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The importance of nomenclature, notation, and 

language as tools of thought has long been recog- 

nized. In chemistry and in botany, for example, 

the establishment of systems of nomenclature by 

Lavoisier and Linnaeus did much to stimulate and 

to channel later investigation. Concerning lan- 

guage, George Boole in his Laws off Thought  

[ 1, p.2"43 asserted "Tha t  language is an instru- 

ment of human reason,, and not merely a medium 

for the expression of thought, is a t ruth  generally 

admitted." 

Mathematical  notation provides perhaps the 

best-known and best-developed example of lan- 

guage used consciously as a tool of thought. Recog- 

nition of the important role of notation in mathe- 

matics is clear from the quotations from mathema- 

ticians given in Cajori ' s A His tory  of  Mathemat -  

ical Nota t ions  [2, pp.332,3313. They are well 

worth reading in full, but the following excerpts 

suggest the tone: 

By relieving the brain of all unnecessary work, 

a good notation sets it free to concentrate on 

more advanced problems, and in effect increases 

the mental power of the race. 
A.N. Whitehead 
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The quanti ty of meaning compressed into small 

space by algebraic signs, is another  circum- 

stance that  facil i tates the reasonings we are 

accustomed to carry on by their  aid. 

Charles Babbage 

Nevertheless, mathematical  notat ion has seri- 

ous deficiencies. In particular, it lacks universali- 

ty, and must be interpreted differently according 

to the topic, according to the author,  and even 

according to the immediate context. Programming 

languages, because they were designed for the pur- 

pose of directing computers, offer important  ad- 

vantages as tools of thought. Not only are they 

universal (general-purpose), but they are also exec- 

utable and unambiguous. Executabil i ty makes it 

possible to use computers to perform extensive 

experiments on ideas expressed in a programming 

language, and the lack of ambiguity makes possible 

precise thought  experiments. In other  respects, 

however, most programming languages are decided- 

ly inferior to mathematical  notation and are little 

used as tools of thought  in ways that  would be 

considered significant by, say, an applied mathe- 

matician. 

The thesis of the present paper is that  the ad- 

vantages of executabili ty and universality found in 

programming languages can be effectively com- 

bined, in a single coherent language, with the ad- 

vantages offered by mathematical  notation. It is 

developed in four stages: 

(a)Section 1 identifies salient characteristics of 

mathemat ical  notat ion and uses simple prob- 

lems to illustrate how these characteristics may 

be provided in an executable notation. 

(b)Sections 2 and 3 continue this i l lustration by 

deeper t rea tment  of a set of topics chosen for 

their  general interest  and uti l i ty.  Section 2 

concerns polynomials, and Section 3 concerns 

t ransformations between representations of 

functions relevant to a number of topics, includ- 

ing permutat ions and directed graphs. Al- 

though these topics might be characterized as 

mathematical ,  they are directly relevant  to 

computer programming, and thei r  relevance 

will increase as programming continues to de- 

velop into a legitimate mathematical  discipline. 

(c)Section 4 provides examples of identi t ies and 

formal proofs. Many of these formal proofs 

concern identit ies established informally and 

used in preceeding sections. 

(d)The concluding section provides some general 

comparisons with mathematical  notation, refer- 

ences to t reatments  of other topics, and discus- 

sion of the problem of introducing notation in 

context. 
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The executable language to be used is APL, a 

general purpose language which originated in an 

at tempt  to provide clear and precise expression in 

writing and teaching, and which was implemented 

as a programming language only after several years 

of use and development [ 3 ]. 

Although many readers will be unfamiliar with 

APL, I have chosen not to provide a separate intro- 

duction to it, but ra ther  to introduce it in context 

as needed. Mathematical  notation is always intro- 

duced in this way rather  than being taught, as pro- 

gramming languages commonly are, in a separate 

course. Notat ion suited as a tool of thought  in any 

topic should permit  easy introduction in the con- 

text of tha t  topic; one advantage of introducing 

APL in context here is tha t  the reader may assess 

the relative difficulty of such introduction. 

However, introduction in context is incompati- 

ble with complete discussion of all nuances of each 

bit of notation, and the reader must be prepared to 

e i ther  extend the definit ions in obvious and sys- 

tematic ways as required in later uses, or to con- 

sult a reference work. All of the notat ion used 

here is summarized in Appendix A, and is covered 

fully in pages 24-60 of A P L  Language [ 4 ]. 

Readers having access to some machine embodi- 

ment of APL may wish to translate the function 

definitions given here in direct def ini t ion form 

[5, p.10] (using ~ and ~ to represent the left and 

right arguments) to the canonical form required 

for execution. A function for performing this 

translation automatically is given in Appendix B. 

1. I m p o r t a n t  C h a r a c t e r i s t i c s  o f  N o t a t i o n  

In addition to the executability and universali- 

ty emphasized in the introduction, a good notation 

should embody characteristics familiar to any user 

of mathematical  notation: 

oEase of expressing constructs arising in problems. 

o Suggestivity. 

°Ability to subordinate detail. 

°Economy. 

°Amenability to formal proofs. 

The foregoing is not intended as an exhaustive list, 

but will be used to shape the subsequent discus- 

sion. 

Unambiguous executability of the notation in- 

troduced remains important, and will be emphasiz- 

ed by displaying below an expression the explicit 

result produced by it. To maintain the distinction 

between expressions and results, the expressions 

will be indented as they automatically are on APL 

computers. For example, the integer function de- 

noted by ~ produces a vector of the first ~ integers 
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when appl ied to the  a r g u m e n t  ~, and the  sum 

reduction denoted by . /  produces the  sum of the  

e lements  of its vec tor  a rgument ,  and will be shown 

as follows: 

15 

1 2 3 ~ 5 

* / , 5  

15 

We will use one non-execu tab l e  b i t  of no t a t i on :  

the symbol  ** appear ing  be tween  two expressions 

asserts  the i r  equivalance.  

1.1 Ease  o f  E x p r e s s i n g  Constructs  Aris ing  in 

Prob lems  

If  it is to be effect ive  as a tool of thought ,  a 

no ta t ion  mus t  al low convenien t  expression not  only 

of not ions  ar is ing  d i rec t ly  f r o m  a problem,  but  also 

of those ar is ing in subsequent  analysis,  general iza-  

t ion, and special izat ion.  

Consider ,  for  example ,  the  c rys ta l  s t r u c t u r e  

i l lus t ra ted  by Figure  1, in which  successive layers  

of a t o m s  lie not  d i rec t ly  on top of one another ,  bu t  

lie "c lose-packed"  be tween  those below them.  T h e  

n u m b e r s  of a t o m s  in successive rows f rom the top 

in F igure  1 are the re fo re  given by , s, and the  to ta l  

n u m b e r  is given by +/~5. 

T h e  th ree -d imens iona l  s t ruc tu re  of such a crys- 

tal  is also c lose-packed;  the  a t o m s  in the  plane 

lying above Figure  1 would lie be tween the  a toms  

in the  plane below it, and would have  a base row of 

four  a toms .  T h e  comple t e  t h r e e - d i m e n s i o n a l  

s t ruc tu re  corresponding to F igure  1 is the re fo re  a 

t e t r a h e d r o n  whose planes have  bases of lengths  1, 2, 

3, 4, and 5. T h e  number s  in successive planes are 

the re fo re  the  p a r t i a l  sums  of the  vec tor  ,5, t h a t  

is, the  sum of the  f i r s t  e l ement ,  the  sum of the  

f i r s t  two e lements ,  etc. Such pa r t i a l  sums  of a 

vec tor  v are denoted  by , \v,  the  func t ion  , \  being 

called sum scan. Thus :  

+ \ t 5  

1 3 6 10 15 

+ / + \ t 5  

35 

T h e  f inal  expression gives the  to ta l  n u m b e r  of at-  

oms in the  t e t r ahedron .  

T h e  sum , / , s  can be represen ted  graphica l ly  in 

o the r  ways, such as shown on the  lef t  of F igure  2. 

Combined  wi th  the  inver ted  pa t t e rn  on the  r ight ,  

th is  r ep resen ta t ion  suggests t h a t  the  sum m a y  be 

s imply  re la ted  to the  n u m b e r  of uni t s  in a rec tan-  

gle, t h a t  is, to a product .  

T h e  lengths  of the  rows of the  f igure fo rmed  by 

pushing  toge the r  the  two par t s  of F igure  2 are  giv- 

en by adding the  vec tor  is to the  same vec tor  rev-  

ersed. Thus :  

t66 

1 2 3 4 5 

5 4 3 2 1 

( ~ 5 ) + ( ¢ ~ 5 )  

66 6 66 6 6 

Fig. 1. Fig. 2. 

o 0 O00DO 

o o O0  O00O 

o o o BOO BOO 

o o o o BOO0 O0 

o o o o o OOO00 O 

Thi s  pa t t e rn  of s r epe t i t ions  of 66 m a y  be expressed 

as s~66, and we have:  

5p6 

6 6 6 6  6 

+ / 5 p 6  

3O 

6x5  

3O 

T h e  fact  t h a t  ./5p6 ** 66×5 follows f r o m  the  def ini-  

t ion of mu l t i p l i ca t i on  as r epea ted  addi t ion.  

T h e  foregoing suggests t h a t  . / , 5  ** ¢66x5)÷2, and, 

more  general ly,  t ha t :  

+ I t N  *÷ ((N+i)xN)÷2 A.1 

1.2 Sugges t iv i ty  

A no ta t ion  will be said to be suggestive if the  

fo rms  of the  expressions ar is ing  in one set  of prob-  

lems suggest re la ted  expressions which  find appli-  

cat ion in o the r  problems.  We will now consider  

re la ted  uses of the  funct ions  in t roduced  thus  far,  

namely :  

• L ¢ p +/ + \  

T h e  e x a m p l e :  

5p2 

2 2 2 2 2 

x / 5 p 2  

32 

suggests t h a t  x/Mp~ +, ~.M, where  . represen ts  the  

power  funct ion.  T h e  s imi l i a r i t y  be tween  the  defi-  

n i t ions  of power  in t e r m s  of t imes,  and of t imes  in 

t e r m s  of plus m a y  t h e r e f o r e  be exh ib i t ed  as fol- 

lows: 

x/MoN ÷-* N*M 

+/MpN ÷ +  NxM 

Simi l a r  express ions  for  pa r t i a l  sums  and pa r t i a l  

products  m a y  be developed as follows: 

× \ 5 0 2  

2 4 8 16 32 

2 " 1 5  

2 4 8 16 32 

x\MpN 4--* N*tM 

+\MpN ~ - - ~  NxtM 

Because t hey  can be represen ted  by a t r iangle  as 

in F igure  1, the  sums  , \ , 5  are cal led t r iangu lar  

numbers .  T h e y  are a special  case of the  f i gura t e  

number s  ob ta ined  by repea ted  appl ica t ions  of sum 

scan, beg inn ing  e i t h e r  w i th  , \ ,~ ,  or w i th  +x~01. 

Thus :  

5 p l  + \ + \ 5 p l  

1 1 1 1 1 1 3 6 1 0  15 

+ \ 5 p l  + \ + \ + \ 5 p l  

1 2 3 q 5 1 q 10 20 35 
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Replacing sums over the successive integers by 

products  yields the factorials as follows: 

15 
1 2 3 4 5 

x / 1 5  x \ 1 5  

1 2 0  1 2 6 2 4  3,20 

15 ! t 5  
120 1 2 6 2 4  1 2 0  

Par t  of the suggestive power of a language re- 

sides in the abi l i ty  to represent identi t ies in brief, 

general, and easily r emembered  forms. We will 

i l lustrate this  by expressing dua l i t i e s  between 

funct ions in a form which embraces D e M o r g a n ' s  

laws, mul t ip l icat ion by the use of logari thms,  and 

other  less famil iar  identities. 

If  v is a vector  of posit ive numbers ,  then  the 

product  ×/v may be obtained by taking the natura l  

logar i thms of each e lement  of v (denoted by ®v), 

summing  them (+ / ® v), and  applying the exponential  

funct ion (,+/®v). Thus :  

x / V  ÷ ÷  * + / ® V  

Since the exponential  funct ion * is the inverse of 

the natura l  logar i thm ®, the general form suggested 

by the r ight  side of the ident i ty  is: 

IG F/G V 

where ±e is the funct ion inverse to c. 

Using ^ and ~ to denote the funct ions and  and 

or, and ~ to denote  the self-inverse func t ion  of 

logical negation, we may express DeMorgan  ' s laws 

for an a rb i t r a ry  number  of elements  by: 

^ / B  ÷ ÷  ~ v l ~ B  

v l B  ÷ +  ~ ^ I ~ B  

The elements  of B are, of course, restr icted to the 

boolean values 0 and ~. Using the relat ion symbols 

to denote f u n c t i o n s  (for example, x<z yields 3, if x 

is less than  y and 0 otherwise)  we can express fur- 

ther  dualities, such as: 

~IB ÷÷ ~=I~B 

= / B  ÷ +  ~ ~ / ~ B  

Finally,  using r and t to denote the m a x i m u m  

and m i n i m u m  funct ions,  we can express dual i t ies  

which involve a r i thme t i c  negat ion:  

F / W  ÷ ~  - L / - F  

L I V  ÷ +  -r/-v 

I t  may also be noted t ha t  scan (E\) may replace 

reduct ion (F/) in any of the foregoing dualities. 

1.3 S u b o r d i n a t i o n  o f  D e t a i l  

As Babbage r emarked  in the passage cited by 

Cajori ,  b rev i ty  faci l i ta tes  reasoning.  Brev i ty  is 

achieved by subordinat ing detail, and we will here 

consider three impor tan t  ways of doing this:  the 

use of arrays, the assignment  of names to funct ions 

and variables, and the use of operators.  

We have already seen examples of the brevi ty  
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provided by one-d imens ional  a r rays  (vectors)  in 

the t r e a t m e n t  of dual i ty ,  and fu r the r  subordina-  

t ion  is provided by mat r ices  and o ther  ar rays  of 

h igher  rank, since funct ions defined on vectors  are 

extended sys temat ica l ly  to arrays  of h igher  rank. 

In part icular ,  one may specify the axis to which 

a funct ion applies. For  example, ¢E3,1M acts along 

the first axis of a matr ix  M to reverse each of the 

columns, and ¢ E 2 ~ reverses each row; M, ~ 3, ] ~ cateR- 

ates columns (placing M above ~), and ~, E21n caten- 

ates rows; and +/[3,~M sums columns and +/[2]M 

sums rows. If  no axis is specified, the func t ion  

applies along the last axis. Thus  +/M sums rows. 

Final ly,  reduc t ion  and scan along the f i r s t  axis 

may be denoted by the symbols / and ~. 

Two uses of names  may be d is t inguished:  

c o n s t a n t  names  which  have fixed referents  are 

used for ent i t ies  of very general ut i l i ty ,  and ad hoc 

names are assigned (by means of the symbol ÷) to 

quant i t ies  of interest  in a narrower  context. For  

example, the constant  (name) ~4. has a fixed refer- 

ent, but  the names CRATE, LAYER, and ROW assigned by 

the expressions 

CRATE 4- 144 

LAYER + CRATE÷8 

ROW ÷ LAYER÷3 

are ad hoc, or var iable  names. Constant  names for 

vectors are also provided, as in 2 3 s 7 11 for a nu- 

meric vector  of five elements,  and in 'ABCDE' for a 

character  vector  of five elements. 

Analogous dist inct ions are made in the names 

of functions. Constant  names such as +, ×, and * 

are assigned to so-called p r i m i t i v e  funct ions  of 

general ut i l i ty.  The  detailed definitions, such as 

+/Mp~ for N×M and ./Mp~ for ~.M, are subordinated  by 

the constant  names × and .. 

Less fami l ia r  examples of cons tant  func t ion  

names are provided by the comma which ca t ena t e s  

its a rguments  as i l lustrated by: 

( t 5 ) , ( ~ 5 )  ~ ÷  3, 2 3 4 5 5 q 3 2 3, 

and by the base - represen ta t ion  funct ion T, which 

produces a representat ion of its r ight  a rgument  in 

the radix specified by its left argument .  For exam- 

ple : 

2 2 2 T 3 + ~  0 1 3, 

2 2 2 T 4 ÷~ 1 0 0 

B N ÷ 2  2 2 T 0 1 2 3 4 5 6 77 

BN 

0 0 0 0 1 1 i 1 

0 0 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 

BN,~BN 

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 

0 1 0 1 0 1 0 1 1 0 3. 0 1 0 1 0 

The  matr ix  s~ is an impor tan t  one, since it can be 

viewed in several ways. In addi t ion to representing 

the binary numbers,  the columns represent  all sub- 

sets of a set of three elements,  as well as the en- 
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tries in a t ru th  table for three boolean arguments .  

