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Abstract. Of numerous proposals to improve the accuracy of naive Bayes by weak-
ening its attribute independence assumption, both LBR and super-parent TAN have
demonstrated remarkable error performance. However, both techniques obtain this
outcome at a considerable computational cost. We present a new approach to weak-
ening the attribute independence assumption by averaging all of a constrained class
of classifiers. In extensive experiments this technique delivers comparable prediction
accuracy to LBR and super-parent TAN with substantially improved computational
efficiency at test time relative to the former and at training time relative to the
latter. The new algorithm is shown to have low variance and is suited to incremental
learning.
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1. Introduction

Due to its simplicity, efficiency and efficacy, naive Bayes (NB) is widely
deployed for classification learning. It delivers optimal classification
subject only to the accuracy of the estimation of the base conditional
probabilities on which it relies and to the constraints of its simplify-
ing attribute independence assumption. Notwithstanding the fact that
some violations of the attribute independence assumption do not mat-
ter (Domingos & Pazzani, 1996), it is clear that many do, and there
is an increasing body of work developing techniques to retain NB’s
desirable simplicity and efficiency while alleviating the problems of the
attribute independence assumption (Friedman, Geiger, & Goldszmidt,
1997; Keogh & Pazzani, 1999; Kohavi, 1996; Kononenko, 1991; Langley,
1993; Langley & Sage, 1994; Pazzani, 1996; Sahami, 1996; Singh &
Provan, 1996; Webb & Pazzani, 1998; Webb, 2001; Xie, Hsu, Liu, &
Lee, 2002; Zheng & Webb, 2000; Zheng, Webb, & Ting, 1999).

Of these techniques, two have demonstrated remarkable accuracy.
Lazy Bayesian Rules (LBR) (Zheng & Webb, 2000) has demonstrated
accuracy comparable to boosting decision trees (Zheng et al., 1999)
and Super Parent TAN (SP-TAN) (Keogh & Pazzani, 1999), a variant
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of Tree Augmented Naive Bayes (TAN) (Friedman et al., 1997), has
demonstrated accuracy comparable to LBR (Wang & Webb, 2002).
However, these two techniques have high computational overheads,
SP-TAN having high computational complexity at training time and
LBR having high computational complexity at classification time. This
reduces their usefulness as an alternative to NB.

This paper first introduces NB, LBR, TAN and SP-TAN. An anal-
ysis of the sources of strength of each algorithm together with the
determinants of their computational profiles leads to the development
of AODE, a new efficient technique that utilizes a weaker attribute inde-
pendence assumption than NB, thereby improving prediction accuracy
without undue computational overheads. We present an experimental
comparison of performance on selected UCI data sets together with a
bias-variance analysis. AODE demonstrates comparable error to LBR
and SP-TAN coupled with a computational profile that avoids the high
training cost of SP-TAN and the high classification cost of LBR.

2. Naive Bayes

We wish to predict from a training sample of classified objects the
class of an example x = 〈x1, . . . , xn〉, where xi is the value of the ith

attribute. We can minimize error by selecting argmaxy P (y |x), where

y ∈ c1, . . . ck are the k classes. To this end we seek an estimate P̂ (y |x)

of P (y |x) and perform classification by selecting argmaxy P̂ (y |x).
From the definition of conditional probability we have

P (y |x) = P (y,x)/P (x) (1)

∝ P (y,x). (2)

Hence, argmaxy P (y |x) = argmaxy P (y,x), and the latter is often
calculated in practice rather than the former. Further, as P (x) =
∑k

i=1 P (ci,x), we can always estimate Eq 1 from estimates of Eq 2
for each class using

P (y,x)/P (x) ≈ P̂ (y,x)/
k
∑

i=1

P̂ (ci,x). (3)

In consequence, in the remainder of this paper we consider only the
problem of estimating Eq 2.

Assuming the training sample is a representative sample of the joint
distribution from which it is drawn, the frequency with which any
event occurs in the sample will be a reasonable approximation of the
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probability of that event. In practice a minor adjustment is made to
the observed frequency, such as the Laplace estimate, in order to allow
for possible sampling error. However, if the number of attributes, n,
is large, for most x, P (y,x) is likely to be extremely small, and hence
for any y, (y,x) is unlikely to occur in the sample. In consequence, an
estimate of P (y,x) from the sample frequencies will be uninformative.
One way around this problem is to estimate P (y,x) by a function from
other probability estimates that we can derive with greater confidence
from the sample frequencies.

By application of the product rule we have the following.

P (y,x) = P (y)P (x | y) (4)

If the number of classes, k, is small, it should be possible to obtain
a sufficiently accurate estimate of P (y) from the sample frequencies.
However, we still have the problem that x may not occur in the training
data and hence P (x | y) cannot be directly estimated from the sam-
ple. NB circumvents this problem by assuming that the attributes are
independent given the class. From this assumption it follows that

P (x | y) =
n
∏

i=1

P (xi | y). (5)

Hence NB classifies by selecting

argmax
y

(

P̂ (y)
n
∏

i=1

P̂ (xi | y)

)

, (6)

where P̂ (y) and P̂ (xi | y) are estimates of the respective probabilities
derived from the frequency of their respective arguments in the training
sample, with possible corrections such as the Laplace estimate.

At training time NB need only compile a table of class probability
estimates and a table of conditional attribute-value probability esti-
mates. The former is one-dimensional, indexed by class and the latter
two-dimensional, indexed by class and attribute-value. The resulting
space complexity is O(knv), where v is the average number of values
per attribute. To calculate the estimates requires a simple scan through
the data, an operation of time complexity O(tn), where t is the number
of training examples. At classification time, to classify a single example
has time complexity O(kn) using the tables formed at training time
with space complexity O(knv).
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3. LBR and TAN

Eq 6 is simple to calculate leading to efficient classification. However,
violations of the attribute independence assumption Eq 5 can lead
to undesirably high error. Of the many approaches to obviating this
problem cited in the introduction, two have demonstrated very low
error: LBR (Zheng & Webb, 2000) and SP-TAN (Keogh & Pazzani,
1999). Both rely on weaker attribute independence assumptions than
NB.

LBR uses lazy learning. For each x = 〈xi, . . . , xn〉 to be classified,
a set W of the attribute values is selected. Independence is assumed
among the remaining attributes given W and y. Hence, x can be
classified by selecting

argmax
y

(

P̂ (y |W )
n
∏

i=1

P̂ (xi | y, W )

)

. (7)

Thus, every attribute depends both on the class and the attributes
chosen for inclusion in W . W is selected by a simple heuristic wrapper
approach that seeks to minimize error on the training sample.

