) is conservative or liberal,
counting-based methods and random effects methods
give broadly similar results when both approaches allow
synonymous variation and are applied to data sets of suf-
ficient size. For small data sets, disagreement between
counting, fixed effects, and random effects models seems
inevitable. We find it difficult to make a definitive recom-
mendation when only a few sequences are available for
analysis. The conservative nature of counting and fixed
effects methods may result in the lack of power to detect
selection, while excessive errors in parameter estimates
employed in empirical Bayesian analysis can lead to large
Type I error rates. An application of all three methods,

with high (e.g., 0.25) nominal a-levels for SLAC and
FEL, followed by the classification of sites based on
the consensus of the methods, coupled with analyses of
simulated data, seems to be a reasonable approach to rule
out spurious results.

Supplementary Material

Supplementary data are available at Molecular Biol-
ogy and Evolution online (www.mbe.oupjournals.org).
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