The general expression for N elements is easily seen 

to be (N02)T(12*~)-l, and we may wish to assign an 

ad hoc name to this  funct ion.  Using the direct  

def ini t ion form (Appendix B), the name z is as- 

signed to this funct ion as follows: 

T . : ( W p 2 ) T (  ~ 2 " ~ ) - 2  A.2 

The symbol ~ represents the a rgument  of the func- 

tion; in the case of two arguments  the left is repre- 

sented by ~. Fol lowing such a def in i t ion  of the 

funct ion  z, the expression _T 3 yields the boolean 

matr ix BN shown above. 

Three  expressions, separated by colons, are also 

used to define a funct ion  as follows: the middle 

expression is executed first; if its value is zero the 

first  expression is executed, if not, the last expres- 

sion is executed. This  form is convenient  for re- 

cursive definit ions,  in which the funct ion is used 

in its own defini t ion.  For  example, a func t ion  

which  produces b inomia l  coeff icients  of an order  

specified by its a r g u m e n t  may be defined recur-  

sively as follows: 

BC:(X,O)+(O°X÷BC ~-I):~-0:1 A.3 

T h u s ~ c  o+~ l a n d B c  1 ÷ .  1 l a n d  Bc 4 ÷ ,  1 4 6 4 1. 

The  t e rm o p e r a t o r ,  used in the s t r ic t  sense 

defined in m a t h e m a t i c s  r a the r  than  loosely as a 

s y n o n y m  for f u n c t i o n ,  refers  to an en t i t y  which  

applies to funct ions to produce functions;  an exam- 

ple is the der ivat ive operator.  

We have already met  two operators,  r e d u c t i o n ,  

and s c a n ,  denoted by / and \, and seen how they  

cont r ibute  to brevi ty  by applying to different  func- 

t ions to produce families of related funct ions such 

as , /  and ×/ and ^/. We will now il lustrate the 

not ion  fu r the r  by in t roduc ing  the i n n e r  p r o d u c t  

operator  denoted by a period. A funct ion (such as 

, / )  p roduced by an opera tor  will be called a 

d e r i v e d  function.  

If P and Q are two vectors, then the inner prod- 

uct  ,.× is defined by: 

p + . x Q  ÷ ÷  + / p x Q  

and analogous def in i t ions  hold for func t ion  pairs 

o ther  than  • and ×. For  example:  

P ÷ 2  3 5 

Q ~ 2  1 2 
p + . x Q  

17 

P × . * Q  

3 0 0  

P L . + Q  
q 

Each  of the foregoing expressions has at  least 

one useful in te rpre ta t ion:  p,.xQ is the total  cost of 

order quant i t ies  Q for i tems whose prices are given 

by P; because P is a vector  of primes, P×.*Q is the 

number  whose prime decomposi t ion is given by the 

exponents Q; and if P gives distances f rom a source 
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to t r ansh ipment  points and Q gives distances f rom 

the t r an sh ipmen t  points  to the dest inat ion,  then 

PL. ÷Q gives the m i n i m u m  distance possible. 

The  funct ion ..× is equivalent  to the inner product  

or dot product  of mathemat ics ,  and is extended to 

matr ices  as in mathemat ics .  Other cases such as 

×., are extended analogously. For  example, if _r is 

the funct ion defined by A.2, then:  

3 

0 0 0 0 1 1 1 1 

0 0 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 

p + . x T  3 P x . * T  3 

0 5 3 8 2 7 5 10  1 5 3 1 5  2 1 0  6 3 0  

These examples bring out  an impor tan t  point:  if 

B is boolean, then P,. xB produces sums over subsets 

of g specified by 1 ' s  in s, and px.,s produces prod- 

ucts over subsets. 

The  phrase o.× is a special use of the  inner 

product  opera tor  to produce a der ived func t ion  

which yields products  of each e lement  of its left 

a rgument  wi th  each e lement  of its right.  For  ex- 

ample : 

2 3 5o . x 1 5  

2 4 6 8 1 0  

3 6 9 1 2  15  

5 1 0  1 5  20  25  

The  funct ion o.× is called o u t e r  p r o d u c t ,  as it 

is in tensor analysis, and funct ions such as o.. and 

o., and o.< are defined analogously,  p roducing  

"funct ion  tables" for the par t icular  functions.  For  

example:  

D ÷ 0 1 2 3  

D o . [ D  D o . 2 D  D o . ! D  

0 1 2 3  1 0 0 0  1 1 1 1  

1 1 2 3  1 1 0 0  0 1 2 3  

2 2 2 3  1 1 1 0  0 0 1 3  

3 3 3 3  1 1 1 1  0 0 0 1  

The  symbol  : denotes the binomial  coefficient  

funct ion,  and the table 0o..,0 is seen to conta in  

P a s c a l ' s  tr iangle wi th  its apex at  the left; if ex- 

tended to negative a rguments  (as with D+-3 -2 -1 0 1 

2 3) it will be seen to contain the tr iangular  and higher-  

order f igurate numbers  as well. This  extension to 

negat ive  a rgumen t s  is in teres t ing  for o the r  func- 

tions as well. For  example, the table Do.×D consists 

of four quadrants  separated by a row and a column 

of zeros, the quadrants  showing clearly the rule of 

signs for mult ipl icat ion.  

Pa t te rns  in these funct ion tables exhibi t  o ther  

proper t ies  of the funct ions,  a l lowing brief  s tate-  

ments  of proofs by exhaustion.  For  example, com- 

mu ta t i v i t y  appears as a s y m m e t r y  about  the diago- 

nal. More precisely, if the result  of the transpose 

funct ion ~ (which reverses the order of the axes of 

its a rgument )  applied to a table ~+Do.rD agrees with 

T, then the funct ion f is commuta t i ve  on the do- 

main. For  example, T:~r÷oo.ro produces a table of 

1 ' s because r is commuta t ive .  
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Correspond ing  tes ts  of a s s oc i a t i v i t y  requ i re  

r ank  3 tables  of the  fo rm Do.f(~o.fD) and (Do.rD)o.rD. 

For  example  : 

DuO 1 
D O . A ( D o . ^ D )  ( D o . ^ D ) o . ^ D  D o . ~ ( D o . ~ D )  ( D o . ~ D ) o . ~ D  

O0 O0 1 1  0 1  

O0 O0 1 1  0 1  

O 0  O 0  1 1  1 1  

0 1  O 1  O 1  0 1  

1.4 E c o n o m y  

T h e  u t i l i ty  of a language as a tool of t h o u g h t  

increases wi th  the  range of topics it  can t rea t ,  bu t  

decreases wi th  the  a m o u n t  of vocabu la ry  and the 

complex i t y  of g r a m m a t i c a l  rules  which  the  user  

mus t  keep in mind.  E c o n o m y  of no ta t ion  is there-  

fore impor tan t .  

E c o n o m y  requires  t h a t  a large n u m b e r  of ideas 

be expressible in t e rms  of a re la t ive ly  small  vocab-  

ulary.  A f u n d a m e n t a l  scheme for achiev ing  this  is 

the  i n t roduc t i on  of g r a m m a t i c a l  rules  by which  

meaningfu l  phrases  and sentences  can be const ruct -  

ed by combin ing  e l emen t s  of the  vocabulary .  

T h i s  s cheme  m a y  be i l lu s t r a t ed  by the  f i r s t  

example  t r ea t ed  -- the  re la t ive ly  s imple  and widely 

useful  not ion of the  sum of the  f i rs t  N integers  was 

not  in t roduced  as a p r imi t ive ,  bu t  as a phrase  con- 

s t ruc t ed  f r o m  two more  genera l ly  useful  not ions,  

the  func t ion  , for  the  p roduc t ion  of a vec to r  of 

integers,  and the  funct ion  . /  for the  s u m m a t i o n  of 

the  e lements  of a vector .  Moreover ,  the  der ived 

funct ion  . /  is i tself  a phrase,  s u m m a t i o n  being a 

der ived funct ion  cons t ruc ted  f rom the more  gener- 

al no t ion  of the  r educ t ion  ope ra to r  appl ied  to a 

pa r t i cu la r  funct ion.  

E c o n o m y  is also ach ieved  by genera l i ty  in the  

funct ions  introduced.  For  example ,  the  def in i t ion  

of the  fac to r ia l  func t ion  deno ted  by : is not  re- 

s t r ic ted  to integers,  and the  g a m m a  funct ion  of x 

may  the re fo re  be wr i t t en  as :x-a. S imi l ia r ly ,  the  

re la t i ons  def ined  on all real  a r g u m e n t s  p rov ide  

several  i m p o r t a n t  logical funct ions  when appl ied to 

boolean a rgument s :  exclusive-or  ( . ) ,  ma te r i a l  im- 

pl ica t ion ( ~ ), and equivalence  ( : ). 

T h e  economy achieved  for the  m a t t e r s  t r ea t ed  

thus  far  can be assessed by recal l ing the  vocabu la ry  

in t roduced:  

1 0 ~ T 
/ \ 

+ - x ÷ * ® ! [ t ~  
v ^ ~ < _ < : 2 > ~  

T h e  five funct ions  and th ree  opera tors  l isted in the  

f i rs t  two rows are of p r i m a r y  interest ,  the  r ema in -  

ing f a m i l i a r  func t ions  hav i ng  been in t roduced  to 

i l lus t ra te  the  ve r sa t i l i t y  of the operators .  

A s ignif icant  economy of symbols ,  as opposed to 

economy of funct ions,  is a t t a ined  by al lowing any 

symbol  to represen t  both  a m o n a d i c  func t ion  (i.e. 
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a func t ion  of one a r g u m e n t )  and a d y a d i c  func- 

t ion, in the same manne r  t h a t  the  minus  sign is 

c o m m o n l y  used for bo th  sub t r ac t ion  and negat ion.  

Because the  two funct ions  represen ted  may,  as in 

the  case of the  minus  sign, be related,  the  burden  

of r e m e m b e r i n g  symbols  is eased. 

For  example ,  x.y and .y r ep resen t  power  and 

exponent ia l ,  x®r and ®y represen t  base x l oga r i t hm 

and na tu ra l  logar i thm,  x÷y and ÷~ represen t  divi-  

sion and reciprocal ,  and x:y and :y r ep resen t  the  

b inomia l  coef f ic ien t  func t ion  and the  fac to r ia l  

( t ha t  is, x.,~+( ,.~)÷( :x)×(:z-x)) .  T h e  symbol  ~ used 

for the  dyad ic  func t ion  of r ep l i ca t ion  also repre-  

sents  a monad ic  funct ion  which  gives the  shape of 

the  a r g u m e n t  ( tha t  is, x÷+ox~), the  symbol  , used 

for  the  monad ic  reversa l  func t ion  also represen t s  

the  dyadic  r o t a t e  func t ion  exempl i f i ed  by 

2~,5~3 , s 1 2, and by -2~,s+~4 5 1 2 3, and finally,  

the  c o m m a  represents  not  only ca tena t ion ,  but  also 

the monadic  ravel,  which produces a vec tor  of the  

e l emen t s  of its a r g u m e n t  in " r o w - m a j o r "  order.  

For  example:  

_T 2 ,_T 2 

0 0 1 1 0 0 1 1 0 i O 1 

0 1 0 1 

• S impl ic i ty  of the  g r a m m a t i c a l  rules of a nota-  

t ion is also impor tan t .  Because the  rules used thus  

far  have  been those f ami l i a r  in m a t h e m a t i c a l  nota-  

t ion,  they  have  not  been made  explici t ,  bu t  two 

s impl i f ica t ions  in the  order  of execut ion  should be 

r emarked :  

(1)All funct ions  are t r ea ted  alike, and there  are no 

rules of precedence  such as × be ing execu ted  

before +. 

(2 )The  rule t h a t  the  r igh t  a r g u m e n t  of a monadic  

funct ion  is the  value of the en t i re  expression to 

its r ight ,  impl ic i t  in the  order  of execut ion of 

an expression such as s±~ L0a :N, is ex tended to 

dyadic  functions.  

T h e  second rule has cer ta in  useful consequences 

in r educ t ion  and scan. Since Fly is equ iva l en t  to 

placing the funct ion F be tween  the e lements  of v, 

the  expression -/v gives the  a l t e rna t ing  sum of the  

e lements  of v, and ~/v gives the  a l t e rna t ing  prod- 

uct. Moreover ,  if B is a boolean vector ,  then  <\B 

" iso la tes"  the  f i rs t  1 in B, since all e l ements  follow- 

ing it become 0. For  example :  

< \ 0  0 1 1 0 1 1 ÷ +  0 0 1 0 0 0 0 

Syntac t ic  rules are f u r t he r  s impl i f ied  by adopt-  

ing a single f o r m  for  all dyadic  funct ions ,  which  

appear  be tween  t he i r  a rgumen t s ,  and for all mo- 

nadic  funct ions ,  which  appear  before  t he i r  argu-  

ments .  T h i s  cont ras ts  wi th  the  va r i e ty  of rules in 

m a t h e m a t i c s .  For  example ,  the  symbols  for  the  

monadic  funct ions  of negat ion,  factor ia l ,  and mag- 
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n i tude  precede,  follow, and su r round  t h e i r  argu-  

ments ,  respect ively .  Dyad ic  funct ions  show even 

more  var ie ty .  

1.5 A m e n a b i l i t y  t o  F o r m a l  P r o o f s  

T h e  i m p o r t a n c e  of f o rma l  proofs  and  der iva-  

t ions is clear  f rom the i r  role in m a t h e m a t i c s .  Sec- 

t ion 4 is largely devoted  to f o rma l  proofs, and we 

will l im i t  the  discussion here  to the  in t roduc t ion  

of the  fo rms  used. 

P roo f  by e x h a u s t i o n  consis ts  of e x h a u s t i v e l y  

examin ing  all of a f in i te  n u m b e r  of special  cases. 

Such exhaus t ion  can of ten  be s imply  expressed by 

apply ing  some ou te r  p roduc t  to a r g u m e n t s  which  

include all e l emen t s  of the  r e l evan t  domain .  For  

example ,  if o÷0 1, then  Do. ̂ O gives all cases of appli-  

ca t ion  of the  and func t ion .  M o r e o v e r ,  

D e M o r g a n ' s  law can be p roved  e x h a u s t i v e l y  by 

compar ing  each e l e m e n t  of the  ma t r i x  Do.^D wi th  

each e l emen t  of ~(~D)o.v(-D) as follows: 

D ° .^D ~( ~O ) o . v ( ~ D )  

0 0 0 0 

0 1 0 1 
(Do.̂ D)=(~(~D)o . v ( ~ O ) )  

1 1 

1 1 

^ / , ( D o . ^ D ) = ( ~ ( ~ D ) o . v ( ~ D ) )  

Quest ions  of a ssoc ia t iv i ty  can be addressed s im- 

ilarly, the  fol lowing expressions showing the  asso- 

c i a t i v i t y  of and and the  n o n - a s s o c i a t i v i t y  of 

not-and: 

^ / , ( ( D o . A D ) o . ^ D ) = ( D o . ^ ( D o . A D ) )  

^ / , ( ( D o . ~ D ) o . ~ D ) = ( D o . * ( D o . ~ D ) )  

A proof  by a sequence of ident i t ies  is p resented  

by l i s t ing  a sequence  of expressions,  a n n o t a t i n g  

each  express ion w i th  the  suppor t ing  ev idence  for  

its equiva lence  wi th  its predecessor.  For  example ,  

a fo rma l  proof  of the  iden t i ty  A.1 suggested by the  

f i r s t  example  t r e a t e d  would  be p resen ted  as fol- 

lows: 

+ ~ i N  
+ / ¢ t N  + is associative and commutat ive 

( ( * / t N ) + (  + / ¢ t N  ) ) ¢ 2  ( X + X ) + 2 ÷ ÷ X  

( + / (  ( I N ) + ( ¢ t N )  ) ) ÷ 2  + is associative and commutat ive 

( + / ( ( N + i ) O N )  ) ÷ 2  Lemma 

( ( N + l ) x N ) * 2  Definition of x 

T h e  fou r th  anno t a t i on  above concerns an iden t i ty  

which,  a f t e r  obse rva t ion  of the  pa t t e rn  in the  spe- 

cial case (, s )+( ¢, s ), m igh t  be considered obvious  or 

m igh t  be considered w o r t h y  of fo rma l  proof  in a 

separa te  l emma.  