At training time, LBR simply stores the training data, an operation
of time and space complexity O(tn). At classification time, however,
LBR must select the attributes for inclusion in W , an operation of
time complexity O(tkn2). In practice, the cumulative computation is
reasonable when few examples are to be classified for each training set.
When large numbers of examples are to be classified, the computational
burden becomes prohibitive.

In contrast to LBR, TAN and SP-TAN allow every attribute xi to
depend upon the class and at most one other attribute, p(xi), called
the parent of xi. Hence, x is classified by selecting

argmax
y

(

P̂ (y)
n
∏

i=1

P̂ (xi | y, p(xi))

)

. (8)

The parent function p(·) is developed at training time. TAN (Friedman
et al., 1997) uses conditional mutual information to select the parent
function. SP-TAN (Keogh & Pazzani, 1999) uses a simple heuristic
wrapper approach that seeks to minimize error on the training sample.
At training time both TAN and SP-TAN generate a three-dimensional
table of probability estimates for each attribute-value, conditioned by
each other attribute-value and each class, space complexity O(k(nv)2).
SP-TAN must also store the training data, with additional space com-
plexity O(tn). The time complexity of forming the three dimensional
probability table required by both TAN and SP-TAN is O(tn2) as an
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entry must be updated for every training case and every combination
of two attribute-values for that case. To create the parent function
TAN must first calculate the conditional mutual information, requiring
consideration for each pair of attributes, every pairwise combination of
their respective values in conjunction with each class value O(kn2v2). A
maximal spanning tree is then generated, time complexity O(n2 log n).
The time complexity of forming the parent function for SP-TAN is
O(tkn3), as the selection of a single parent is order O(tkn2) and parent
selection is performed repeatedly, potentially being repeated until every
attribute has a parent. At classification time both TAN and SP-TAN
need only store the probability tables, space complexity O(knv2). This
compression over the table required at training time is achieved by stor-
ing probability estimates for each attribute-value conditioned by the
parent selected for that attribute, and the class. The time complexity
of classifying a single example is O(kn).

4. Averaged One-Dependence Estimators

LBR and SP-TAN appear to offer competitive error to boosting decision
trees (Zheng et al., 1999; Wang & Webb, 2002). However, except in
the case of applying LBR to classify small numbers of examples for
each training set, this is achieved at considerable computational cost.
In the current research we seek techniques that weaken NB’s attribute
independence assumption, achieving the error performance of LBR and
SP-TAN, without their computational burden.

Analysis of LBR and SP-TAN reveals that the computational burden
can be attributed mainly to two factors:

− model selection: W for LBR, and p(·) for SP-TAN, and

− probability estimation: generated on the fly for LBR, and via the
three-dimensional conditional probability table for SP-TAN.

Considering first the issue of probability estimation, it is clearly de-
sirable to be able to pre-compute all required base probability estimates
at training time, as does SP-TAN. Sahami (1996) introduces the notion
of x-dependence estimators, whereby the probability of each attribute
value is conditioned by the class and at most x other attributes. In gen-
eral, the probability estimates required for an x-dependence estimator
can be stored in an (x + 2)-dimensional table, indexed by the target
attribute-value, the class value, and the values of the x other attributes
by which the target is conditioned. To maintain efficiency it appears
desirable to restrict ourselves to 1-dependence classifiers.
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This leaves the issue of model selection. One way to minimize the
computation required for model selection is to perform no model selec-
tion, as does NB.

In addition to the desire to minimize computation, a second motiva-
tion for avoiding model selection is that selection between alternative
models can be expected to increase variance. This is because selection
between models allows a learning system to more closely fit the training
data. In consequence, changes in the training data will lead to greater
changes in the model formed, which leads in turn to greater variance
(see, for example, Hastie, Tibshirani, & Friedman, 2001). In contrast,
under approaches such as naive Bayes where there is no choice in the
form of the model, all that changes when the training data changes is
the underlying conditional probability tables which tends to result in
relatively gradual changes in the pattern of classification. Model selec-
tion avoidance may minimize the variance component of a classifier’s
error.

However, while avoiding model selection appears desirable, it ap-
pears to conflict with the desire to use 1-dependence classifiers. These
require each attribute to depend on one other attribute and the precise
such attribute must surely be selected. Our solution is to select a limited
class of 1-dependence classifiers and to aggregate the predictions of
all qualified classifiers within this class. The class we select is all 1-
dependence classifiers where there is a single attribute that is the parent
of all other attributes. However, we wish to avoid including models for
which the base probability estimates are inaccurate. To this end, when
classifying an object x = 〈x1, . . . , xn〉, we exclude models where the
training data contain fewer than m examples of the value for x of
the parent attribute xi. In the current research we use m = 30, this
being a widely utilized minimum on sample size for statistical inference
purposes.

By application of the product rule it follows that for any attribute
value xi

P (y,x) = P (y, xi)P (x | y, xi). (9)

As this equality holds for every xi, it follows that it also holds for the
mean over any group of attribute values. Hence,

P (y,x) =

∑

i:1≤i≤n∧F (xi)≥m P (y, xi)P (x | y, xi)

|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}|
(10)

where F (xi) is a count of the number of training examples having
attribute-value xi and is used to enforce the limit m that we place
on the support needed in order to accept a conditional probability
estimate. In the presence of estimation error, if the inaccuracies of the
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estimates are unbiased the mean can be expected to factor out that
error.

Eq 10 provides a new strategy for estimating class probabilities.
We call the resulting classifiers Averaged One-Dependence Estimators
(AODE). As the denominator of Eq 10 is invariant across classes it need
not be calculated. In consequence, substituting probability estimates
for the probabilities in Eq 10 and seeking the class that maximizes the
resulting term, these classifiers select the class

argmax
y





∑

i:1≤i≤n∧F (xi)≥m

P̂ (y, xi)
n
∏

j=1

P̂ (xj | y, xi)



. (11)

If ¬∃i : 1 ≤ i ≤ n ∧ F (xi) ≥ m, AODE defaults to NB.
AODE can be extended to provide direct class probability estimates

by normalizing the numerator of Eq 10 across all classes:

P̂ (y | X) =

∑

i:1≤i≤n∧F (xi)≥m P̂ (y, xi)
∏n

j=1 P̂ (xj | y, xi)
∑

y′∈Y

∑

i:1≤i≤n∧F (xi)≥m P̂ (y′, xi)
∏n

j=1 P̂ (xj | y′, xi)
. (12)

At training time AODE need only form the tables of joint attribute-
value, class frequencies from which the probability estimates P̂ (y, xi)

and P̂ (y, xi, xj) are derived that are required for estimating P̂ (y, xi)

and P̂ (xj | y, xi). The space complexity of these tables is O(k(nv)2).
Derivation of the frequencies required to populate these tables is of
time complexity O(tn2). There is no model selection. Classification
requires the tables of probability estimates formed at training time of
space complexity O(k(nv)2). Classification of a single example requires
calculation of Eq 11 and is of time complexity O(kn2). Table I displays
the relative complexity of each of the algorithms discussed.