Induc t ive  proofs proceed in two steps: 1) some 

iden t i t y  {called the  induction hypothesis) is as- 

sumed  t rue  for a fixed integer  value of some par-  

a m e t e r  ~ and this  a s sumpt ion  is used to prove  t h a t  

the  iden t i ty  also holds for  the  value ~+1, and 2) 

the  iden t i ty  is shown to hold for some in teger  val- 

ue ~. T h e  conclusion is t h a t  the  iden t i ty  holds for  

all integer  values  of ~ which  equal  or exceed K. 
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Recurs ive  def in i t ions  of ten provide  conven ien t  

bases for induct ive  proofs. As an example  we will 

use the  recurs ive  def in i t ion  of the  b inomia l  coeffi- 

c ient  funct ion Bc given by A.3 in an induct ive  proof  

showing t h a t  the  sum of the  b inomia l  coeff ic ients  

of order  ~ is 2.~. As the  induct ion hypo thes i s  we 

assume the  ident i ty :  

+/BC N ÷-~ 2*N 

and proceed as follows: 

+/BC N+i 

+ / ( X , O ) + ( O , X ÷ B C  N) A.3 

( + / X ,  0 ) + ( + / 0 , X ) + is associative and commutat ive 

( + I X ) + ( + I X )  O+Y÷÷Y 
2 x + / X  y + y + - ÷ 2 x y  

2 x + / B C  N Definition of X 

2 x 2- N Induction hypothesis 

2 * N + l  Property of Power (*)  

I t  r ema ins  to show tha t  the  induct ion hypothes is  

is t rue  for some integer  value of ~. F r o m  the  re- 

cursive def in i t ion  A.3, the  value of Lc 0 is the  value 

of the  r i g h t m o s t  expression, n a m e l y  1. Consequent -  

ly, +/Be 0 is 1, and the re fo re  equals  2,0. 

We will conclude w i th  a p roof  t h a t  

DeMorgan  ' s law for scalar  a rguments ,  r epresen ted  

by: 

AAB ÷÷ ~ ( ~ A ) v ( ~ B )  A.4 

and proved  by  exhaus t ion ,  can indeed be ex tended  

to vec tors  of a r b i t r a r y  length  as ind ica ted  ear l i e r  

by the  pu t a t i ve  iden t i ty :  

^ I V  ÷÷ ~ v l ~ V  A.5 

As the  induc t ion  h y p o t h e s i s  we will  a s sume  t h a t  

A.5 is t rue  for  vec tors  of length  ( ~ v)- 1. 

We will f i rs t  give fo rma l  recurs ive  de f in i t ions  

of the  de r ived  func t ions  and-reduction and  

o r - r educ t ion  ( ^ / a n d  v/), us ing two new pr imi t ives ,  

indexing, and drop. Index ing  is deno ted  by  an 

expression of the  f o r m  xEz], where  i is a single in- 

dex or a r r ay  of indices of the  vec to r  x. For  exam-  

ple, if x*2 3 s 7, t hen  x[21 is 3, and x:2 1] is 3 2. 

Drop  is denoted  by x+z and is def ined to drop Ix 

(i.e., the  magn i tude  of x) e l emen t s  f r o m  x, f r o m  the  

head  if ~>0 and f r o m  the  tai l  if x<0. For  example ,  

2+x is s 7 and -2+x is 2 3. T h e  take func t ion  (to be 

used la te r )  i,s denoted  by + and is def ined analo-  

gously. For  example ,  3+xis 2 3 s a n d - 3 + x i s  3 5 7. 

T h e  fol lowing func t ions  prov ide  fo rma l  defini-  

t ions of and-reduction and o r - r educ t ion :  

ANDRED:~[1]^ANDRED l+0J : 0=poe :  1 A.6 

ORRED :~/1]v ORRED l + o ~ : O = p ~ : O  A.7 

The inductive proof of A.5 proceeds as follows: 

^IV 
( V [ 1 ]  ) A ( ^ / i + V )  A.6 

~( ~ V [ 1 ]  ) v ( ~ ^ / l  +V) A.4 

~ ( ~ V [ l ]  ) v ( ~ ~ v  l ~ l  C V ) A.5 

~( ~V[ 1 ] )v( v/~l ¢ V) ~~X÷÷X 

~ v / ( ~ V [ 1 ]  ) , ( ~ l + V )  A.7 

~ v / ~ ( W [ 1 ] , 1 ,I- V ) v distributes over , 

~ v / ~ V  Definition of , (catenation) 
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2. P o l y n o m i a l s  

If c is a vector  of coefficients and x is a scalar, 

then the polynomial  in x wi th  coefficients c may be 

wr i t t en  s imply as + / c × x . - ~ + ~ o c ,  or + / ( x . - ~ + ~ p c ) ~ c ,  

or ( x . - 1 . , , c ) . . x c .  However ,  to apply to a non- 

scalar ar ray  of a rguments  x, the power funct ion . 

should be replaced by the power table 0.. as shown 

in the following defini t ion of the polynomial  func- 

t ion:  

p :  ( ooo . * - 1 +  t p a  ) + .  xa B.1 

For example, ~ 3 3 1 P o 1 2 3 ~ ÷. ~ 8 27 64 12.5.  If  0, 

is replaced by ~÷0,, then the funct ion applies also 

to matr ices  and higher  dimensional  arrays  of sets 

of coefficients represent ing (along the leading axis 

of ,)  collections of coefficients of different  polyno- 

mials. 

This  defini t ion shows clearly tha t  the polyno- 

mial is a l inear funct ion of the coefficient vector.  

Moreover,  if ~ and ~ are vectors  of the same shape, 

then  the pre -mul t ip l ie r  . . . .  -1+,0~ is the  Vander-  

monde matr ix  of ~ and is therefore  invertible if the 

elements  of , are distinct.  Hence if c and x are 

vectors of the same shape, and if ~÷c p x, then the 

inverse (curve-f i t t ing)  problem is clearly solved by 

applying the matr ix  inverse funct ion ~ to the Van- 

dermonde matr ix  and using the ident i ty :  

C ÷÷ (~Xo.*-l+lpX)+.xY 

2.1 P r o d u c t s  o f  P o l y n o m i a l s  

The  "produc t  of two polynomia ls  B and c" is 

commonly  taken to mean the coefficient  vector  o 

such tha t :  

D P x ÷ ÷  (B _P X ) x ( C  p x )  

I t  is well-known tha t  D can be computed  by taking 

products  over all pairs of e lements  f rom B and c 

and summing  over subsets of these products  associ- 

ated with the same exponent  in the result. These 

products  occur in the funct ion table B.. ×c, and it is 

easy to show informal ly  tha t  the powers of x asso- 

ciated wi th  the elements  of B°. xC are given by the 

addi t ion table E÷(-i+,oB)..+(-~+,0c). For  example: 

X÷2 

B÷3 1 2 3 

C÷2 0 3 

E ÷ (  - 1 +  ~ o B )  o . + ( - i + ~ o C )  
B o . x C  E 

5 0 9 0 1 2 

2 0 3 1 2 3 

0 6 2 3 4 

6 0 9 3 4 5 

+ / , ( Bo . xC )xX*E 

518 

(B  P_ X ) × ( C  _P x )  

5 1 8  

X*E 

1 2 4 

2 4 8 

4 8 16 

8 16 32 

The  foregoing suggests the  fol lowing ident i ty ,  
which will be established formal ly  in Section 4: 

(B E X)x(C P X)÷÷+/,(Bo.xC)xX*(-l+tpB)o.+(-l+ipC) B.2 
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Moreover ,  the pa t t e rn  of the  exponent  table E 

shows tha t  e lements  of Bo. xc lying on diagonals are 

associated wi th  the same power, and tha t  the coef- 

f icient  vector  of the product  polynomial  is there-  

fore given by sums over these diagonals. The  table 

Bo.×C therefore  provides an excellent organizat ion 

for the manual  computa t ion  of products  of polyno- 

mials. In the present example these sums give the 

vector  D÷s 2 13 9 s 9, and D P x may be seen to equal 

( B P X ) x ( C P X ) .  

Sums over the  requi red  diagonals of B°×c can 

also be obtained by border ing it by zeros, skewing 

the result  by ro ta t ing  successive rows by successive 

integers, and then  summing  the eolumns. We thus 

obta in  a def in i t ion  for the po lynomia l  p roduc t  

funct ion as follows: 

PP:  + / (  1 -  l pa )4pa o . xoo, 1 + 0 × a  

We will now develop an a l te rna t ive  me thod  

based upon the simple observa t ion  t h a t  if B eP c 

produces the product  of polynomials  s and c, then 

Re is l inear in both  of its arguments .  Consequent-  

ly, 

PP:a+. xA+. x~ 

where A is an a r ray  to be determined.  A must  be of 

rank ~, and must  depend on the exponents of the 

left a rgument  (-l+,p~), of the result  ( -1+,p i , , .~) .  

and of the r ight  argument .  The  "deficiencies" of 

the r ight  exponent  are given by the difference ta- 

ble (, p 1 , , ,  ~ ) °. -i ~ ~, and comparison of these values 

wi th  the left exponents yields A. Thus  

A ÷ ( - l + t p a ) o . = ( ( l p l + a , ~ ) o . - l p ~ )  

and 

P P : a + . x ( ( - l + t p a ) o . = ( l p l e a , ~ ) o . - t p ~ ) + . × ~  

Since ~+.×A is a matr ix ,  this  fo rmu la t i on  sug- 

gests t ha t  if o÷B PP c, then  c migh t  be obta ined  

f rom ~ by pre-mul t ip ly ing it by the inverse matr ix  

(~B+.×A), thus  provid ing  division of polynomials .  

Since B+.×A is not  square (having more rows than 

columns),  this  will no t  work, but  by replacing 

M÷B+.×A by e i ther  its leading square par t  (2pL/0M)+M, 

or by its t ra i l ing square par t  (-2ot/oM)+M, one ob- 

tains two results, one corresponding to divis ion 

with low-order remainder  terms, and the o ther  to 

division with h igh-order  remainder  terms. 

2.2 D e r i v a t i v e  o f  a P o l y n o m i a l  

Since the der ivat ive of X*N is N×X*~-I. we may 

use the rules for the der ivat ive of a sum of func- 

t ions and of a product  of a funct ion wi th  a con- 

stant,  to show tha t  the der ivat ive of the polynomi-  

al c P x is the polynomial  (l+cx-l+,~c) p x. Using 

this  result  it is clear t ha t  the integral is the polyn- 

omial  ( A , c ÷ l ~ c )  E x ,  where A is an a rb i t r a ry  scalar 

constant.  The  expression 1 ¢ c × - 1 + l o c  also yields the 
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coefficients of the derivative,  but  as a vector of the 

same shape as c and having a final zero element.  

2.3 D e r i v a t i v e  o f  a P o l y n o m i a l  w i t h  R e s p e c t  

to I t s  R o o t s  

If R is a vector  of three elements, then the de- 

r ivat ives  of the po lynomia l  × / x - R  with  respect  to 

each of its three roots are - ( X - R [ 2 ] ) × ( X - R [ 3 ] ) ,  and 

( X R [ ~ 3 ) ~ ( X R E 3 ] ) ,  and ( X R [ 1 ] ) × ( X R [ 2 ] )  More 

generally,  the der iva t ive  of ×/X-R wi th  respect  to 

RtJJ is s imply -(X-R)×.*J~0R, and the vector  of de- 

r iva t ives  wi th  respect  to each of the roots  is 

- (X-R) x .*Io .~I~pR. 

The  expression × / x - R  for a po lynomia l  wi th  

roots  z applies only to a scalar x, the more general 

expression being × / x o . - R .  Consequently,  the gener- 

al expression for the matr ix  of der ivat ives  (of the 

polynomial  evaluated at x E z l  with  respect to root  

~EJl ) is given by: 

-(Xo . - R ) x  .*Io .~I÷IpR B.3 

2.4 Expansion of a Polynomial 

Binomial expansion concerns the development 

of an identity in the form of a polynomial in x for 

the expression (x,z).N. For the special case of ~:i 

we have the well-known expression in terms of the 

binomial  coefficients of order ~: 

( X * I ) * N  ÷ ÷  ( ( 0 , t N ) ! N ) _ P  X 

By extension we speak of the expansion of a 

polynomial  as a ma t te r  of de te rmin ing  coefficients 

D such tha t :  

C P X+Y ~'÷ D _P X 

The coefficients o are, in general, funct ions of ~. If 

Z:l they  again depend only on b inomia l  coeffi- 

cients, but  in this  case on the several b inomia l  

coeff icients  of var ious  orders,  specifically on the 

matr ix  J ° . . ' J ÷ - l . ~ o c .  

For example, if c÷3 ~ 2 ,, and c e X+~÷*D e x,  then 

o depends on the matr ix:  

0 1 2 3 o . !  0 1 2 3 

1 1 1 1 

0 1 2 3 

0 0 1 3 

0 0 0 1 

and o must  clearly be a weighted sum of the col- 

umns, the weights being the elements  of c. Thus :  

D÷(Jo . !J÷-I+IpC)+.xC 

Jotting down the matrix of coefficients and per- 

forming the indicated matrix product provides a 

quick and reliable way to organize the otherwise 

messy manual  calculat ion of expansions. 

If B is the appropria te  mat r ix  of b inomial  coef- 

ficients, then D+B÷. ×c, and the expansion funct ion is 

clearly l inear in the coefficients c. Moreover ,  ex- 

pansion for z : - i  must  be given by the inverse ma- 

trix s~, which will be seen to contain the a l ternat -  

ing binomial  coefficients. Finally,  since: 
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C _P X+(K+i) ÷-~ C P (X+K)+i ÷+ (B+.×C) P (X+K) 

it follows that the expansion for positive integer 

values of ~ must be given by products of the form: 

B + .  x B + .  x B + .  x B + .  xC 

where the 8 occurs ~ times. 

Because +.× is associative, the foregoing can be 

wri t ten  as M+. ×c, where ~ is the product  of ~ occur- 

rences of B. I t  is interest ing to examine the succes- 

sive powers of B, computed  e i ther  manual ly  or by 

machine  execution of the following inner product  

power funct ion:  

IPP:a+.xa IPP ~-l:w=O:Jo.=J÷-1+11÷pa 

Comparison of B IPP x with B for a few values of 

K shows an obvious pattern which may be ex- 

pressed as: 

B IPP K ÷÷ B×K*Of-Jo.-J÷-1+iI+oB 

The interesting thing is that the right side of this 

ident i ty  is meaningful  for non- in teger  values of K, 

and, in fact, provides the desired expression for the 

general expansion c _P x+z: 

C _P(X+Y) ÷+ (((J°.:J)×Y*O[-Jo.-J÷-i+IoC)+.xC)E X B4 

The right side of B.4 is of the form (M+.xc)_P x, 

where M itself is of the form B×~*E and can be dis- 

played informally (for the case 4:~c) as follows: 

1 1 1 1  0 1 2 3  

0 1 2 3  0 0 1 2  

0 0 1 3  x y *  0 0 0 1  

0 0 0 1  0 0 0 0  

Since Y,~ mul t ip l ies  the  s ingle-diagonal  ma t r ix  

S×(K=E), the expression for M can also be wr i t ten  as 

the inner p roduc t  (Y*d)+.×z, where T is a r ank  3 

ar ray  whose ~th plane is the mat r ix  B×(~=E). Such 

a rank three a r ray  can be formed f rom an upper 

t r i angu la r  mat r ix  M by making  a rank  3 a r ray  

whose first  plane is M ( tha t  is, (i=~i+pM)o.×M) and 

ro ta t ing  it along the first  axis by the mat r ix  Jo-J, 

whose ~th superdiagonal  has the value -K. Thus :  

DS:(Io.-I)¢[l](l=I÷~l÷pw)o.x~ 

D S K o . ! K t - I + ~ 3  
1 0 0  
0 1 0  
0 0 1  

0 1 0  
0 0 2  
0 0 0  

0 0 1  
0 0 0  
0 0 0  

B.5 

Subs t i tu t ing  these results in B.4 and using the 

assoc ia t iv i ty  of +. ×, we have the following ident i ty  

for the expansion of a polynomial ,  valid for non- 

integer as well as integer values of ~: 

C E X + Y  ÷ ÷  ( ( Y * J ) + . x ( D S  J o . i J ÷ - I + i o C ) + . x C ) P  X B.6 

For example : 

C o m m u n i c a t i o n s  A u g u s t  1980 

o f  V o l u m e  23 

the A C M  N u m b e r  8 



Y+3 

C÷31 4 2 

M÷(y*J)+.xDS Jo.!J÷-l*IpC 

M 

1 3 9 27 

0 i 6 27 

0 0 1 9  

0 0 0 1  

M+.xC 

96 79 22 2 
( M + . x C )  P X+2 

358 
C P X+Y 

358 

3. Representations 

The  subjects of ma themat i ca l  analysis and com- 

puta t ion  can be represented in a var ie ty  of ways, 

and each represen ta t ion  may possess par t icu lar  

advantages. For  example, a positive integer • may 

be represented s imply by • check-marks;  less sim- 

ply, but  more compactly,  in Roman  numerals ;  even 

less simply, but  more  convenien t ly  for the per- 

formance  of addi t ion  and mul t ip l ica t ion ,  in the 

decimal system; and less familiarly,  but  more con- 

venient ly  for the computa t ion  of the least common 

multiple and the greatest  common divisor, in the 

prime decomposi t ion scheme to be discussed here. 

Graphs, which  concern connect ions  among  a 

collection of elements,  are an example of a more 

complex ent i ty  which possesses several useful rep- 

resentations.  For  example, a simple directed graph 

of ~ elements  (usually called nodes) may be repre- 

sented by an ~ by • boolean matr ix  B (usually called 

an adjacency matr ix)  such tha t  BE±;JI:i if there is 

a connect ion f rom node z to node g. Each  connec- 

t ion represented by a 1 in s is called an edge, and 

the graph can also be represented by a +/,B by N 

mat r ix  in which  each row shows the nodes con- 

nected by a par t icular  edge. 

Funct ions  also admi t  different  useful represent- 

ations. For  example, a p e r m u t a t i o n  funct ion,  

which yields a reorder ing  of the e lements  of its 

vector  a rgument  x, may be represented by a per- 

mutation vector P such tha t  the pe rmuta t ion  func- 

t ion is s imply x EPl, by a cycle representat ion which 

presents the s t ruc ture  of the funct ion more direct- 

ly, by the boolean mat r ix  B÷P°=,~P such t h a t  the 

pe rmuta t ion  funct ion is ~+. ×x, or by a radix repre- 

sentat ion R which employs one of the columns of 

the matr ix  i+(~IN)T-I+I!N÷oX, and has the proper ty  

tha t  21./R-1 is the par i ty  of the pe rmuta t ion  repre- 

sented. 

In order  to use d i f ferent  representa t ions  con- 

veniently,  it is impor tan t  to be able to express the 

t r ans fo rmat ions  between representa t ions  clearly 

and precisely. Convent iona l  m a t h e m a t i c a l  nota-  

t ion is often deficient  in this respect, and the pres- 

ent  section is devoted to developing expressions for 

the t ransformat ions  between representat ions  useful 

in a var ie ty  of topics: number  systems, polynomi-  

als, permutat ions ,  graphs, and boolean algebra. 
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3.1 N u m b e r  S y s t e m s  

We will begin the discussion of representat ions  

wi th  a famil iar  example, the use of different  repre- 

sentat ions of positive integers and the t ransforma-  

tions between them. Instead of the positional or 

base-value represen ta t ions  c o m m o n l y  t reated,  we 

will use prime decomposition, a represen ta t ion  

whose interest ing propert ies make it useful in in- 

t roducing the idea of logar i thms as well as t ha t  of 

number  representat ion [ 6, Ch.16 ]. 

If  P is a vector  of the first ~P primes and E is a 

vector  of non-negat ive integers, then E can be used 

to represent  the number  P×.*E, and all of the integ- 

ers ,rip can be so represented.  For  example, 

2 3 5 '7 x . *  0 0 0 0 is 1 and 2 3 8 7 ×.. 1 1 0 0 is s 

a n d  : 

P 
2 3 5 7 

ME 

0 1 0 2 0 1 0 3 0 1 

0 0 1 0 0 1 O 0 2 0 

0 0 0 0 1 0 0 O 0 1 

0 0 0 0 0 0 1 0 0 0 

p x  . *ME 

I 2 3 4 5 6 7 8 9 10 

The  s imi lar i ty  to logar i thms can be seen in the 

ident i ty :  

x/px.*ME ÷÷ Px.*+/ME 

which may be used to effect mul t ip l icat ion by ad- 

dition. 

Moreover,  if we define ccD and LCM to give the 

greatest  common divisor and least common mult i-  

ple of e lements  of vector  arguments ,  then:  

GCD Px.*ME ÷4 px.*L/ME 

LCM P x . * M E  ÷ ÷  Px.*[/ME 

ME V+px . *ME 

2 1 0 V 

3 1 2 1 8 9 0 0  7 3 5 0  3 0 8 7  

2 2 0 GCD V LCM V 

1 2 3 21 926100 

px. * L/ME px . * [/ME 

21 926100 

In def ining the func t ion  ccD, we will use the 

operator  / with a boolean a rgument  B (as in B/). I t  

produces the compression func t ion  which  selects 

elements  f rom its r ight  a rgument  according to the 

ones inB. For  example, 1 8 1 o 1/,8 is 1 3 s. More- 

over, the funct ion B/ applied to a matr ix  a rgument  

compresses rows (thus selecting certain columns),  

and the funct ion B/ compresses columns to select 

rows. Thus :  

GCD:GCD M, (M÷L/R) IR: 12pR÷( w~0 )/w: +/R 

LCM:(×/X)÷GCD X÷(I÷w),LCM l + ~ : O = p ~ : l  

The  t r an s fo rma t ion  to the value of a number  

f rom its prime decomposi t ion representat ion (VFR) 

and the inverse t rans format ion  to the representa- 

t ion f rom the value (RFV) are given by: 

VFR:ax.*w 

RFV:D+a RFV ~÷ax.*D:^/~D÷O=al~:D 

For example: 
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P VFR 2 1 3 1 

1 0 5 0 0  

P R F V  1 0 5 0 0  

2 1 3 1 

3.2 P o l y n o m i a l s  

Sect ion  2 in t roduced  two r e p r e s e n t a t i o n s  of a 

po lynomia l  on a scalar  a r g u m e n t  x, the  f i r s t  in 

t e r m s  of a vec to r  of coef f ic ien ts  c ( t h a t  is, 

÷ / c × x * - ~  ,pc), and the  second in t e r m s  of its roots  R 

( tha t  is, . / x - R ) .  T h e  coeff ic ient  r ep resen ta t ion  is 

conven i en t  for  adding  po lynomia l s  (c .D)  and for  

ob ta in ing  de r iva t ives  (1,c×-l+,pc). T h e  roo t  repre-  

sen ta t ion  is conven ien t  for o the r  purposes,  includ- 

ing mul t ip l i ca t ion  which  is given by R1 ,E2. 

We will now deve lop  a func t ion  CPE 

(Coeff ic ients  f r o m  Roots )  which  t r ans fo rms  a roots  

r e p r e s e n t a t i o n  to an equ iva l en t  coef f ic ien t  repre-  

senta t ion ,  and an inverse funct ion  EFC. T h e  devel-  

opmen t  will be informal ;  a fo rma l  de r iva t ion  of cv~ 

appears  in Sect ion 4. 

T h e  express ion for  C~E will be based on 

N e w t o n ' s  s y m m e t r i c  func t ions ,  which  yie ld  the  

coef f ic ien ts  as sums  over  ce r ta in  of the  p roduc t s  

over  all subsets  of the  a r i t h m e t i c  nega t ion  ( t ha t  is, 

-~) of the  roots  E. For  example ,  the  coeff ic ient  of 

the  cons tan t  t e r m  is g iven by */-E, the  p roduc t  

over  the  en t i re  set, and the  coeff ic ient  of the  next  

t e r m  is a sum of the  products  over  the  e l emen t s  of 

-~ t aken  ( ~ ) - ~  a t  a t ime.  

T h e  funct ion  def ined by A.2 can be used to 

give the  products  over  all subsets  as follows: 

P ÷ ( - R ) * . * M ÷ T  p R  

T h e  e l emen t s  of ~ s u m m e d  to produce  a given coef- 

f ic ient  depend upon the  n u m b e r  of e l emen t s  of E 

excluded f rom the  pa r t i cu la r  product ,  t h a t  is, upon 

+/~~, the  sum of the  co lumns  of the  c o m p l e m e n t  of 

the  boolean "subse t"  ma t r i x  _roE. 

T h e  s u m m a t i o n  over  P m a y  t h e r e f o r e  be ex- 

pressed as ( (O,~E)  . . . .  /~~)+.xp, and  the  comple t e  

expression for the  coeff icients  c becomes:  

C÷( ( 0 ,  t o R ) o  . = ÷ / ~ M ) + . x (  -R)x.*M÷_T_ oR 

For  example ,  if R÷2 3 s, t hen  

M +/~M 

0 0 0 0 1 1 1 1 3 2 2 1 2 1 1 0 

0 0 1 1 0 0 1 1 ( O , l p R ) o . = + / ~ M  

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 

( - R ) x . * M  0 0 0 1 0 1 1 0 

1 - 5  - 3  15 - 2  10 6 - 3 0  0 1 1 0 1 0 0 0 

1 0 0 0 0 0 0 0 

( ( 0 , l p R ) o . = + / ~ M ) + . x ( - R ) x . * M ÷ _ T  pR 

30 31  1 0  1 

T h e  func t ion  CeE which  produces  the  coef f ic ien ts  

f r o m  the  roots  m a y  the re fo re  be def ined and used 

as follows: 

CFR:((O,ip~)o.=+/~M)+.x(-~)x.*M÷T p ~  C.1 

CFR 2 3 5 

30 31 10 1 

( C F R  2 3 5 )  P X ÷ I  2 3 4 5 6 7 8 

S 0 0 2 0 12 40 90 

x / X o . - 2  3 5 

8 0 0 2 0 12 40 90 

T h e  inverse  t r a n s f o r m a t i o n  RFc is more  diff i-  

cult, bu t  can be expressed as a successive approxi-  

ma t i on  scheme as follows: 

RFC:(-I+IoI÷w)G 

G:(a-Z)G ~:TOL2F/IZ÷a STEP ~:a-Z 

STEP:(~(ao.-a)×.*Io.~I÷ipa)+.×(ao.*-1÷ip~)+.×~ 

D÷C~CFE 2 3 5 7 

210 247 101 17 I 

TOL÷iE-8 

RFC C 

7 5 2 3 

T h e  order  of the  roots  in the  resu l t  is, of course, 

immate r i a l .  T h e  f inal  e l emen t  of any  a r g u m e n t  of 

RFC mus t  be ~, since any  po lynomia l  equ iva len t  to 

×/x-R mus t  necessar i ly  have  a coeff ic ient  of 1 for  

the  h igh  order  t e rm.  

T h e  foregoing def in i t ion  of RFC applies  only to 

coeff icients  of po lynomia l s  whose roots  are all real.  

T h e  lef t  a r g u m e n t  of  a in RFC provides .  (usua l ly  

s a t i s f ac to ry )  in i t ia l  a p p r o x i m a t i o n s  to  the  roots ,  

bu t  in the  general  case some a t  leas t  m u s t  be com- 

plex. T h e  fo l lowing example ,  us ing  the  roo ts  of 

un i ty  as the  ini t ia l  app rox ima t ion ,  was executed  on 

an A P L  sys t em which  handles  complex numbers :  

( * o 0 J 2 x (  - l + l N ) ÷ N ÷ p l , l - o J  )Goo C.2 

D÷C÷CFR 1J1 1J-1 1J2 1J-2 

10 - 1 4  11 - 4  1 

R P C  C 

1 J - l  1 J 2  1 J 1  1 J - 2  

T h e  monad ic  func t ion  o used above  mul t ip l i e s  its 

a r g u m e n t  by pi. 

In N e w t o n ' s  m e t h o d  for  the  roo t  of a sca la r  

func t ion  F, the  nex t  a p p r o x i m a t i o n  is g iven by  

A÷A-(F A)÷DF A ,  where  DF is the  de r iva t ive  of F. T h e  

func t ion  STEP is the  gene ra l i za t i on  of N e w t o n ' s  

m e t h o d  to the  case where  F is a vec tor  func t ion  of 

a vector .  I t  is of the  fo rm ¢~M)+.*B, where  B is the  

va lue  of the  p o l y n o m i a l  w i t h  coef f ic ien ts  ~, the  

or iginal  a r g u m e n t  of Rec, eva lua t ed  a t  ~, the  cur- 

ren t  a p p r o x i m a t i o n  to the  roots ;  analys is  s imi l a r  to 

t h a t  used to der ive  B.3 shows t h a t  M is the  m a t r i x  

of d e r i v a t i v e s  of a p o l y n o m i a l  w i t h  roo ts  ~, the  

de r iva t ives  being eva lua ted  a t  ~. 

E x a m i n a t i o n  of the  expression for  M shows t h a t  

its off -diagonal  e l emen t s  are all zero, and the  ex- 

pression (mM)+.×B may  the re fo re  be replaced by ~÷v, 

where  o is the  vec to r  of d iagonal  e l e m e n t s  of M. 

Since (Z,d)+~ drops z rows and J co lumns  f r o m  a 

m a t r i x  N, the  vec to r  v m a y  be expressed  as 

×/0 1~(-1,lp~)¢~0.-~; the  def in i t ion  of the  func t ion  

STEP may  the re fo re  be replaced by the  more  effi-  

c ient  def in i t ion:  

S T E P : ( ( a o . * - l ¢ l p ~ ) . l . . x o o ) ÷ x / O  1 , b ( - l + t p a ) ~ a o . - a  C.3 

T h i s  last  is the  e legant  m e t h o d  of K e r n e r  [ 7 ] .  

Using s t a r t ing  values  given by the  lef t  a r g u m e n t  

of ~ in C.2, i t  converges  in seven steps (wi th  a tol-  

e rance  TOL÷IE-8) for  the  s ix th -o rde r  example  given 

by Kerner .  
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3.3  P e r m u t a t i o n s  

A vector  P whose e l emen t s  are some p e r m u t a -  

t ion  of i ts  indices ( t ha t  is, ^/~=+/e . . . .  pP) will  be 

called a p e r m u t a t i o n  vector .  If  D is a p e r m u t a t i o n  

vector  such t h a t  (pX)=0D, t hen  X[D] is a p e r m u t a t i o n  

of x, and D will be said to be the  d i r e c t  represen ta -  

t ion of th is  pe rmuta t ion .  

T h e  p e r m u t a t i o n  x[o] m a y  also be expressed as 

~+.~x, where  s is the  boolean ma t r i x  D . . . .  ~ .  T h e  

ma t r ix  s will be called the  b o o l e a n  r ep resen ta t ion  

of the  pe rmuta t ion .  T h e  t r an s fo rma t ions  be tween  

di rec t  and boolean represen ta t ions  are:  

BFD:~o .=lp~ DFB:~+.xtl÷p~o 

Because permutation is associative, the compos- 

ition of permutations satisfies the following rela- 

tions: 

( X [ D I ] ) [ D 2 ]  ÷-*. X [ ( D I  [D2 ] ) ]  
B 2 + . x ( B i + . × X )  ~÷ ( B 2 + . x B i ) + . x X  

T h e  inverse of a boolean rep resen ta t ion  B is ~ ,  and 

the  inverse of a d i rec t  r ep resen ta t ion  is e i t he r  ,o or 

~ ,p~ .  (The  g r a d e  funct ion  , grades its a rgument ,  

giving a vec tor  of indices to its e l ements  in ascend- 

ing order,  ma in t a in ing  exist ing order  among  equal  

e lements .  T h u s  $3 7 1 4 is 3 1 ~ ~ and $3 7 3 4 is 

z , ~. T h e  i n d e x - o f  funct ion  , de t e rmines  the  

smal les t  index in its left  a r g u m e n t  of each e l emen t  

of its r igh t  a rgument .  For  example ,  'ABCD~','S4SE' 

is ~ 1 ~ 5, and ,SASE,, 'ABCDE' is : 1 S 5 ,.) 

T h e  cyc le  represen ta t ion  also employs  a pe rmu-  

t a t ion  vector .  Consider  a p e r m u t a t i o n  vec tor  c and 

the  segments  of c ma rked  off by the  vec tor  V=L\C. 

For  example ,  if C*7 3 6 5 2 1 4, t hen  c:~\c  is 

z 0 0 a ~ 0, and the  blocks are:  

7 

3 6 5 

2 

1 4 

Each  block de t e rmines  a "cycle"  in the  associa ted 

p e r m u t a t i o n  in the  sense t h a t  if R is the  resul t  of 

p e r m u t i n g  x, then:  

R[7] is X[7] 

R [ 3 ]  is X[6] R [ 6 ]  is X [ 5 ]  R E 5 ]  is X [ 3 ]  
R [ 2 ]  is X [ 2 ]  

R[1] is X[4] R[4] is X[I] 

If  the leading e lement  of c is the  smal les t  ( tha t  is, 

~), then  c consists of a single cycle, and the  pe rmuta -  

t ion of a vec tor  x which  i t  represents  is given by 

xtc]÷xt~¢cl .  For  example :  

X÷ ' A BCDEFG ' 
C~-i 7 6 5 2 t~ 3 

X[C]+X[ l@C] 

X 

GDACBEF 

Since xtQ]÷A is equ iva len t  to x÷~[,Q], i t  follows 

t h a t  x[c].xt~¢c] is equ iva len t  to x÷xt (~ ,c )[ ,c~] ,  and 

the  d i rec t  r ep resen ta t ion  vec tor  o equ iva len t  to c is 

t h e r e f o r e  given (for the  special  ease of a single 

cycle) by o*( 1¢c)[,c]. 
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In the  more  genera l  case, the  r o t a t i o n  of the  

comple te  vec tor  ( t ha t  is, z¢c) mus t  be replaced by 

ro t a t ions  of the  indiv idual  subcycles  m a r k e d  off by 

C=L\C, as shown in the  fol lowing def in i t ion  of the  

t r a n s f o r m a t i o n  to d i rec t  f r o m  cycle represen ta t ion :  

DFC:(~CAX*+kX÷~=L\~] )C$~] 

If one wishes to catenate a collection of disjoint 

cycles to form a single vector c such that c:txc 

marks off the individual cycles, then each cycle cz 

m u s t  f i r s t  be b r o u g h t  to s t a n d a r d  f o r m  by the  

ro t a t i on  ( - ~.czl k/Cz )*cz, and the  resul t ing vec tors  

m u s t  be ca t ena t ed  in descending order  on t he i r  

leading e lements .  