A further computational advantage of AODE compared to TAN
or SP-TAN is that it lends itself directly to incremental learning. To
update an AODE classifier with evidence from a new example requires
only incrementing the relevant entries in the tables of joint attribute-
value and class frequencies.

We expect AODE to achieve lower classification error than NB for
the following reasons. First, as it involves a weaker attribute indepen-
dence assumption, P (y, xi)

∏n
j=1 P (xj | y, xi) should provide a better

estimate of P (y,x) than P (y)
∏n

i=1 P (xi | y). Hence, the estimates from
each of the one-dependence models over which AODE averages should
be better than the estimate from NB, except insofar as the estimates of
the base probabilities P (y, xi) and P (xj | y, xi) in the one-dependence
models are less accurate than the estimates of the base probabilities
P (y) and P (xi | y) used by NB. The only systematic cause for such a
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Table I. Computational Complexity

Training Classification

Algorithm Time Space Time Space

NB O
(

nt
)

O
(

knv
)

O
(

kn
)

O
(

knv
)

TAN O
(

tn2 + kn2v2 + n2 log n
)

O
(

k(nv)2
)

O
(

kn
)

O
(

knv2
)

SP-TAN O
(

tkn3
)

O
(

tn + k(nv)2
)

O
(

kn
)

O
(

knv2
)

LBR O
(

tn
)

O
(

tn
)

O
(

tkn2
)

O
(

tn
)

AODE O
(

tn2
)

O
(

k(nv)2
)

O
(

kn2
)

O
(

k(nv)2
)

k is the number of classes

n is the number of attributes

v is the average number of values for an attribute

t is the number of training examples

drop in accuracy might result from the smaller numbers of examples
from which the AODE base probabilities are estimated. We seek to
guard against negative impact from such a cause by restricting the
base models to those for which the parent attribute-value occurs with
sufficient frequency. Due to the extent to which AODE’s estimates can
be expected to grow in accuracy as the amount of data increases, we
expect the magnitude of the advantage over NB to grow as the number
of training examples grows. Second, there is a considerable evidence
that aggregating multiple credible models leads to improved predic-
tion accuracy (Ali, Brunk, & Pazzani, 1994; Breiman, 1996; Freund &
Schapire, 1997; Nock & Gascuel, 1995; Oliver & Hand, 1995; Wolpert,
1992), and we expect to benefit from such an effect. Third, like NB,
AODE avoids model selection and hence avoids the attendant variance.

5. Evaluation

We here evaluate our hypotheses that AODE will deliver efficient and
accurate classification. We also evaluate our expectation that any one-
dependence estimator should be more accurate than NB so long as there
is sufficient data to accurately estimate the required probabilities. To
this end we also consider ODE, a variant of AODE where, instead of
averaging over all xi : F (xi) ≥ m as in Eq 11, one xi : F (xi) ≥ m is
randomly selected and we classify using

argmax
y



P̂ (y, xi)
n
∏

j=1

P̂ (xj | y, xi)



. (13)

aode-preprint.tex; 3/05/2004; 11:57; p.8



Not so naive Bayes 9

To assess the account of AODE as an approach to ensembling one-
dependence estimators, we also consider bagged ODE.

We compare the prediction error, bias, variance, training time and
classification time of AODE to those of NB, ODE, bagged ODE, LBR,
TAN, and SP-TAN. In order to provide comparators with which many
researchers will be familiar, we also provide results for a standard
decision tree learner and a boosted decision tree learner. To this end
we implemented AODE, ODE, TAN and SP-TAN in the Weka work-
bench (Witten & Frank, 2000). We used Weka’s implementations of
NB, LBR, the decision tree learner J48 (a reimplementation of C4.5),
boosting and bagging. For all algorithms we employed Weka’s default
settings, in particular forming ensembles of ten base classifiers each
for boosting and bagging. In keeping with Weka’s NB and LBR, we
estimated the base probabilities P (y), P (y, xi) and P (y, xi, xj) using
the Laplace estimate as follows:

P̂ (y) =
F (y) + 1

K + k
(14)

P̂ (y, xi) =
F (y, xi) + 1

Ki + kvi

(15)

P̂ (y, xi, xj) =
F (y, xi, xj) + 1

Kij + kvivj

(16)

where F (·) is the frequency with which a combination of terms appears
in the training data, K is the number of training examples for which
the class value is known, Ki is the number of training examples for
which both the class and attribute i are known, Kij is the number of
training examples for which all of the class, and attributes i and j are
known, and va is the number of values for attribute a.

As LBR, TAN, SP-TAN and AODE require discrete valued data, all
data were discretized using MDL discretization (Fayyad & Irani, 1993).
MDL discretization was used in preference to techniques specifically op-
timized for naive Bayes (Yang & Webb, 2003) because the latter rely on
the attribute independence assumption and hence are poorly adapted
to the semi-naive approaches of LBR, TAN, SP-TAN and AODE that
weaken that assumption. We evaluated J48 and boosted J48 with both
discretized and the raw data. We report only results for the raw data
as these are more favorable to those algorithms.

As we expect AODE to exhibit low variance, we compared the
performance of the system using Weka’s bias-variance decomposition
utility which utilizes the experimental method proposed by Kohavi and
Wolpert (1996). The training data are divided into training and test sets
each containing half the data. 50 local training sets are sampled from
the training set, each local set containing 50% of the training set, which
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Table II. data sets

Name Cases Atts Name Cases Atts

adult 48842 15 labor-neg 57 17

anneal 898 39 led 1000 8

balance-scale 625 5 letter-recognition 20000 17

bcw 699 10 lung-cancer 32 57

bupa 345 7 mfeat-mor 2000 7

chess 551 40 new-thyroid 215 6

cleveland 303 14 pendigits 10992 17

crx 690 16 post-operative 90 9

echocardiogram 131 7 promoters 106 58

german 1000 21 ptn 339 18

glass 214 10 satellite 6435 37

heart 270 14 segment 2310 20

hepatitis 155 20 sign 12546 9

horse-colic 368 22 sonar 208 61

house-votes-84 435 17 syncon 600 61

hungarian 294 14 ttt 958 10

hypothyroid 3163 26 vehicle 846 19

ionosphere 351 35 wine 178 14

iris 150 5

is 25% of the full data set. A classifier is formed from each local training
set and bias, variance, and error estimated from the performance of
those classifiers on the test set.

Experiments were performed on a dual-processor 1.7Ghz Pentium 4
Linux computer with 2Gb RAM. All algorithms were applied to the 37
data sets described in Table II. These data sets are formed around a core
of twenty-nine data sets used in previous related research (Domingos &
Pazzani, 1996; Zheng & Webb, 2000) augmented by eight larger data
sets added because the original data sets were all relatively small and
AODE, LBR, TAN and SP-TAN have greatest scope to improve upon
NB when more data is available. However, it should be noted that the
bias-variance experimental method results in very small training sets,
each only 25% of the size of the data set. Previous research suggests
that NB enjoys particularly low relative error on small data sets (Zheng
& Webb, 2000) and hence this experimental method can be expected
to favor NB.
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Table III. Error

Bag SP- Boost

Data AODE NB ODE ODE LBR TAN TAN J48 J48

adult 0.152 0.168 0.172 0.170 0.140 0.147 0.147 0.146 0.169

anneal 0.065 0.082 0.064 0.059 0.064 0.067 0.067 0.157 0.101

balance-scale 0.302 0.303 0.310 0.267 0.302 0.303 0.300 0.274 0.238

bcw 0.027 0.030 0.038 0.036 0.030 0.050 0.030 0.087 0.048

bupa 0.424 0.424 0.424 0.426 0.424 0.424 0.424 0.428 0.395

chess 0.140 0.143 0.144 0.146 0.141 0.128 0.137 0.144 0.124

cleveland 0.176 0.174 0.175 0.170 0.174 0.176 0.178 0.260 0.227

crx 0.163 0.171 0.165 0.162 0.172 0.177 0.172 0.172 0.179

echocardiogram 0.382 0.389 0.382 0.364 0.392 0.388 0.388 0.372 0.366

german 0.262 0.268 0.268 0.262 0.269 0.277 0.268 0.296 0.291

glass 0.299 0.300 0.299 0.275 0.303 0.300 0.295 0.288 0.257

heart 0.216 0.215 0.217 0.201 0.215 0.236 0.218 0.269 0.254

hepatitis 0.140 0.139 0.137 0.129 0.140 0.143 0.138 0.173 0.163

horse-colic 0.219 0.221 0.227 0.217 0.210 0.213 0.219 0.226 0.229

house-votes-84 0.054 0.086 0.089 0.087 0.069 0.068 0.082 0.040 0.044

hungarian 0.173 0.169 0.173 0.177 0.173 0.179 0.172 0.211 0.212

hypothyroid 0.021 0.024 0.025 0.025 0.016 0.025 0.018 0.013 0.015

ionosphere 0.102 0.119 0.122 0.102 0.119 0.099 0.118 0.166 0.143

iris 0.058 0.058 0.058 0.054 0.058 0.056 0.058 0.060 0.059

labor-neg 0.150 0.150 0.150 0.135 0.196 0.168 0.154 0.239 0.192

led 0.258 0.255 0.268 0.270 0.257 0.271 0.259 0.318 0.318

letter-recognition 0.193 0.292 0.266 0.259 0.220 0.212 0.210 0.208 0.103

lung-cancer 0.556 0.556 0.556 0.540 0.557 0.562 0.555 0.616 0.608

mfeat-mor 0.311 0.317 0.321 0.312 0.313 0.312 0.314 0.300 0.305

new-thyroid 0.074 0.074 0.084 0.088 0.074 0.077 0.075 0.119 0.093

pendigits 0.037 0.132 0.067 0.059 0.065 0.066 0.055 0.065 0.021

post-operative 0.366 0.366 0.366 0.360 0.364 0.383 0.386 0.317 0.416

promoters 0.130 0.130 0.130 0.146 0.132 0.315 0.134 0.247 0.208

ptn 0.572 0.559 0.581 0.584 0.571 0.593 0.571 0.635 0.635

satellite 0.120 0.178 0.164 0.152 0.148 0.128 0.155 0.164 0.119

segment 0.071 0.112 0.116 0.094 0.092 0.082 0.090 0.065 0.041

sign 0.302 0.362 0.295 0.290 0.280 0.292 0.297 0.206 0.175

sonar 0.275 0.274 0.277 0.261 0.274 0.293 0.279 0.316 0.269

syncon 0.059 0.069 0.086 0.060 0.069 0.058 0.069 0.191 0.106

ttt 0.261 0.296 0.295 0.295 0.291 0.294 0.295 0.240 0.147

vehicle 0.383 0.444 0.438 0.406 0.385 0.382 0.428 0.334 0.277

wine 0.042 0.040 0.042 0.029 0.040 0.053 0.040 0.143 0.094

Mean 0.204 0.219 0.216 0.207 0.209 0.216 0.211 0.230 0.206

Geo mean ratio 1.124 1.115 1.048 1.049 1.102 1.056 1.225 1.026
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Table IV. Bias