T h e  inverse t r a n s f o r m a t i o n  f rom di rec t  to cycle 

r e p r e s e n t a t i o n  is more  complex,  bu t  can be ap- 

proached  by f i rs t  producing the  ma t r i x  of all pow- 

ers of D up to the  pDth, t h a t  is, the  ma t r i x  whose 

successive co lumns  are  o and ~[o] and ( O [ D ] ) [ D ] ,  

etc. T h i s  is ob ta ined  by apply ing  the  func t ion  Row 

to the  o n e - c o l u m n  m a t r i x  D o . , .o  f o r m e d  f r o m  o, 

where  eow is def ined and used as follows: 

POW:POW D,(D÷m[ ;I] )[w] :~Ipm:~ 

D+D÷DFC 0÷7,3 6 5,2,1 4 
4 2 6 1 3 5 7 

POW Do.*,0 
4 1 4 1 4 1 4 

2 2 2 2 2 2 2 

6 5 3 6 5 3 6 

I 4 1 4 I 4 1 

3 6 5 3 6 5 3 

5 3 6 5 3 6 5 

7 7 7 7 7 7 7 

I f  ~÷eow o . . . .  o, t hen  the  cycle r ep resen ta t ion  of 

D m a y  be ob t a ined  by se lec t ing  f r o m  M only 

" s t a n d a r d "  rows which  begin w i th  t h e i r  smal les t  

e l emen t s  (ssR), by a r rang ing  these r e m a i n i n g  rows 

in descending order  on t h e i r  leading e l emen t s  

(ooL), and then  ea tena t ing  the  cycles in these rows 

(CIR). Thus :  

CFD:CIR DOL SSR POW ~o.+,0 

SSR: ( ̂ /M=i(bM÷[ \~ )/~ 

DOL:m[V~[;i];] 

CIR:( ,I,^\0 I÷~L\~)/,~ 

DFC C÷7,3 6 5,2,1 4 

4 2 6 I 3 5 7 

CFD DFC C 

7 3 6 5 2 I 4 

In the  def in i t ion  of DOL, indexing is appl ied to 

matr ices .  T h e  indices for successive coordinates  are 

separa ted  by semicolons,  and a b lank  en t ry  for any  

axis indicates  t h a t  all e l emen t s  along it  are select- 

ed. T h u s  ME ; 1 ] selects co lumn 1 of M. 

T h e  cycle r ep resen ta t ion  is conven ien t  for  de- 

t e r m i n i n g  the  n u m b e r  of cycles in the  p e r m u t a t i o n  

r e p r e s e n t e d  (~c: +/~: t \ ~ ) ,  the  cycle l eng ths  

( C L : X - O , - I ÷ X ÷ ( i # ~ = L \ ~ ) / t p ~ ) ,  and the  p o w e r  of the  

p e r m u t a t i o n  (PP:LCM CL ~). On the  o the r  hand,  it  is 

awkward  for compos i t ion  and inversion.  

T h e  :~ co lumn vec to rs  of the  m a t r i x  

(¢lN),-1+l:~ are all dis t inct ,  and  the re fo re  provide  
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a po t en t i a l  r a d i x  r e p r e s e n t a t i o n  [ 8 3  for  the  .,n 

p e r m u t a t i o n s  of o rder  n. We will use ins tead a 

re la ted  fo rm ob ta ined  by increasing each e l emen t  

by  ~: 

RR: 1+(¢~ )7-1+I .~ 

RR 

I 1 I I :1 I 2 2 2 2 2 2 3 3 33 3 3 4 4 ~ 4  

1 I 2 2331 2 2 2331 I 22 33 I 1 2 23 3 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

T r a n s f o r m a t i o n s  be tween  th i s  r e p r e s e n t a t i o n  and  

the  d i rec t  f o r m  are  given by: 

DFR:~[I],X+~[lJ~X~-DFR l+~:O=p~:~ 

RFD:~[1],RFD X-~[1]~X~-l+~:O=pm:~ 

Some  of the  cha rac t e r i s t i c s  of th i s  a l t e r n a t e  

r ep re sen ta t i on  are perhaps  best  displayed by modi-  

fying O¢R to apply  to all columns of a m a t r i x  argu-  

ment ,  and apply ing  the  modi f ied  func t ion  ~r to the  

resu l t  of the  func t ion  ~R: 

MF:~[,1;J,[lJX+~[(I p X ) p l ; J ~ X ÷ M F . 1  O~:O=1÷p~:~ 

MF RR 4 

i 1 I I 1 1 2 2 2 2 2 23 3 3 3 3 3 4 ~ 4 4 4 4  

2 2 3  3 ~ ~ 1 :1 3 3 4 4  1 1 2 2 44 1 1 2 2 3 3 

3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 L~. 1 2 2 3 1 3 1 2 

T h e  d i rec t  p e r m u t a t i o n s  in the  co lumns  of th i s  

resu l t  occur in lexical  order  ( t ha t  is, in ascending 

o rder  on the  f i r s t  e l e m e n t  in which  two vec to rs  

d i f fer ) ;  th i s  is t rue  in general ,  and  the  a l t e r n a t e  

r ep resen ta t ion  the re fo re  provides  a conven ien t  way 

for  producing  d i rec t  r ep resen ta t ions  in lexical or- 

der. 

T h e  a l t e rna t e  r ep re sen ta t i on  also has  the  useful  

p rope r ty  t h a t  the  pa r i t y  of  the  d i rec t  p e r m u t a t i o n  

is given by 21 +/- 1 ÷RFO o, where  ~1N represen ts  the  

residue of n modulo  ~. T h e  pa r i t y  of a d i rec t  rep- 

r e s e n t a t i o n  can also be d e t e r m i n e d  by  the  func- 

t ion:  

PAR:21+/,(Io.>I+Ip~)^~o.>~ 

3.4 D i r e c t e d  G r a p h s  

A simple  d i rec ted  graph  is def ined by a set  of K 

nodes and a set  of d i rec ted  connect ions  f rom one to 

a n o t h e r  of pairs  of the  nodes. T h e  d i rec ted  con- 

nect ions  m a y  be convenien t ly  represen ted  by a K by 

K boolean  connec t ion  m a t r i x  c in wh ich  c[~;z]:l 

denotes  a connect ion  f r o m  the  ±th node to the  : th .  

For  example ,  if the  four  nodes of a g raph  are 

r ep re sen ted  by N*'QRS~', and if t he r e  are  connec-  

t ions f r o m  node s to node Q, f r o m  R to T, and f rom r 

to Q, then  the  corresponding connect ion  m a t r i x  is 

given by: 

0 0 0 0 
0 0 0 1 

1 0 0 0 

1 0 0 0 

A connect ion  f r o m  a node to i tself  (called a self- 

loop) is not  pe rmi t t ed ,  and the  diagonal  of a con- 

nect ion  m a t r i x  mus t  t he re fo re  be zero. 

I f  P is any  p e r m u t a t i o n  vec tor  of order  pn, then  
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nl÷N[P] is a reorder ing  of the  nodes, and the  corre- 

sponding connect ion  m a t r i x  is given by c[P~P]. We 

m a y  (and will) w i t h o u t  loss of genera l i ty  use the  

numer i c  labels ,~n for the  nodes, because if n is any  

a r b i t r a r y  vec to r  of  n a m e s  for  the  nodes  and  L is 

any  l ist  of  n u m e r i c  labels,  t hen  the  express ion  

Q÷NCL] gives the  co r respond ing  l ist  of  n a m e s  and,  

conversely,  N IQ gives the  list  n of n u m e r i c  labels. 

T h e  connect ion  ma t r i x  c is conven ien t  for  ex- 

press ing m a n y  useful  func t ions  on a graph.  Fo r  

example ,  +/c gives the  o u t - d e g r e e s  of t he  nodes,  

+~c gives the  in-degrees ,  +/.c gives the  n u m b e r  of 

connect ions  or edges,  ~c gives a re la ted  graph  wi th  

the  d i rec t ions  of  edges reversed,  and cv~c gives a 

re la ted  " s y m m e t r i c "  or " u n d i r e c t e d "  graph.  

Moreove r ,  if we use the  boolean  vec to r  B÷v/(~l 

oC)..:L to represen t  the  list  of nodes L, then  Bv.^c 

gives the  boolean vec tor  which  represen ts  the  se t  

of nodes d i rec t ly  reachable  f r o m  the  set  ~. Conse- 

quent ly ,  cv.^c gives the  connec t ions  for  pa ths  of 

length  two in the  graph c, and cvcv. ^c gives connec- 

t ions for pa ths  of length one or two. T h i s  leads to 

the  fol lowing func t ion  for  the  t rans i t i ve  closure of 

a graph, which  gives all connect ions  t h roug h  pa ths  

of any  length:  

TC:TC Z:^I,~=Z÷~v~v.^~:Z 

Node  g is said to be r e a c h a b l e  f r o m  node ± if 

(re c ) [ ± ; j ] : l .  A g raph  is s t r o n g l y - c o n n e c t e d  if  

eve ry  node is r eachab le  f r o m  eve ry  node,  t h a t  is 

^ I , T C C .  

If  o÷rc c and D[i;±]:1 for  some z, then  node ± is 

r eachab le  f r o m  i tse l f  t h r o u g h  a p a t h  of  some 

length;  the  pa th  is called a circuit ,  and node ± is 

said to be conta ined  in a circuit .  

A graph r is called a tree if i t  has  no c i rcui ts  

and its in-degrees do not  exceed 1, t h a t  is, ^/l~÷~r. 

Any node of a t ree  wi th  an in-degree of 0 is called 

a root, and if K÷+/0:+tT, then  r is called a K-rooted 

tree.  Since a t ree  is c i rcui t - f ree ,  ~ mus t  be a t  least  

1. Unless o the rwise  s ta ted,  i t  is n o r m a l l y  assumed 

t h a t  a t ree  is s i n g l y - r o o t e d  ( t h a t  is, ~:1); 

mu l t i p ly - roo t ed  t rees  are s o m e t i m e s  called fores ts .  

A graph  v c o v e r s a  graph  o if ^/.c~o. I f  v is a 

s t rongly-connec ted  graph  and T is a (s ingly-rooted)  

tree,  then  r is said to be a s p a n n i n g  tree of v if v 

covers  r and if all  nodes are  r eachab le  f r o m  the  

roo t  of r, t h a t  is, 

(^/,G~T) ^ ^/RvRv.^TC T 

where  R is the  (boolean r ep re sen ta t i on  of the )  roo t  

o f  T. 

A d e p t h - f i r s t  s p a n n i n g  tree [ 9 ] of a g raph  

is a spanning t ree  produced by proceeding f r o m  the 

roo t  t h r o u g h  i m m e d i a t e  descendan t s  in G, a lways  

choosing as the  next  node a descendant  of the  lat-  

est  in the  list of nodes v is i ted  which  sti l l  possesses 

a descendant  not  in the  list. T h i s  is a r e l a t ive ly  
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complex process which can be used to i l lustrate  the  

u t i l i ty  of the  connect ion ma t r ix  representa t ion:  

DFST:((,I)*.=K) R w ^ K * . v ~ K ÷ a : l l ¢ p ~  C.4 

R:(C,[I]a)R~Apo.v~C÷<\U^Pv.^~ 

:~vlP÷(<kaV.AwV.AU÷~v/a)v.Aa 

Using as an example the  graph c f rom [ 9 ] : 

G 
0 0 1 1 0 0 0 0 0 0 0 0  

0 0 0 0 1 0 0 0 0 0 0 0  

0 1 0 0 1 1 0 0 0 0 0 0  

0 0 0 0 0 0 1 1 0 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 0 0 1 1 0  
0 0 1 0 0 0 0 0 0 0 0 1  

1 0 0 0 0 0 0 0 0 0 0 1  

0 0 0 0 0 0 0 0 0 1 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

i DFST G 

0 0 1 1 0 0 0 0 0 0 0 0  

0 0 0 0 1 0 0 0 0 0 0 0  

0 1 0 0 0 1 0 0 0 0 0 0  

0 0 0 0 0 0 1 1 0 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 1 0 0  

O 0 0 0 0 0 0 0 0 0 i O  

0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  

T h e  funct ion o~sr establishes the  left  a rgument  

of the  recursion ~ as the  one-row mat r ix  represent-  

ing the root  specified by the  lef t  a rgument  of east, 

and the  r ight  a rgument  as the  original  graph wi th  

the  connect ions in to  the  root  K deleted. T h e  first  

line of the  recursion R shows t h a t  it  cont inues  by 

appending on the top of the  list of nodes thus  far  

assembled in the  lef t  a r g u m e n t  the  nex t  chi ld c, 

and by delet ing f rom the  r ight  a rgument  all con- 

nect ions  into the  chosen child c except  the  one 

f rom its pa ren t  P. T h e  child c is chosen f rom 

among those reachable  f rom the  chosen paren t  

(P . . . .  ), bu t  is l imi t ed  to those as ye t  un to u ch ed  

(u^P . . . .  ), and is taken,  a rb i t ra r i ly ,  as the  f irs t  of 

these ( , \ U A P  . . . .  ). 

T h e  de te rmina t ions  of P and u are shown in the  

second line, P being chosen f rom among those nodes 

which  have  chi ldren  among the  un touched  nodes 

( . . . .  u). These  are pe rmuted  to the  order  of the  

nodes in the  lef t  a rgumen t  ( . . . . . . . .  v), br inging 

t he m into an order  so tha t  the  last vis i ted appears 

first,  and P is f inal ly chosen as the  f irs t  of these. 

T h e  last l ine of R shows the final  resul t  to be 

the  resul t ing r ight  a rgument  ~, t ha t  is, the  original  

graph wi th  all connect ions into each node broken 

except for its parent  in the  spanning tree.  Since 

the  final value of ~ is a square ma t r ix  giving the 

nodes of the  t ree  in reverse order  as visited, substi- 

t u t i on  of ~ . , t l ~  (or, equiva len t ly ,  ~,o~) for 

would yield a resul t  of shape I 2~0a containing the 

spanning t ree  followed by its "preorder ing"  infor- 

mation.  

Another  representa t ion  of d i rec ted  graphs of ten 

used, at  least implici t ly,  is the  list  of all node pairs 

v.w such t h a t  t he re  is a connec t ion  f rom v to w. 

T h e  t rans format ion  to this  list fo rm f rom the  con- 

nect ion mat r ix  may  be def ined and used as follows: 

LFC:( ,~)/14DT-I+Ix/D÷p~ 

C LFC C 

o 0 1 1 I 1 2 3 3 4 

0 0  10 3 4 3 2 4 1  

0 1 0 1 

1 0 0 0 
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However ,  th i s  r ep re sen ta t i on  is def ic ien t  since i t  

does not  alone de te rmine  the  number  of nodes in 

the  graph, a l though in the  present  example this  is 

given by rI.Lec c because the  h ighes t  n u m b e r e d  

node happens to have a connection.  A re la ted boo- 

lean r ep resen ta t ion  is p rovided  by the  expression 

( Lec c ) 0. : ~ 1 + p c, the first  plane showing the out- and the 

second showing the in-connections.  

An inc idence  matr ix  representa t ion  of ten used 

in the  t r e a t m e n t  of electr ic  circuits  [ 10 ] is given 

by the difference of these planes as follows: 

IFC:-/(LFC ~)o.:11÷pm 

For  example:  

(LFC C)o.:~i*oC IFC C 

I 0 0 0 1 0 -1 0 

I 000 1 0 0 1 
0 i 0 0 0 I -I 0 

0 0 I 0 0 -I I 0 

0 0 I 0 0 0 1 I 

000 I I 0 0 i 

0010 

0001 

OOiO 

0100 

0001 

1000 

In deal ing wi th  non-d i rec ted  graphs, one some- 

t imes  uses a representa t ion  der ived as the or over  

these planes (v~). Th i s  is equiva len t  to izec c. 

T h e  incidence mat r ix  z has a number  of useful 

properties.  For  example,  +/~ is zero, +~z gives the 

d i f f e r e n c e  between the in- and out-degrees of each 

node, p± gives the  number  of edges followed by the  

n u m b er  of nodes, and ×/p± gives t he i r  product .  