Bag SP- Boost

Data AODE NB ODE ODE LBR TAN TAN J48 J48

adult 0.139 0.156 0.160 0.161 0.127 0.129 0.119 0.113 0.101

anneal 0.045 0.053 0.043 0.041 0.041 0.043 0.043 0.094 0.050

balance-scale 0.172 0.175 0.187 0.174 0.173 0.172 0.172 0.140 0.117

bcw 0.025 0.028 0.031 0.029 0.028 0.027 0.028 0.040 0.027

bupa 0.292 0.292 0.292 0.249 0.292 0.292 0.292 0.232 0.213

chess 0.101 0.104 0.102 0.103 0.097 0.062 0.090 0.068 0.069

cleveland 0.127 0.127 0.121 0.128 0.127 0.117 0.126 0.129 0.122

crx 0.138 0.147 0.140 0.141 0.147 0.130 0.143 0.113 0.111

echocardiogram 0.247 0.249 0.246 0.260 0.253 0.246 0.250 0.232 0.227

german 0.195 0.203 0.192 0.188 0.202 0.174 0.196 0.191 0.157

glass 0.168 0.169 0.168 0.165 0.167 0.164 0.166 0.121 0.119

heart 0.156 0.156 0.154 0.151 0.156 0.165 0.154 0.134 0.139

hepatitis 0.096 0.098 0.089 0.089 0.094 0.078 0.095 0.085 0.073

horse-colic 0.179 0.188 0.175 0.177 0.177 0.170 0.183 0.194 0.154

house-votes-84 0.043 0.077 0.075 0.072 0.046 0.044 0.071 0.024 0.017

hungarian 0.156 0.156 0.155 0.159 0.157 0.134 0.155 0.163 0.138

hypothyroid 0.018 0.021 0.022 0.021 0.013 0.022 0.014 0.013 0.012

ionosphere 0.068 0.077 0.078 0.071 0.077 0.063 0.076 0.096 0.088

iris 0.037 0.037 0.037 0.035 0.037 0.034 0.038 0.047 0.043

labor-neg 0.046 0.046 0.046 0.039 0.068 0.057 0.048 0.084 0.067

led 0.211 0.209 0.224 0.225 0.208 0.221 0.208 0.229 0.229

letter-recognition 0.133 0.230 0.182 0.182 0.103 0.124 0.110 0.080 0.039

lung-cancer 0.311 0.311 0.311 0.299 0.312 0.375 0.309 0.319 0.325

mfeat-mor 0.240 0.246 0.248 0.247 0.231 0.235 0.234 0.181 0.183

new-thyroid 0.040 0.039 0.043 0.055 0.039 0.028 0.039 0.059 0.041

pendigits 0.023 0.111 0.040 0.041 0.025 0.035 0.025 0.021 0.008

post-operative 0.299 0.299 0.299 0.299 0.300 0.315 0.306 0.309 0.291

promoters 0.043 0.043 0.043 0.052 0.044 0.134 0.044 0.077 0.060

ptn 0.348 0.346 0.353 0.347 0.352 0.370 0.342 0.345 0.343

satellite 0.095 0.162 0.119 0.121 0.085 0.094 0.131 0.075 0.065

segment 0.044 0.075 0.059 0.058 0.047 0.039 0.056 0.031 0.019

sign 0.260 0.324 0.257 0.262 0.218 0.245 0.235 0.108 0.096

sonar 0.180 0.181 0.178 0.178 0.181 0.169 0.182 0.141 0.121

syncon 0.037 0.046 0.038 0.036 0.046 0.027 0.046 0.065 0.036

ttt 0.191 0.234 0.215 0.212 0.207 0.195 0.199 0.110 0.051

vehicle 0.255 0.315 0.304 0.297 0.248 0.231 0.300 0.155 0.147

wine 0.016 0.015 0.016 0.014 0.015 0.017 0.016 0.040 0.024

Mean 0.140 0.155 0.147 0.145 0.139 0.140 0.142 0.126 0.111

Geo mean ratio 1.160 1.084 1.074 1.003 0.998 1.026 0.963 0.773
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Table V. Variance

Bag SP- Boost

Data AODE NB ODE ODE LBR TAN TAN J48 J48

adult 0.012 0.011 0.011 0.009 0.013 0.018 0.027 0.032 0.067

anneal 0.020 0.028 0.021 0.018 0.023 0.023 0.024 0.062 0.050

balance-scale 0.128 0.125 0.121 0.090 0.126 0.128 0.126 0.131 0.118

bcw 0.002 0.002 0.008 0.007 0.002 0.023 0.002 0.046 0.021

bupa 0.130 0.130 0.130 0.173 0.130 0.130 0.130 0.192 0.178

chess 0.038 0.038 0.041 0.042 0.043 0.065 0.046 0.074 0.054

cleveland 0.048 0.046 0.053 0.041 0.046 0.059 0.051 0.129 0.103

crx 0.025 0.024 0.025 0.020 0.024 0.047 0.028 0.058 0.067

echocardiogram 0.133 0.137 0.133 0.102 0.137 0.139 0.135 0.137 0.136

german 0.066 0.063 0.075 0.072 0.066 0.101 0.071 0.103 0.132

glass 0.129 0.129 0.129 0.108 0.134 0.134 0.127 0.163 0.135

heart 0.058 0.058 0.062 0.049 0.058 0.070 0.063 0.132 0.113

hepatitis 0.043 0.040 0.047 0.039 0.044 0.064 0.043 0.086 0.088

horse-colic 0.040 0.032 0.051 0.039 0.033 0.042 0.035 0.031 0.074

house-votes-84 0.010 0.009 0.014 0.014 0.022 0.024 0.011 0.016 0.026

hungarian 0.017 0.013 0.017 0.018 0.016 0.044 0.016 0.047 0.073

hypothyroid 0.003 0.003 0.004 0.004 0.002 0.003 0.004 0.001 0.003

ionosphere 0.033 0.041 0.043 0.030 0.041 0.036 0.041 0.068 0.053

iris 0.021 0.021 0.021 0.018 0.021 0.021 0.019 0.013 0.015

labor-neg 0.102 0.102 0.102 0.094 0.126 0.109 0.104 0.152 0.123

led 0.046 0.045 0.043 0.044 0.048 0.049 0.050 0.087 0.087

letter-recognition 0.058 0.061 0.083 0.075 0.114 0.086 0.098 0.126 0.063

lung-cancer 0.240 0.240 0.240 0.236 0.240 0.184 0.241 0.291 0.277

mfeat-mor 0.070 0.070 0.072 0.064 0.081 0.075 0.079 0.116 0.119

new-thyroid 0.034 0.034 0.040 0.032 0.034 0.049 0.035 0.059 0.051

pendigits 0.014 0.020 0.026 0.018 0.039 0.030 0.029 0.043 0.012

post-operative 0.065 0.065 0.065 0.060 0.064 0.067 0.078 0.009 0.122

promoters 0.085 0.085 0.085 0.093 0.086 0.177 0.088 0.166 0.145

ptn 0.219 0.210 0.224 0.232 0.215 0.218 0.225 0.284 0.287

satellite 0.025 0.016 0.044 0.030 0.062 0.034 0.025 0.087 0.053

segment 0.026 0.036 0.056 0.036 0.044 0.043 0.034 0.034 0.021

sign 0.041 0.037 0.037 0.028 0.060 0.045 0.061 0.096 0.078

sonar 0.093 0.092 0.096 0.081 0.092 0.122 0.095 0.172 0.145

syncon 0.022 0.022 0.046 0.024 0.022 0.030 0.022 0.123 0.069

ttt 0.068 0.061 0.079 0.081 0.083 0.097 0.094 0.128 0.094

vehicle 0.126 0.126 0.132 0.107 0.134 0.148 0.125 0.176 0.127

wine 0.025 0.024 0.026 0.014 0.024 0.036 0.024 0.101 0.068

Mean 0.063 0.062 0.068 0.061 0.069 0.075 0.068 0.102 0.093

Geo mean ratio 0.980 1.178 0.995 1.131 1.375 1.119 1.735 1.717
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5.1. Error, bias and variance results

Table III presents for each data set the mean error for each algorithm.
Tables IV and V provide the mean bias and variance results respec-
tively. For each algorithm the mean of each measure across all data
sets is also presented. The mean error, bias or variance across multiple
data sets provides at best a very gross measure of relative performance
as it is questionable whether error rates are commensurable across data
sets. The geometric mean ratio is also presented. This is a standardized
measure of relative performance. This is obtained by taking for each
data set the ratio of the performance of the alternative algorithm di-
vided by the performance of AODE. The geometric mean of these ratios
is presented as this is the most appropriate average to apply to ratio
data. A geometric mean ratio greater than 1.0 represents an advantage
to AODE and a value lower than 1.0 represents an advantage to the
alternative algorithm.

We do not apply significance tests to pairwise comparisons of per-
formance on a data set by data set basis, as the 888 (37 data sets × 3
metrics × 8 comparator algorithms) such comparisons would result in
substantial risk of a large number of false positive outcomes. Nor do we
present the standard deviations of the individual error outcomes as the
number of outcomes makes interpretation of such information infeasi-
ble. Rather, we perform a win/draw/loss summary to compare overall
performance of AODE against each other algorithm on each measure.
The results are presented in Table VI. For each pairwise comparison
we present first the number of data sets for which AODE obtained
lower average error than the comparator algorithm, the number for
which the algorithms obtained the same average error, and the num-
ber for which the alternative algorithm obtained lower average error.
The p value is the outcome of a binomial sign test and represents the
probability that AODE would obtain the observed or more extreme
ratio of wins to losses. The p value for NB is one-tailed because a
specific prediction is made about the direction of the result. For all other
algorithms the reported p value is the result of a two-tailed test because
no specific prediction about relative performance has been made. We
assess a difference as significant if p ≤ 0.05. Using only one-tailed or
only two-tailed tests would in each case only change one assessment of
significance, each of which is noted below.

Considering first the error outcomes, AODE achieves the lowest
mean error, its mean error being substantially (0.010 or more) lower
than that of NB, ODE, TAN and J48 and the geometric mean error
ratio showing a substantially (1.10 or greater) advantage with respect
to NB, ODE and J48. The win/draw/loss record indicates a significant
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Table VI. Win/Draw/Loss Records, AODE vs Alternatives

NB ODE Bagged ODE

W/D/L p W/D/L p W/D/L p

Error 22/7/8 0.008 23/10/4 <0.001 19/2/16 0.736

Bias 24/9/4 <0.001 19/8/10 0.136 22/1/14 0.243

Variance 6/15/16 0.026 23/10/4 <0.001 15/0/22 0.324

LBR TAN SP-TAN

W/D/L p W/D/L p W/D/L p

Error 19/6/12 0.281 27/2/8 0.002 23/3/11 0.058

Bias 18/4/15 0.728 13/2/22 0.175 18/3/16 0.864

Variance 19/8/10 0.136 31/4/2 <0.001 25/5/7 0.002

J48 Boosted J48

W/D/L p W/D/L p

Error 25/0/12 0.047 21/0/16 0.511

Bias 15/0/22 0.324 10/0/27 0.008

Variance 33/0/4 <0.001 32/1/4 <0.001

advantage over NB, ODE, TAN and J48. While the mean and geomet-
ric mean ratios might suggest marginal advantage over the remaining
algorithms, the win/draw/loss tables do not reveal any of these to
be statistically significant. Note, however, that a one-tailed p for the
win/draw/loss record with respect to SP-TAN is 0.029, which would
be accepted as significant.

With respect to bias and variance, all measures indicate that AODE
obtains lower bias and higher variance than NB, the win/draw/loss
records being significant in each case. Note, however, that the two-tailed
p for the win/draw/loss record with respect to variance is 0.052, which
is only marginally significant. Compared to LBR, TAN and SP-TAN,
AODE obtains lower mean and geometric mean ratio outcomes for
variance and similar outcomes for bias. Turning to the win/draw/loss
records, the advantage in variance is significant with respect to TAN
and SP-TAN, but not LBR. The win/draw/loss records for bias do not
indicate a significant difference with respect to any of these algorithms.

All measures suggest that AODE has higher bias but lower vari-
ance than J48 and Boosted J48, the win/draw/loss outcomes being
significant in all cases except for bias with respect to J48.

ODE, and bagged ODE were included in the experiments in or-
der to evaluate the interpretation of the power of AODE in terms of
ensembling one-dependence classifiers. Comparing ODE first to NB,
ODE has lower mean error and bias but higher mean variance. The
win/draw/loss records of NB compared to ODE show that the advan-
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tage is not significant (11/7/19, one-tailed p = 0.100) for error but
is significant for bias (21/6/10, one-tailed p = 0.035) and variance
(4/9/24, one-tailed p < 0.001). Bagging ODE can be seen to bring the
error, bias and variance toward that of AODE, lending credibility to
an explanation of the effectiveness of AODE in terms of ensembling
one-dependence estimators.

5.2. Learning curves

Cross data set experimental studies of the traditional form presented
above are of only limited value for gaining deep understanding of the
relative prediction characteristics of alternative algorithms. Demon-
strating a significant benefit for one algorithm across a group of data
sets provides evidence only that the algorithm is likely to perform
better with respect to subsequent data sets with similar characteris-
tics. Unfortunately, however, the science of machine learning has made
little progress in identifying characteristics that are likely to affect
relative classification performance, and hence we have limited ability
to generalize from results on one group of data sets to expected results
on further data. One proposal that has been made is that data set
size interacts with the bias-variance characteristics of an algorithm to
affect prediction performance (Brain & Webb, 2002). In particular, it is
hypothesized that low variance algorithms tend to enjoy an advantage
with small data sets while low bias algorithms tend to enjoy an ad-
vantage with larger data sets. The descriptors ‘small’ and ‘large’ here
are clearly imprecise and impossible to exactly quantify as the rate at
which bias comes to dominate error will depend upon the complexity
of each classification task. Nonetheless, this framework does provide us
with a precise expectation, that for two algorithms one with lower bias
and the other with lower variance, the lower variance algorithm will
exhibit lower error at very small data set sizes and that learning curves
for the algorithms will eventually cross so that at some larger data set
size the low bias algorithm will achieve lower error.

The experiments reported above suggest that AODE, LBR, TAN
and SP-TAN all share similar levels of bias. However, as already noted,
the data sets are primarily small and the bias-variance evaluation pro-
cedure utilizes training sets containing only 25% of each data set. Hence
many of the training sets are quite small. We expect the bias of LBR,
TAN and SP-TAN to decrease as training set sizes increase as more data
will lead to more accurate probability estimates and hence to more
appropriate model selection. Of these three algorithms LBR has the
greatest potential to benefit from increases in the quantity of training
data as it is able to utilize higher order conditional probabilities where
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Table VII. Comparative error, bias and variance for ten largest data
sets