However ,  all of these are also easily expressed in 

t e rms  of the connect ion matr ix ,  and more signifi- 

cant  proper t ies  of the  incidence mat r ix  are seen in 

its use in e lec t r ic  circuits .  For  example,  if the  

edges represent  components  connected between the 

nodes, and if v is the vector  of node voltages, then  

the  branch voltages are given by ±+. xv; if Bz is the 

vector  of branch currents ,  the  vec tor  of node cur- 

rents  is given by ,z+. x±. 

T h e  inverse t r ans fo rma t ion  f rom incidence ma- 

t r ix  to connect ion mat r ix  is given by: 

CFI :'Do( - 1 +  ~ x/D ) cD. t  ( 1 - 1  * . =m ) + .  x - l +  t 1 ~D+L \ ~ p ~  

T h e  se t  m e m b e r s h i p  func t ion  • yields  a boolean 

ar ray ,  of the  same shape as its lef t  a rgument ,  

which shows which of its e lements  belong to the 

r ight  a rgument .  

3.5 Symbolic Logic 
A boolean funct ion of ~ a rguments  may  be rep- 

resented by a boolean vector  of 2*N e lements  in a 

v a r i e t y  of ways, including wha t  are some t imes  

called the  d i s j u n c t i v e ,  c o n j u n c t i v e ,  equ iva lence ,  

and e x c l u s i v e - d i s j u n c t i v e  forms. T h e  t ransforma-  

t ion  between any pair  of these forms may be repre- 

sented concisely as some 2*N by 2*N mat r ix  formed 
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by a related inner product,  such as zv.^,r,  where r 

÷ z s is the " t ru th  table" formed by the funct ion ~ de- 

fined by A.2. These mat te rs  are t rea ted  fully in 

[11, Ch.7 ].  

4. Ident i t ies  and P r o o f s  

In this  sect ion we will in t roduce  some widely 

used identi t ies and provide formal  proofs for some 

of them, including Newton  ' s symmet r i c  funct ions 

and the associat ivi ty  of inner product,  which are 

seldom proved formally.  

4.1 Dua l i t i e s  in Inner  Product s  

The  duali t ies developed for reduct ion and scan 

extend to inner products  in an obvious way. If  o~ 

is the dual of F and oc is the dual of ~ wi th  respect 

to a monadic  funct ion M with  inverse Mz, and if A 

and B are matrices,  then:  

A F.G B ÷ ÷  MI (M A) DF.DG (M B)  

For example: 

Av.^B ÷÷ ~(~A)A.V(~B) 

A^.=B ÷-~ ~ ( ~ A ) v . ~ ( ~ B )  

AL.+B ~÷ - ( - A ) F . + ( - B )  

The  duali t ies for inner product,  reduct ion,  and 

scan can be used to e l iminate  many  uses of boolean 

negation f rom expressions, par t icular ly  when used 

~n con junc t ion  wi th  ident i t ies  of the fol lowing 

form: 

A ^ ( ~ B )  ÷.+ A>B 

(~A)^B ÷÷ A<B 

( ~ A ) ^ ( ~ B )  ÷-,,. A,v,B 

4.2 Par t i t i on ing  Ident i t ies  

Par t i t ion ing  of an a r ray  leads to a number  of 

obvious and useful identities. For  example: 

x / 3  1 4 2 6 ÷~  ( x / 3  1 )  x ( x l U  2 6 )  

More generally, for any associative funct ion ~: 

F / V  ÷+ ( F / K + V )  F ( F / K + V )  
F/V,W +÷ (F/V) F (F/W) 

If F is commutative as well as associative, the 

partitioning need not be limited to prefixes and 

suffixes, and the partitioning can be made by com- 

pression by a boolean vector u: 

F/V ÷. ( F / U / F )  F (F/(~U)/V) 

If E is an empty vector (0=pE), the reduction F/E 

yields the identity element of the function F, and 

the identities therefore hold in the limiting cases 

o = K  and o = ~ l u .  

Par t i t ion ing  identi t ies extend to matr ices  in an 

obvious way. For  example, if v. M, and A are arrays  

of ranks ~, 2, and 3. respectively, then:  

V¢.xM +÷ ((K÷V)+.x(K,14pM)÷M)+(K¢V)+.x(K,O)+M D.I 

( I , J ) ~ A + . x V  ÷-+ ( ( I , J , O ) ~ A ) + . x V  D.2 
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4.3 Summar iza t ion  and Di s t r ibut ion  

Consider the def ini t ion and and use of the fol- 

lowing funct ions:  

_N: ( v / < \ c o  o . :~o ) /oJ  D.3 

S : ( N ~ ) o . : o o  D.4 

A÷3 3 I 4 i 

C÷IO 20 30 ~0 50 

_N A S A (_S A ) + . × C  
3 1 4 1 1 0 0 0 3 0  8 0  4 0  

0 0 1 0 1 

0 0 0 1 0 

The  funct ion m selects f rom a vector  a rgumen t  

its nub, tha t  is, the set of dis t inct  e lements  it con- 

tains. The  expression s_ ~ gives a boolean 

" s u m m a r i z a t i o n  ma t r i x "  which  relates  the  ele- 

ments  of A to the elements  of its nub. If  A is a vec- 

tor of account  numbers  and c is an associated vec- 

tor  of costs, then the expression (s n)+. x c evaluated 

above sums or " summar i ze s "  the  charges to the 

several account  numbers  occurr ing in A. 

Used as pos tmul t ip l ier ,  in expressions of the  

form w+.×a A, the s u m m a r i z a t i o n  mat r ix  can be 

used to distribute results. For  example, if F is a 

funct ion which is costly to evaluate  and its argu- 

ment  v has repeated elements,  it may  be more effi- 

cient  to apply F only to the nub of v and dis t r ibute  

the results in the manner  suggested by the follow- 

ing ident i ty :  

F V ÷ ÷  ( F  _N V ) * . x S _  V D.5 

The  order  of the e lements  of _~ v is the same as 

the i r  order  in v, and it is somet imes  more conven- 

ient to use an ordered nub and corresponding 

ordered summar i za t ion  given by: 

Q/l/: _N~o [ $oJ ] D.6 

Q S :  (QNo~)  o .=~o D.7 

The  ident i ty  corresponding to D.5 is: 

F V ÷ ÷  ( F  ON V ) + . x O _ S  V D.8 

The  summar iza t ion  funct ion produces an inter-  

esting result  when applied to the funct ion z defined 

by A.2: 

+ / S * / T  N ++ (O,*N):N 

In words, the sums of the rows of the summariza- 

tion matrix of the column sums of the subset ma- 

trix of order • is the vector of binomial coefficients 

of order N. 

4.4 D i s t r i b u t i v i t y  

The  d i s t r ibu t iv i ty  of one funct ion over ano ther  

is an impor tan t  not ion in mathemat ics ,  and we will 

now raise the  ques t ion of represent ing  this  in a 

general way. Since mul t ip l i ca t ion  d is t r ibu tes  to 

the r ight  over addi t ion  we have ax(b,q)**ab*aq , and 

since it d is t r ibutes  to the left we have (a*p)×b**ab+pb. 

These lead to the more general cases: 

( a + p ) × ( b + q )  ÷ +  a b + a q + p b + p q  

( a + p ) x ( b + q ) × ( c + r )  ÷ ÷  a b c + a b r + a q c + a q r + p b c + p b r + p q c + p q r  

( a + p ) × ( b + q ) ×  . . . x ( c + r )  ~--~ a b . . .  c+ . . . .  + p q . . .  r 
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Using the not ion  t h a t  v÷~,B and w ÷ v , Q  or V÷A,B,C 

and w*P,Q,R, etc., the left side can be wr i t ten  sim- 

ply in terms of reduct ion as . / v + w .  For this  case of 

three elements, the r ight  side can be wri t ten  as the 

sum of the products over the columns of the fol- 

lowing matr ix:  

V [ O ]  V [ O ]  V [ O ]  V [ O ]  Y [ O ]  W [ O ]  Y [ O ]  W [ O ]  

V[i] V[.1] W[i] W[I] V[I] V[.1] W[.1] W[I] 

V[2] W[2] V[2] W[2] V[2] W[2] V[2] W[2] 

The  pat tern  of v's and w's above is precisely 

the pat tern  of z e r o s  and o n e s  in the matr ix  r*z0v, 

and so the products down the columns are given by 

( V . . . .  T ) x (  W x .  * T ) .  Consequent ly:  

x/V+W ÷÷ +/(Vx.*~T)xWx.*T÷T pV D.9 

We will now present a formal  inductive proof of 

D.9, assuming as the induct ion hypothesis  tha t  D.9 

is t rue for all v and v of shape n {that  is, 

^ I N = ( ~ v )  , o w )  and proving tha t  it holds for shape N+~, 

tha t  is, for x. v and r.w, where z and r are a rb i t ra ry  

scalars. 

For use in the inductive proof we will first give 

a recursive defini t ion of the funct ion z, equivalent  

to A.2 and based on the following not ion:  if ~*z ~ is 

the result  of order ~, then:  

M 

0 0 1 1 

0 1 0 .1 

O , [ 1 ] M  1 , [ 1 ] M  

0 0 0 0 1 1 I 3. 

0 0 1 1 0 0 1 1 

0 .1 0 1 0 .1 0 1 

( O , [ 1 ] M ) , ( 1 , ( 1 ) M )  

0 0 0 0 1 1 1 1 

0 0 1 .1 0 0 1 .1 

0 1 0 1 0 1 0 1 

Thus :  

T:(0,[.1]T),(I,[i]T÷T~-I):0=w:0 .100 D I0 

+/((C~X,V)x.*~Q)xDx.*Q+Tp(D~Y,W) 

+/(Cx.*~Z,U)xDx.*(Z+O,[.1] T),U÷I,[i] T~TpW D.10 

+/((Cx.*~Z),Cx.*~U)×(D×.*Z),Dx.*U No~ 1 

+/((Cx.*~Z),Cx.*~U)x((y*O)xWx.*T),(y*i)xWx.*T Note 2 

*/((Cx.*~Z),Cx.*~U)x(Wx.*T)~yxWx.*T Y*0 .1÷+1,f 

+/((X×V×.*~T),V×.*~T)x(W×.*T),Y×W×.*T NoR 2 

+ / ( X x ( V x . * ~ T ) x W x . * T ) , ( y x ( V x . * ~ T ) x W x . * T )  Note 3 

+ / ( X x x / V + W ) , ( y x x / V + W )  Induct ion h y ~ t h e s ~  

+ / ( X , Y ) x x / V + W  ( X x S ) , ( Y x S ) ÷ ÷ ( X , y ) x S  

x / (  X+Y ) , ( V + W )  Def in i t ion  of × /  

x / ( X , V ) + ( Y , W )  + dis t r ibutes  over , 

No te  h M+. ×N , P ÷ *  ( M+.  xN ) ,M+ . x p  (part i t ioning ident i ty  on matr ices )  

N o t e 2 :  V+.×M +÷ ((1÷V)+.x(1,.1¢oM)÷M)+(.14V)÷.×I OCM 

(partitioningidentityon matricesandthedefinitionofC, D, Z,and U) 

Note  3: ( V , W ) x p ,  Q .~÷ ( V x P )  , W x Q  

To complete the inductive proof we must  show 

tha t  the putat ive ident i ty  D.9 holds for some value 

of n. If  n=0, the vectors  A and B are empty ,  and 

therefore  x.A ÷* ,x and Y,B ÷* ,Y. Hence the left 

side becomes ×/z+~:, or simply x+r. The  r ight  side 

becomes + / ( x  . . . .  Q)~×.*Q, where ~Q is the one- 

rowed matr ix  .1 0 and Q is 0 ~. The  r ight  side is 

therefore  equivalent  to . / < x . . 1 ) ~ ( . 1 . ~ ) ,  or z.~. Simi- 

lar examinat ion  of the case N=.1 may be found in- 

structive.  

459 

4.5 N e w t o n ' s  Symmetr ic  Funct ions  

If  x is a scalar and R is any vector,  then x / x - R  is 

a polynomial  in z having  the roots R. I t  is there-  

fore equivalent  to some polynomial  c e x, and as- 

sumpt ion  of this  equivalence implies t h a t  c is a 

funct ion of R. We will now use D.8 and D.9 to de- 

rive this  funct ion,  which  is c o m m o n l y  based on 

Newton ' s symmet r i c  funct ions:  

x / X - R  

x / X + ( - R )  

+ / ( X × . * ~ T ) x ( - R ) x . * T ÷ _ T  oR  D.9 

( X x . * ~ T ) + . x P + ( - R ) × . * T  Def of + . x  

( X * S ÷ + / ~ T ) + . x P  Note  1 

((X*0N S)+.×0S_ S)+.×P D.8 

(X*0_N_ S ) * . x ( ( O _ S  S ) + . x P )  + . x  is associative 

( X * 0 , l p R ) + . × ( ( 0 _ S  S ) + . × P )  Note  2 

( ( O_S_ S ) + .  x p )_p X B.1 (polynomial)  

( ( O S  + / ~ T ) + . x ( ( - R ) x . * T ÷  2 p R ) ) P  X Defs of S 

and P 

Note  l :  If X is a scalar and B is a boolean vector, then Xx . *B 

÷ ÷  X * + / B .  

Note  2: Since  T is boolean and has  oR  rows, the sums  of i ts  co lumns  range f rom 0 

to pR, and their  ordered  nub  is therefore  0 , 1, pR.  

4.6 Dyadic  T r a n s p o s e  

The  dyadic transpose, denoted by ~, is a general- 

ization of monadic  transpose which permutes  axes 

of the r ight  argument ,  and (or) forms "sectors" of 

the r ight  a rgument  by coalescing certain axes, all 

as de termined by the left argument .  We introduce 

it here as a convenient  tool for t rea t ing properties 

of the inner product.  

The  dyadic transpose will be defined formal ly  

in terms of the selection funct ion 

SF: ( ,m) [1+ (pm)za -1 ]  

which selects f rom its r ight  a rgument  the e lement  

whose indices are given by its vector  left a rgument ,  

the shape of which must  clearly equal the rank of 

the r ight  argument .  The  rank of the result  of K~A 

is r/K, and if ± is any suitable left a rgument  of the 

selection x SV K~A then:  

I S F K , ~ A  +÷ ( I [ K ] )  S F A  D.11 

For example, if M is a matrix, then 2 1 ~M ÷+ ~M and 

.1 1 ~M is the diagonal of M; if r is a rank three array,  

then  1 2 2 ~T is a ma t r ix  "diagonal  sect ion" of 

produced by runn ing  toge ther  the last two axes, 

and the vector  .1 .1 1 ~r is the principal body diago- 

nal of r. 

The  following ident i ty  will be used in the se- 

quel: 

J~K~A ~ ÷  (J[K])~A D.12 

Proof: 

I S F  J ~ K ~ A  

( I [ d ] )  S F  K~A Defini t ion  of ~ (D.11) 

( ( I [ J ] ) [ K ]  ) S F  A Defin i t ion  of 

( I [ ( J [ K ] ) ]  ) S F  A Indexing is associative 

I S F ( J [ K ]  )~A  Def in i t ion  of 
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4.7 I n n e r  P r o d u c t s  

T h e  fo l lowing  proofs  are s tated only  for matr ix  

a r g u m e n t s  and for the  part icular  inner  product  

. . . .  T h e y  are eas i ly  extended to arrays of h igher  

rank and to o ther  inner products  F.~, where  F and 

need  possess  on ly  the  propert ies  a s sumed  in the  

proofs  for + and x. 