Data AODE NB LBR TAN SP-TAN

Mean error 0.173 0.211 0.180 0.181 0.181

Geo mean error ratio 1.335 1.076 1.110 1.081

Mean bias 0.136 0.174 0.126 0.132 0.133

Geo mean bias ratio 1.440 0.920 1.020 0.990

Mean variance 0.036 0.036 0.053 0.048 0.048

Geo mean variance ratio 1.003 1.408 1.352 1.384

Table VIII. Win/draw/loss records for ten largest data sets

NB LBR TAN SP-TAN

W/D/L p W/D/L p W/D/L p W/D/L p

Error 9/0/1 0.011 6/0/4 0.377 8/0/2 0.055 7/0/3 0.172

Bias 9/0/1 0.011 3/0/7 0.172 3/0/7 0.172 4/0/6 0.377

Variance 3/2/5 0.363 8/1/1 0.020 9/1/0 0.002 9/1/0 0.002

there is sufficient data to obtain accurate estimates thereof. As NB
and AODE do not perform model selection we do not expect their bias
to decrease with increased data in the same manner. In an attempt to
assess these predictions we recalculated the mean, geometric mean ratio
and win/draw/loss records of NB, LBR, TAN and SP-TAN relative to
AODE over the ten largest data sets (those with 1000 or more cases
and hence for which the training sets contained 250 or more cases).
The mean and geometric mean ratios are presented in Table VII and
the win/draw/loss records are presented in Table VIII. All p values are
one-tailed as specific predictions are made. However, in no case would
the use of two-tailed in place of one-tailed tests affect significance at
the 0.05 level. As can be seen, the mean bias over these larger data sets
does favor LBR, TAN and SP-TAN, although with the small number
of data sets the win/draw/loss records are not significant.

If our reasoning about the expected bias profiles of these algorithms
is accepted, it leads to the expectation that naive Bayes should excel
compared to AODE, LBR, TAN and SP-TAN at very small data set
sizes and then as the quantity of data increases AODE should then
come to the fore (with intermediate bias and variance) and then at
even larger data set sizes LBR, TAN and SP-TAN should achieve the
lowest error, with LBR enjoying an advantage for very large data sets.

To assess this expectation we formed learning curves for the largest
data set in our collection, adult, starting with training sets of size 23 and

aode-preprint.tex; 3/05/2004; 11:57; p.17



18 Geoffrey Webb, Janice Boughton, Zhihai Wang

then doubling up to 47104, this particular sequence being contrived to
maximize the final term within the constraint that the final term must
be less than the total data set size. We repeated 50 experiments. For
each experiment 1000 objects were selected at random as a test set and
then successive training sets were sampled from the remaining objects
and each algorithm was evaluated on the resulting training-test set
pairs. The learning curves thereby generated are presented in Figure 1,
with each point representing the mean error over all 50 experiments
and bounded by error bars that delimit one standard deviation from
the mean. Note, due to the large number of comparators, the upper
bound of each error bar is indicated by ∨ and the lower bound by ∧,
with the point of the arrow in each case resting on the bound.

At the smallest training set size AODE defaults to NB and shares
equal error lower than TAN and SP-TAN and marginally lower than
LBR. At the next two larger sizes there is little separation between the
error of NB, AODE, LBR and SP-TAN, all of which have substantially
lower error than TAN. At the fourth and fifth training set sizes AODE
comes to the fore with error more than one standard error below the
next best algorithm. LBR, TAN and SP-TAN then come to overtake
AODE, with LBR attaining error that is one standard error below the
next closest algorithm at data set sizes 2944 and 47104 and LBR and
TAN both exhibiting similar low error rates at the data set sizes in
between.

These learning curves correspond well to our predictions, with AODE
achieving lower error than NB, LBR, TAN and SP-TAN at intermediate
data set sizes but being overtaken by LBR and TAN at larger data set
sizes.

5.3. Compute time results

Tables IX and X present summaries of the average CPU time in sec-
onds for each of AODE, NB, LBR, TAN and SP-TAN on each task,
broken down into training time and test time. Note that the Weka
bias-variance evaluation method results in the use of test sets that
are twice the size of the training sets, and hence that the test time is
greatly amplified compared with most alternative evaluation methods.
Note further that both training and test times include a substantial
overhead for discretization. It should also be emphasized that there
may be differences in the efficiency of the various implementations,
and hence that specific timing results should be regarded at best as
broadly indicative. Importantly, the implementation of LBR does not
include caching that can very substantially reduce classification time
(Zheng & Webb, 2000).
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Figure 1. Learning curves on adult data set
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Table IX. Training time

AODE NB LBR TAN SP-TAN

Mean 4.42 3.41 4.72 8.60 557.45

Geo mean 0.79 0.97 1.96 17.73

Wins 11 19 30 35

Losses 25 17 3 2

p 0.029 0.868 <0.001 <0.001

Table X. Testing time

AODE NB LBR TAN SP-TAN

Mean 22.80 2.92 85648.39 3.17 2.04

Geo mean 0.41 156.37 0.39 0.32

Wins 6 30 4 2

Losses 30 7 32 34

p <0.001 <0.001 <0.001 <0.001

The first row of these tables presents the mean time across all data
sets. The next row presents the geometric mean across all data sets of
the ratio obtained by dividing the training or test time on a data set
for the alternative algorithm by that of AODE. A value less than 1.0
indicates that AODE tends to be slower than the alternative while a
value greater than 1.0 indicates that AODE tends to be faster. The
next row presents the number of data sets for which AODE obtained
lower compute time than the alternative algorithm and the final row the
number of data sets for which the time for AODE was higher. The final
row presents the outcome of a two-tailed binomial sign test presenting
the probability that the observed or more extreme record of wins and
losses would be obtained if wins and losses were equiprobable.

Comparing AODE to NB, all measures indicate that AODE is slower
than NB, being slightly slower at training time and substantially slower
at test time. Note that while AODE scores a number of wins over NB,
particularly with respect to training time, these are very marginal and
represent data sets with small numbers of attributes for which the
difference in compute time between the two algorithms is so small that
random variations in the compute time dominate the result.

Comparing AODE to LBR, there is little difference between the
compute times of the algorithms at training time. In contrast there is
a very clear and substantial advantage to AODE at test time.
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This profile is reversed when AODE is compared to TAN. AODE
has a consistent advantage over TAN at training time and a consistent
and substantial disadvantage at test time.

AODE enjoys an even greater advantage at training time compared
to SP-TAN, while the suffering the same test-time disadvantage as for
TAN.

6. Conclusion

Naive Bayes delivers fast and effective classification with a clear the-
oretical foundation. It is hampered, however, by the limitations of
the attribute independence assumption. The current work is moti-
vated by the desire to obtain the accuracy improvements derived by
LBR and SP-TAN from weakening the attribute independence assump-
tion without those techniques’ high computational overheads. Our new
classification technique averages all models from a restricted class of
one-dependence classifiers, the class of all such classifiers that have all
other attributes depend on a common attribute and the class. Our
experiments suggest that the resulting classifiers have substantially
lower bias than naive Bayes at the cost of a very small increase in
variance. AODE appears to deliver lower variance but higher bias than
LBR, TAN, SP-TAN, a decision tree learner and a boosted decision tree
learner. This error profile is achieved without the prohibitive training
time of SP-TAN or test time of LBR. In all, we believe that we have
been successful in our goal of developing a classification learning tech-
nique that retains the simplicity and direct theoretical foundation of
naive Bayes while alleviating the limitations of its attribute indepen-
dence assumption without incurring the same order of computational
overhead as LBR and SP-TAN. AODE is particularly suited to incre-
mental learning. Its low variance leads to an expectation of relatively
low error for small data sets. Its low training time complexity may be
computationally desirable when learning from large data sets.

The success of this approach suggests that it might be profitable
to explore approaches to aggregating all of other restricted classes of
models, as this strategy avoids model selection and hence minimizes
variance, allowing the favorable bias of a low bias class of models to be
exploited while reducing the high variance with which low bias is often
accompanied.

aode-preprint.tex; 3/05/2004; 11:57; p.21



22 Geoffrey Webb, Janice Boughton, Zhihai Wang

Acknowledgements

We are very grateful to Fei Zheng and Shane Butler for valuable com-
ments on drafts of this paper. We are indebted to our action editor
Tom Fawcett and the anonymous reviewers for valuable feedback and
suggestions that greatly improved the paper.

References

Ali, K., Brunk, C., & Pazzani, M. (1994). On learning multiple de-
scriptions of a concept. In Proceedings of Tools with Artificial
Intelligence, pp. 476–483 New Orleans, LA.

Brain, D., & Webb, G. I. (2002). The need for low bias algorithms
in classification learning from large data sets. In Proceedings of
the Sixth European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD 2002), pp. 62–73 Berlin. Springer-
Verlag.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–
140.

Domingos, P., & Pazzani, M. (1996). Beyond independence: Conditions
for the optimality of the simple Bayesian classifier. In Proceedings
of the Thirteenth International Conference on Machine Learning,
pp. 105–112. Morgan Kaufmann.

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretiza-
tion of continuous-valued attributes for classification learning.
In Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence (IJCAI-93), pp. 1022–1027. Morgan
Kaufmann.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal
of Computer and System Sciences, 55 (1), 119–139.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network
classifiers. Machine Learning, 29 (2), 131–163.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements
of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, New York.

aode-preprint.tex; 3/05/2004; 11:57; p.22



Not so naive Bayes 23

Keogh, E., & Pazzani, M. (1999). Learning augmented Bayesian classi-
fiers: A comparison of distribution-based and classification-based
approaches. In Proceedings of the International Workshop on
Artificial Intelligence and Statistics, pp. 225–230.

Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition
for zero-one loss functions. In Proceedings of the Thirteenth In-
ternational Conference on Machine Learning, pp. 275–283 San
Francisco. Morgan Kaufmann.

Kohavi, R. (1996). Scaling up the accuracy of naive-Bayes classi-
fiers: A decision-tree hybrid. In Proceedings of the Second ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-96), pp. 202–207 Portland, Or.

Kononenko, I. (1991). Semi-naive Bayesian classifier. In Proceedings
of the Sixth European Working Session on Learning, pp. 206–219
Berlin. Springer-Verlag.

Langley, P. (1993). Induction of recursive Bayesian classifiers. In Pro-
ceedings of the 1993 European Conference on Machine Learning,
pp. 153–164 Berlin. Springer-Verlag.

Langley, P., & Sage, S. (1994). Induction of selective Bayesian classi-
fiers. In Proceedings of the Tenth Conference on Uncertainty in
Artificial Intelligence, pp. 399–406. Morgan Kaufmann.

Nock, R., & Gascuel, O. (1995). On learning decision committees. In
Proceedings of the Twelfth International Conference on Machine
Learning, pp. 413–420 San Francisco. Morgan Kaufmann.

Oliver, J. J., & Hand, D. J. (1995). On pruning and averaging
decision trees. In Proceedings of the Twelfth International Con-
ference on Machine Learning, pp. 430–437 San Francisco. Morgan
Kaufmann.

Pazzani, M. J. (1996). Constructive induction of Cartesian product
attributes. In ISIS: Information, Statistics and Induction in
Science, pp. 66–77 Singapore. World Scientific.

Sahami, M. (1996). Learning limited dependence Bayesian classifiers. In
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, pp. 334–338 Menlo Park, CA. AAAI
Press.

aode-preprint.tex; 3/05/2004; 11:57; p.23



24 Geoffrey Webb, Janice Boughton, Zhihai Wang

Singh, M., & Provan, G. M. (1996). Efficient learning of selective
Bayesian network classifiers. In Proceedings of the Thirteenth
International Conference on Machine Learning, pp. 453–461 San
Francisco. Morgan Kaufmann.

Wang, Z., & Webb, G. I. (2002). Comparison of lazy Bayesian rule and
tree-augmented Bayesian learning. In Proceedings of the IEEE
International Conference on Data Mining, ICDM-2002, pp. 775–
778 Maebashi, Japan.

Webb, G. I. (2001). Candidate elimination criteria for Lazy Bayesian
Rules. In Proceedings of the Fourteenth Australian Joint Confer-
ence on Artificial Intelligence, pp. 545–556 Berlin. Springer.

Webb, G. I., & Pazzani, M. J. (1998). Adjusted probability naive
Bayesian induction. In Proceedings of the Eleventh Australian
Joint Conference on Artificial Intelligence, pp. 285–295 Berlin.
Springer.

Witten, I. H., & Frank, E. (2000). Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, San Francisco, CA.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5,
241–259.

Xie, Z., Hsu, W., Liu, Z., & Lee, M. L. (2002). SNNB: A selective
neighborhood based naive Bayes for lazy learning. In Chen, M.-
S., Yu, P. S., & Liu, B. (Eds.), Advances in Knowledge Discovery
and Data Mining, Proceedings PAKDD 2002, pp. 104–114 Berlin.
Springer.

Yang, Y., & Webb, G. I. (2003). Discretization for naive-Bayes learning:
Managing discretization bias and variance. Tech. rep. 2003/131,
School of Computer Science and Software Engineering, Monash
University.

Zheng, Z., & Webb, G. I. (2000). Lazy learning of Bayesian Rules.
Machine Learning, 41 (1), 53–84.

Zheng, Z., Webb, G. I., & Ting, K. M. (1999). Lazy Bayesian Rules:
A lazy semi-naive Bayesian learning technique competitive to
boosting decision trees. In Proceedings of the Sixteenth Interna-
tional Conference on Machine Learning (ICML-99), pp. 493–502.
Morgan Kaufmann.

aode-preprint.tex; 3/05/2004; 11:57; p.24