T h e  fo l lowing  ident i ty  ( fami l iar  in m a t h e m a t -  

ics as a s u m  over  the  matr ices  formed  by (outer)  

products  of  c o l u m n s  of  the  f irst  a r g u m e n t  w i t h  

corresponding rows of  the  second argument )  wi l l  be 

used in es tabl i sh ing  the  assoc ia t iv i ty  and distrib- 

u t i v i ty  of  the  inner product:  

M+.xN ÷* + / 1  3 3 2 ~ Mo.xN D.13 

Proof:  (~ ,a)s~  M÷.~u is def ined as the  s u m  over  v, 

where  viii + *  M[I;K]xN[K;J], Simi lar ly ,  

(I,J)SF + / 1  3 3 2 ~ Mo.xN  

is the  s u m  over  the  vec tor  w such that  

W[K] +~ ( I , J , K ) S F  1 3 3 2 ~ M*.xN  

Thus:  

W[g3 

( I , J , K ) S F  1 3 3 2 ~Mo.xN 

( I , J , K ) [ 1  3 3 2 ] S F  Mo .xN  D.12 

( I , K , K , J ) S F  M o . x N  Def  of  indexing 

M [ I ; K ] x N [ K ; J ]  Def  of Outer product 

F i g ]  

Matr ix  product  d i s tr ibutes  over  add i t i on  as 

fo l lows:  

M+.x(N+P) ~÷ (M+.xN)+(M+.xP) 

Proof:  

D.14 

M + . x ( N ¢ P )  
+ / ( d ÷  1 3 3 2 )eMo.xN+P 
+ / J ~ ( M o . x N ) + ( M o . x P )  
+/(J~Mo.xN)+(J~Mo.xp) 

(+/J~Mo.xN)+(+/J~Mo.xp) 

( M + . x N ) + ( M + . x p )  

D.13 

x distributes over + 

distributes over + 

+ is as~oc and cornm 

D.13 

Matrix  product  is assoc iat ive  as fo l lows:  

M + . x ( N + . x P )  +~ ( M + . x N ) + . x P  D.15 

Proof:  We first  reduce each of the  sides to sums  

over  sec t ions  of  an outer  product,  and then  com-  

pare the sums.  A n n o t a t i o n  of the  second reduct ion  

is left  to the  reader: 

M + . x ( N + . x P )  

M + . x + / 1  3 3 2 ~ N ° . x P  

÷ / 1  3 3 2 ~ M e . x + / 1  3 3 2 ~ N o . x P  

+ / 1  3 3 2~+/Mo.xl 3 3 2~No.xp 

+/1 3 3 2~+/I 2 3 5 5 4~Mo.xNo.xP 

+/+/1 3 3 2 4 ~1 2 3 5 5 4~Mo.xNo.xp 

+/+/1 3 3 4 4 2~Mo,xNo.xP 

+/+/I 3 3 4 4 2~(Mo.xN)o,xp 

+/+/I 4 4 3 3 2~(M°.xN)o.xp 

(M+.xN)+.xp 

( + / 1  3 3 2 ~ M o . x N ) + . x P  

+ / 1  3 3 2 ~ ( + / 1  3 3 2t~Mo.xN)o .xP 
+ / 1  3 3 2~+/1  5 5 2 3 q ~ ( M o . x N ) ° . x P  
+ / + / 1  3 3 2 4~i 5 5 2 3 4 ~ ( M o . x N ) o . x p  
+ / + / 1  ~ 4 3 3 2~(Mo.xN)o.xP 

Note  1: +/Mo .xdt~A ~÷ +/ (  ( t p p b t ) , J + p p M ) ' ~ M o  .xA  

N o t e  2: J ~ + / A  ÷÷ + / ( J , I + E / J ) ~ A  

D.12 

D.12 

x distributes over + 

Note  1 

Note  2 

D.12 

x is associative 

+ is associative and 

commutat ive  

4.8 P r o d u c t  o f  P o l y n o m i a l s  

T h e  ident i ty  B.2 used for the  mul t ip l i ca t i on  of 

p o l y n o m i a l s  wi l l  n o w  be developed formal ly:  

( B  E X ) x ( d  E x )  
( + /BxX*E.* - - I+  l pB ) x (  + / C x X * F ÷ - I +  t pC ) B.1 

+ / + / ( B x X * E ) * . x ( C x X * F )  Note l 
+ / + / ( B o . x C ) x ( ( X * E ) o . x ( X * F ) )  Note 2 

+ / + / ( B o . x C ) x ( X * ( E * , + F ) )  Note 3 

N o t e  1: ( + / V ) x ( + / W ) ÷ ÷ + / + / V o . x X  because x distributes over +and + is 

associat ive and commutat ive ,  or see [ 12,P21 ] for a proof. 

N o t e  2: T h e  equivalence  o f  ( P x V ) o . x ( Q x W ) and ( P o . x Q ) x ( V o x W ) can be 

established by examining  a typical  e l ement  of  each expression. 

N o t e  3: ( X * I ) x ( X * J ) ÷ ÷ X * ( I + J )  

T h e  foregoing  is the  proof  presented,  in abbre- 

v iated  form,  by Orth [ 13, p.52 ] ,  w h o  also def ines  

funct ions  for the  c o m p o s i t i o n  of  po lynomia l s .  

4 .9  D e r i v a t i v e  o f  a P o l y n o m i a l  

Because  of  the ir  abi l i ty  to  approx imate  a h o s t  

of  useful  funct ions ,  and because  t h e y  are c losed 

under addit ion,  mul t ip l i ca t ion ,  compos i t ion ,  differ- 

e n t i a t i o n ,  and integrat ion ,  p o l y n o m i a l  f u n c t i o n s  

are very  at tract ive  for use in in troduc ing  the  s tudy 

of  calculus.  T h e i r  t r e a t m e n t  in e l e m e n t a r y  calcu- 

lus is, however ,  normal ly  de layed because  the  de- 

r ivat ive  of  a p o l y n o m i a l  is approached indirect ly ,  

as ind icated  in Sec t ion  2, t h r o u g h  a sequence  of  

more  general  results.  

T h e  fo l l owing  presents  a der ivat ion  of the  de- 

r ivat ive  of  a p o l y n o m i a l  d irect ly  f rom the  expres- 

s ion for the  slope of  the  secant  l ine through  the  

points  x, F x and ( x ÷ r ) . ~ ( x + z ) :  

(C P_ X + Y ) - ( C  P_ X ) ) ÷ Y  

(c E X+Y)-(C P X+O))÷Y  

(C P X+Y)-((O*J)+.x(A÷DS Jo. IJ÷-i+IpC)+.×C) _P X)÷Y B.6 

( ( ( Y * J ) + . × M )  P_ X ) - ( ( O * J ) + . x M ~ - A + . x C )  P_ X ) ÷ Y  B.6 

( ( ( y * J ) + . x M ) - ( O * J ) + . x M )  P_ X ) ÷ Y  _P dist over - 

( ( ( Y * J ) - O * J ) + . x M )  P_ X ) ÷ Y  ÷ . x  dist over - 

( ( O , Y * I + J ) + . x M )  P_ X ) ÷ Y  Note  1 

( ( Y * l + d ) + . x  1 0 ~'M) P X ) ÷ Y  D.1 

( ( Y * l ¢ d ) + . x ( 1  0 0 + A ) + . x C )  P X ) ÷ Y  D.2 

( Y * l + d - 1 ) + . x ( 1  0 0 + A ) + . x C )  P X ( Y * A ) ÷ Y ÷ + Y * A - 1  

( Y * - i + I - i + o C ) + . × ( 1  0 0 + A ) + . x C )  P X Def  of  d 

((Y*-l+l-l+pC)+.x 1 0 0 +A)+.xC) P X D.15 

Note  1: 0 * 0 ÷ ÷ i ÷ ÷ Y * 0  and ^ / 0 = 0 * l + J  

T h e  der ivat ive  is the  l imi t ing  value  of  the  se- 

cant  s lope for z at  zero,  and the  last express ion  

above  can be e v a l u a t e d  for th i s  case because  if 

E*-l+l-l+pV is the  vector  of  exponents  of  ~, then  all 

e l e m e n t s  of  E are non-negat ive .  Moreover ,  0.E re- 

duces to a 1 fo l lowed  by zeros,  and the  inner prod- 

uct  w i t h  i 0 0÷A therefore  reduces  to the  f irst  plane 

of 1 0 0+A or, equiva lent ly ,  the  second plane of  A. 

If B÷J°. !J÷-l+lpc is the  matr ix  of  b inomia l  coef-  

f ic ients ,  then  A is os B and, f rom the  de f in i t ion  of  o s  

in B.5, the  second plane of  A is e×l=-J°.-J,  that  is, 

the  matr ix  B w i t h  all but the  f irst  super-diagonal  

replaced by zeros .  T h e  f inal  express ion  for the  

coef f ic ients  of  the  p o l y n o m i a l  w h i c h  is the  deriva-  

t ive  of  the  p o l y n o m i a l  c _P ~ is therefore:  

( (J° . iJ)xl=-Jo . -J÷-1+ i pC)+. xC 

For example : 
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C ~ 5 7 11 13 

( J o  . ! J ) x l = - J o  . - J ÷  1+1pC 
0 1 0 0 

0 0 2 0 

0 0 0 3 

0 0 0 0 

( ( J o  . ! J  ) x l  = - J o  - J ÷ -  1 + l p C  ) + .  x C  

7 2 2  3 9  0 

Since the superdiagonal  of the binomial  coeffi- 

cient  mat r ix  ( lN)°.! l~ is (-1÷l~-1)!~N-1, or s imply 

,~-1, the f inal  resul t  is ~¢cx-~÷~oc in ag reement  

wi th  the ear l ier  der ivat ion.  

In concluding the discussion of proofs, we will 

re-emphasize the fact t ha t  all of the s t a tements  in 

the  foregoing proofs are executable ,  and t h a t  a 

computer  can there fore  be used to ident i fy  errors.  

For  example, using the canonical funct ion defini- 

t ion mode [4  , p.81 ] ,  one could define a funct ion 

whose s ta tements  are the  first  four s t a tements  of 

the preceding proof as follows: 

VF 

[I] ((C E xx+Y)- (c  E x ) ) ÷ Y  
[23 ((C P x+Y)-(C _P x,o))÷Y 

[3] ((C P X+Y)-((O*J)+.x(A÷DS Jo.lJ÷-l+ipC)+.xC) P X)÷Y 
[4] ((((y*J)+.xM) p X)-((O*J)+.xM÷A+.xC) _p X)÷Y 

V 

The  s ta tements  of the proof may  then  be executed 

by assigning values to the variables and executing F 

as follows: 

1 3 2  

1 3 2  

1 3 2  

1 3 2  

C'5 2 3 1 

Y~5 

X÷3 X÷tl0 

F F 

66 96 132 174 222 276 336 402 474 552 

66 96 132 174 222 276 336 402 474 552 

66 96 132 174 222 276 336 402 q7q 552 

66 96 132 174 222 276 336 402 47q 552 

T h e  annota t ions  may also be added as comments  

between the lines w i thou t  affect ing the execution.  

5. C o n c l u s i o n  

T h e  preceding sections have a t t emp ted  to devel- 

op the  thesis t ha t  the propert ies  of executab i l i ty  

and universa l i ty  associated wi th  programming  lan- 

guages can be combined,  in a single language, wi th  

the  wel l -known proper t ies  of m a t h e m a t i c a l  nota-  

t ion  which  make it  such an ef fec t ive  tool of 

thought .  Th i s  is an i m p o r t a n t  ques t ion  which  

should receive fu r the r  a t ten t ion ,  regardless of the 

success or fa i lure  of this  a t t emp t  to develop it  in 

t e rms  of APL. 

In part icular ,  I would hope t ha t  o thers  would 

t r ea t  the same quest ion using o the r  p rogramming  

languages and convent ional  ma themat i ca l  notat ion.  

If these t r ea tmen t s  addressed a common set of top- 

ics, such as those addressed here ,  some objec t ive  

comparisons of languages could be made. Trea t -  

ments  of some of the topics covered here  are al- 

ready available for comparison. For  example, Ker-  

ner [ 7]  expresses the  a lgor i thm C.3 in bo th  AL- 

GOL and convent ional  ma themat i ca l  nota t ion.  

Th i s  concluding sect ion is more  general ,  con- 
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cerning comparisons  wi th  m a t h e m a t i c a l  no ta t ion ,  

the problems of in t roducing nota t ion,  extensions to 

APL which would fu r t h e r  enhance its u t i l i ty ,  and 

discussion of the  mode of presenta t ion  of the earli- 

er sections. 

5.1 C o m p a r i s o n  w i t h  C o n v e n t i o n a l  M a t h e -  

m a t i c a l  N o t a t i o n  

Any deficiency remarked  in ma themat i ca l  nota- 

t ion can probably be countered  by an example of 

its rec t i f ica t ion  in some par t icular  branch of math-  

emat ics  or in some par t icular  publicat ion;  compar-  

isons made here  are mean t  to refer  to the  more  

general  and commonplace  use of m a t h e m a t i c a l  

notat ion.  

A P L  is s imi la r  to convent iona l  m a t h e m a t i c a l  

no ta t ion  in many impor tan t  respects: in the use of 

funct ions wi th  explici t  a rguments  and explici t  re- 

sults, in the concomi tan t  use of composite expres- 

sions which apply funct ions to the results of o ther  

functions,  in the provision of graphic symbols for 

the more commonly  used functions,  in the  use of 

vectors,  matr ices ,  and h ighe r - r ank  arrays,  and in 

the use of operators  which, like the der iva t ive  and 

the convolut ion operators  of mathemat ics ,  apply to 

funct ions to produce functions.  

In the t r e a t m e n t  of funct ions  A P L  differs  in 

providing a precise formal  mechanism for the defi- 

n i t ion  of new funct ions.  T h e  d i rec t  de f in i t ion  

form used in this  paper is perhaps most appropriate  

for  purposes of exposi t ion and analysis,  bu t  the  

canonical form refer red  to in the in t roduct ion,  and 

defined in [4,  p.81 ] ,  is often more convenient  for 

o ther  purposes. 

In the i n t e rp re t a t i on  of composi te  expressions 

APL agrees in the use of parentheses,  bu t  differs in 

eschewing h i e r a r c h y  so as to t r ea t  all func t ions  

(user-def ined as well as p r imi t ive )  alike, and in 

adopting a single rule for the applicat ion of bo th  

monadic  and dyadic functions:  the r ight  a rgument  

of a funct ion is the value of the ent i re  expression 

to its r ight .  An impor t an t  consequence of this  rule 

is t ha t  any por t ion of an expression which is free of 

parentheses  may be read analyt ical ly  f rom left  to 

r ight  (since the leading funct ion at  any stage is the 

" o u t e r "  or overal l  func t ion  to be applied to the  

resul t  on its r ight) ,  and constructively f rom r ight  

to left  (since the rule is easily seen to be equiva- 

lent  to the rule tha t  execution is carr ied out  f rom 

r ight  to left).  

Al though  Cajor i  does not  even men t ion  rules 

for the order  of execut ion in his two-volume histo- 

ry of ma themat i ca l  notat ions,  it  seems reasonable 

to assume th a t  the  m o t iv a t i o n  for the  fami l i a r  

h i e ra rchy  (power before × and x before + or -) arose 

f rom a desire to make polynomia ls  expressible 

wi thou t  parentheses.  T h e  convenient  use of vec- 
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Fig. 3. 

t j . 2 - J  

j=l  

1"2"3 + 2"3"4 + . . . n t e r m s  ~ - ' - ' ~  l n ( n  + 1) (n + 2) (n + 3) 
4 

1"2"3"4 + 2"3"4"5 + . . . n t e r m s  ~ ' -~  l n ( n  + 1) (n + 2) (n + 3) (n + 4) 
5 

tors  in expressing polynomials ,  as in +/c×x.E, does 

much  to r emove  this  mot iva t ion .  Moreover ,  the  

rule adopted  in A P L  also makes  H o r n e r '  s ef f ic ient  

express ion for  a p o l y n o m i a l  express ible  w i t h o u t  

parentheses :  

+ / 3  ~ 2 5 x X * 0  1 2 3 ÷~  3 + X x g + X x 2 + X x 5  

In p rov id ing  graphic  symbols  for  c o m m o n l y  

used func t ions  A P L  goes m u c h  f a r the r ,  and  pro- 

vides symbols  for  func t ions  (such as the  power  

func t ion)  which  are impl ic i t ly  denied symbols  in 

m a t h e m a t i c s .  T h i s  becomes i m p o r t a n t  when oper- 

a tors  are in t roduced;  in the  preceding sect ions the  

inner p roduc t  ×.. (which mus t  employ  a symbol  for 

power)  played an equal  role wi th  the  o rd ina ry  in- 

ner  p roduc t  . . . .  P roh ib i t i on  of elision of funct ion  

symbols  (such as ×) makes  possible  the  u n a m b i -  

gious use of m u l t i - c h a r a c t e r  names  for  va r i ab l e s  

and functions.  

In the  use of a r rays  A P L  is s imi la r  to ma the -  

mat ica l  no ta t ion ,  bu t  more  sys temat ic .  For  exam-  

ple, v+w has  the  same mean ing  in both,  and in A P L  

the  def in i t ions  for o the r  funct ions  are extended in 

the  same e l e m e n t - b y - e l e m e n t  manner .  In m a t h e -  

mat ics ,  however ,  express ions  such as vxw and v.w 

are def ined d i f fe ren t ly  or not  a t  all. 

For  example ,  v×w c o m m o n l y  denotes  the  v e c t o r  

p r o d u c t  [ 14, p .308] .  I t  can be expressed in var i -  

ous ways in APL.  T h e  def in i t ion  

vP: ( ( l e a ) x - l ¢ ~ ) - (  - l ¢a  )xl¢~ 

provides  a conven i en t  basis  for  an obvious  p roof  

t h a t  vP is " a n t i c o m m u t a t i v e "  ( t h a t  is, 

v vP w +* -w vP v), and  (using the  fac t  t h a t  

- lax ÷+ 2,x for 3 - e l emen t  vec to r s )  for  a s imple  

proof  t h a t  in 3-space v and w are bo th  o r thogona l  to 

t he i r  vec to r  product ,  t h a t  is, ^/0:v+.×v vP w and 

^/O=W+.×V VP W. 

A P L  is also more  sy s t ema t i c  in the  use of oper- 

a to r s  to produce  func t ions  on a r rays :  r educ t ion  

provides  the  equ iva len t  of the  s igma and pi nota-  

t ion (in . / a n d  x/) and a hos t  of s imi la r  useful  cas- 

es; ou te r  p roduc t  extends  the  outer  product  of ten-  
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sor anays i s  to func t ions  o t h e r  t h a n  ×, and inner  

p roduc t  ex tends  o r d i n a r y  m a t r i x  p roduc t  ( . . x )  to 

m a n y  cases, such as v.^ and t.÷, for which  ad hoc 

def in i t ions  are of ten  made.  

T h e  s imi l a r i t i e s  be tween  A P L  and convent iona l  

no ta t ion  become more  appa ren t  when one learns a 

few r a t h e r  mechan ica l  subs t i tu t ions ,  and the  t rans-  

l a t ion  of m a t h e m a t i c a l  express ions  is ins t ruc t ive .  

Fo r  example ,  in an express ion  such as the  f i r s t  

shown in F igure  3, one s imp ly  subs t i t u t e s  l~ for  

each  occurrence  of j and replaces the  s igma by ~/. 

Thus :  

+/(IN)x2*-IN , o r  +/J×2*-J÷IN 

Col lec t ions  such as J o l l e y ' s  S u m m a t i o n  o f  

S e r i e s  [ 15 ] p rov ide  in t e re s t ing  express ions  for  

such an exercise,  p a r t i c u l a r l y  if a c o m p u t e r  is 

ava i lab le  for execut ion  of the  results.  For  example ,  

on pages 8 and 9 we have  the  ident i t ies  shown in 

the  second and th i rd  examples  of F igure  3. These  

would be wr i t t en  as: 

+Ixl(-1+iN)o.+13 ÷ ÷  ( x / N + 0 , 1 3 ) ÷ 4  

+ 1 × 1 ( - 1 + ~ N ) o . + 1 4  ÷-*  ( x / N + 0 , ~ 4 ) ÷ 5  

T o g e t h e r  these  suggest the  fol lowing ident i ty :  

+ l x l ( - l + l N ) o . + t K  ÷ ÷  ( x l N + O , i K ) ÷ K + I  

The reader migh t  a t tempt  to restate th is  general 

i den t i t y  (or even the special case where K=0) in 

Jol ley ' s notat ion.  

The last expression of Figure 3 is taken from a 

t rea tment  of the f ract ional  calculus [ 16, p.30 ] ,  

and represents  an app rox ima t ion  to the  q th  order  

de r iva t ive  of a func t ion  f. I t  would be wr i t t en  as: 

(S*-Q)x+/(E~J-i+Q)xF X-(J÷-i+iN)xS÷(X-A )÷N 

The translation to APL is a simple use of ,~ as 

suggested above, combined with a straightforward 

iden t i ty  which  collapses the  several  occurrences  of 

the  g a m m a  funct ion  into a single use of the  bino- 

mia l  coef f ic ien t  func t ion  :, whose d o m a i n  is, of  

course, not  res t r ic ted  to integers.  

In the  foregoing, the  p a r a m e t e r  Q specifies the  

order  of the  de r iva t ive  if posi t ive,  and the  order  of 
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the  integral  ( f rom A to x) if negative.  Frac t iona l  

values give f ract ional  der ivat ives  and integrals, and 

the following funct ion can, by first  defining a func- 

t ion ¢ and assigning suitable values to • and A, be 

used to expe r imen t  numer i ca l ly  wi th  the  deriva-  

t ives discussed in [ 16 ] : 

OS:(S.-a)x+/(J!d-l+a)xFm-(d÷-l+lN)xS÷(m-A)÷N 

Although much use is made of " fo rma l "  manip- 

u la t ion  in m a t h e m a t i c a l  no ta t ion ,  t ru ly  formal  

manipula t ion  by explici t  a lgor i thms is very  diffi- 

cult. APL is much more t rac table  in this  respect. 

In Sect ion 2 we saw, for example, t ha t  the  deriva- 

t ive of the polynomial  expression ( . . . .  -1+ ,~)  . . . .  

is given by ( . . . .  - 1 , , p a ) + . x l C a x - l + t p a ,  and a set of 

funct ions  for t h e  formal  d i f f e r en t i a t i on  of A P L  

expressions given by Orth in his t r e a t m e n t  of the 

calculus [ 13]  occupies less t han  a page. Other  

examples of func t ions  for formal  man ipu la t ion  

occur in [ 17, p.347 ] in the modeling operators  for 

the vector  calculus. 

F u r t h e r  discussion of the  re la t ionsh ip  wi th  

ma themat i ca l  no ta t ion  may be found in [3  ] and 

in the paper "Algebra as a Language" [ 6, p.325 ] .  

A final comment  on print ing,  which has always 

been a serious problem in convent iona l  no ta t ion .  

Al though APL does employ  cer ta in  symbols  not  

ye t  general ly  avai lable  to publishers,  it  employs  

only 88 basic characters ,  plus some composite char- 

acters  fo rmed  by superposi t ion  of pairs of basic 

characters.  Moreover ,  it makes no demands such as 

the  infer ior  and super ior  lines and smal ler  type 

fonts used in subscripts and superscripts. 

5.2 T h e  I n t r o d u c t i o n  o f  N o t a t i o n  

At the outset ,  the  ease of in t roducing no ta t ion  

in context  was suggested as a measure of su i tab i l i ty  

of the nota t ion,  and the reader  was asked to ob- 

serve the process of in t roducing APL. T h e  u t i l i ty  

of t h i s  measure may well be accepted as a t ruism,  

but  it  is one which requires  some clarif icat ion.  

For  one thing, an ad hoc no ta t ion  which provid- 

ed exact ly the  funct ions needed for some par t icu lar  

topic would be easy to in t roduce in context.  I t  is 

necessary to ask fu r the r  questions concerning the 

total  bulk of no ta t ion  required,  the degree of struc- 

tu re  in the nota t ion,  and the degree to which nota- 

t ion in t roduced for a specific purpose proves more 

generally useful. 

Secondly, it is impor t an t  to dist inguish the  dif- 

f icul ty  of describing and of learning a piece of no- 

ta t ion  f rom the di f f icul ty  of master ing its implica- 

tions. For  example,  learning the  rules for comput-  

ing a mat r ix  product  is easy, bu t  a mas te ry  of its 

implicat ions (such as its associat ivi ty,  its distrib- 

u t i v i t y  over addi t ion,  and its abi l i ty  to represent  
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l inear  func t ions  and geomet r ic  opera t ions)  is a 

d i f ferent  and much more  diff icul t  mat te r .  

Indeed,  the  ve ry  suggest iveness of a no t a t i on  

may make it  seem harder  to learn because of the 

many proper t ies  it suggests for explorat ion.  For  

example,  the no ta t ion  . .x for mat r ix  product  can- 

not  make the rules for its computa t ion  more diffi- 

cult  to learn, since it  a t  least serves as a r eminder  

t h a t  the process is an addi t ion  of products,  bu t  any 

discussion of the  proper t ies  of ma t r ix  p roduc t  in 

t e rms  of th is  no ta t ion  cannot  help bu t  suggest a 

host  of questions such as: Is ~.^ associative? Over 

wha t  does it  d i s t r ibu te?  Is Bv.^c ÷~ ~(~c)~.^~B a 

valid ident i ty?  

5.3 E x t e n s i o n s  to  A P L  

In order  to ensure tha t  the no ta t ion  used in this  

paper is well-defined and widely available on exist- 

ing compute r  systems,  it  has been res t r i c t ed  to 

cur ren t  A P L  as def ined in [ 4 ]  and in the more 

formal  s tandard  publ ished by S TA P L,  the  ACM 

S I G P L A N  T e c h n i c a l  C o m m i t t e e  on A P L  

[17,  p .409] .  We will now c o m m e n t  br ie f ly  on 

potent ia l  extensions which would increase its con- 

venience for the topics t rea ted  here,  and enhance 

its su i t ab i l i ty  for  the  t r e a t m e n t  of o the r  topics 

such as ord inary  and vector  calculus. 

One type of extension has a l ready been suggest- 

ed by showing the execut ion of an example (roots 

of a polynomial)  on an APL system based on com- 

plex numbers.  Th i s  implies no change in funct ion 

symbols, a l though the domain  of cer ta in  funct ions 

will have to be extended.  For  example,  L x will give 

the  magni tude  of complex as well as real  argu- 

ments,  +x will give the conjugate of complex argu- 

ments  as well as the t r iv ia l  resul t  it  now gives for 

real arguments ,  and the  e l ementa ry  funct ions will 

be appropr ia te ly  extended,  as suggested by the use 

o f ,  in the cited example. It  also implies the possi- 

b i l i ty  of meaningful  inclusion of p r imi t ive  func- 

t ions for zeros of polynomials  and for eigenvalues 

and eigenvectors  of matrices.  

A second type also suggested by the earl ier  sec- 

t ions includes funct ions defined for par t icu lar  pur- 

poses which show promise of general u t i l i ty .  Ex- 

amples include the n u b  funct ion ~, def ined by D.3, 

and the s u m m a r i z a t i o n  funct ion z, defined by D.4. 

These  and o ther  extensions are discussed in [ 18 ] .  

McDonnel l  [ 19, p.240] has proposed generaliza- 

t ions of a n d  and o r  to non-booleans so tha t  AvB is 

the GCD of A and B, and A^B is the LCM. T h e  func- 

t ions coo and LCM defined in Section 3 could then  be 

defined simply by CCD:v/~ and LCM:^/~. 

A more  general  l ine of deve lopment  concerns 

operators,  i l lust ra ted in the preceding sections by 

the reduct ion ,  inner -product ,  and ou te r -p roduc t .  

Discussions of operators  now in APL may be found 

Communications August 1980 
of Volume 23 
the ACM Number 8 



in [20]  and in [ 17, p.129], proposed new opera- 

tors for the vector calculus are discussed in 

[ 17, p.47 ], and others are discussed in [ 18 ] and 
in [ 17, p.129 ]. 

5.4 Mode o f  P r e s e n t a t i o n  

The t rea tment  in the preceding sections con- 

cerned a set of brief topics, with an emphasis on 

clarity rather than efficiency in the resulting al- 

gorithms. Both of these points merit  further com- 
ment. 

The t reatment  of some more complete topic, of 

an extent sufficient for, say, a one- or two-term 

course, provides a somewhat different, and perhaps 

more realistic, test of a notation. In particular, it 

provides a better measure of the amount of nota- 

tion to be introduced in normal course work. 

Such treatments of a number of topics in APL 

are available, including: high school algebra [ 6 ] ,  

elementary analysis [ 5 ], calculus, [ 13 ], design of 

digital systems [21] ,  resistive circuits [ 10 ], and 

crystallography [22 ]. All of these provide indica- 

tions of the ease of introducing the notation need- 

ed, and one provides comments on experience in its 

use. Professor Blaauw, in discussing the design of 

digital systems [21] ,  says that  "APL makes it 

possible to describe what really occurs in a complex 

system", that  "APL is particularly suited to this 

purpose, since it allows expression at the high ar- 

chitectural level, at the lowest implementation 

level, and at all levels between", and tha t  

"....learning the language pays of (sic) in- and out- 

side the field of computer design". 

Users of computers and programming languages 

are often concerned primarily with the efficiency 

of execution of algorithms, and might, therefore, 

summari ly dismiss many of the algorithms pres- 

ented here. Such dismissal would be short-sighted, 

since a clear statement of an algorithm can usually 

be used as a basis from which one may easily de- 

rive more efficient algorithms. For example, in 

the function sz~P of section 3.2, one may signifi- 

cantly increase efficiency by making substitutions 

of the form e~M for (~)+.xB, and in expressions 

using ~ / c x x , - l + l ~ c  one may substitute x l ¢ c  or, 

adopting an opposite convention for the order of 
the coefficients, the expression x ic .  

More complex transformations may also be 

made. For example, K e r n e r ' s  method (C.3) re- 

sults from a rather obvious, though not formally 

stated, identity. Similarly, the use of the matrix 

to represent permutations in the recursive function 

R used in obtaining the depth first spanning tree 

(C.4) can be replaced by the possibly more compact 

use of a list of nodes, substituting indexing for in- 

ner products in a rather obvious, though not com- 
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pletely formal, way. Moreover, such a recursive 

definition can be transformed into more efficient 
non-recursive forms. 

Finally, any algorithm expressed clearly in 

terms of arrays can be transformed by simple, 

though tedious, modifications into perhaps more 

efficient algorithms employing iteration on scalar 

elements. For example, the evaluation of +/x de- 

pends upon every element of x and does not admit  

of much improvement, but evaluation of v/B could 

stop at  the first element equal to 1, and might 

therefore be improved by an iterative algori thm 

expressed in terms of indexing. 

The practice of first developing a clear and pre- 

cise definition of a process without regard to effi- 

ciency, and then using it as a guide and a test in 

exploring equivalent processes possessing other 

characteristics, such as greater efficiency, is very 

common in mathematics. It is a very fruitful prac- 

tice which should not be blighted by premature 

emphasis on efficiency in computer execution. 

Measures of efficiency are often unrealistic be- 

cause they concern counts of "substantive" func- 

tions such as multiplication and addition, and ig- 

nore the housekeeping (indexing and other selec- 

tion processes) which is often greatly increased by 

less straightforward algorithms. Moreover, realis- 

tic measures depend strongly on the current design 

of computers and of language embodiments. For 

example, because functions on booleans (such as ^/B 

and v/B) are found to be heavily used in APL, im- 

plementers have provided efficient execution of 

them. Finally, overemphasis of efficiency leads to 

an unfortunate circularity in design: for reasons of 

efficiency early programming languages reflected 

the characteristics of the early computers, and 

each generation of computers reflects the needs of 

the programming languages of the preceding gener- 
ation. 

A c k n o w l e d g m e n t s .  I am indebted to my col- 

league A.D. Falkoff for suggestions which greatly 

improved the organization of the paper, and to 

Professor Donald McIntyre for suggestions arising 

from his reading of a draft. 

A p p e n d i x  A. S u m m a r y  o f  N o t a t i o n  

Fto S C A L A R  F U N C T I O N S  aFoo 

to C o n j u g a t e  + P lus  

0-oo N e g a t i v e  - M i n u s  

(oo> 0 ) - o ~ ,  0 S i g n u m  x T i m e s  

l ÷ 0 J  Reciproca l  ÷ D iv ide  

toF -to M a g n i t u d e  I Res idue  ta-ctxtoto÷a+a=O 

In teger  pa r t  F loor  P M i n i m u m  ( t o x o o < a ) + a × 0 0 ~ a  

- -oo Ce i l i ng  I M a x i m u m  - ( - a  ) - -oo 

2 . 7 1 8 2 8 . . . * t 0  E x p o n e n t i a l  * Power  x / topa  

Inverse  of  * N a t u r a l  log ® L o g a r i t h m  ( o t o ) ÷ O a  

x / 1 + l oo Fac to r i a l  ! B i n o m i a l  ( ! to ) ÷ ( ! a ) x ! to - a 

3 . 1 4 1 5 9 . . . x t o  P i  t i m e s  o 

B o o l e a n :  v ~ ~ (and,  or. not -and,  not-or ,  no t )  

R e l a t i o n s :  < S = ~ > x ( a R e  is 1 if  r e l a t i on  R holds) .  

C o m m u n i c a t i o n s  A u g u s t  1 9 8 0  

o f  V o l u m e  2 3  

the A C M  N u m b e r  8 



Integers 

Shape 
Catenation 

Ravel 

Indexing 
Compress 

Take,Drop 
Reversal 

Rotate 

Transpose 
Grade 

Base value 

&inverse 

Membership 
Inverse 

Reduction 
Scan 

Inner prod 

Outer prod 

Axis 

See. V ÷ * 2  3 5 M ÷ + I  2 3 

Ref. 4 5 6 

1 t 5 ÷ ÷ 1  2 3 4 5 

1 p V ÷ ÷ 3  p M ÷ * 2  3 2 3p t 6 ÷ ÷ M  2 p 4 ÷ ÷ 4  4 

1 V , V ÷ * 2  3 5 2 3 5 M , M ÷ ÷ I  2 3 1 2 3 

5 5 q 5 6 

1 ,M÷÷i 2 3 4 5 6 

1 V [ 3  1 ] ÷ ÷ 5  2 M [ 2 ; 2 3 ÷ ~ 5  M [ 2 ; ] ÷ ~ 4  5 6 

3 1 0 i/V÷+2 5 0 1/M÷+4 5 6 

1 2÷V÷÷2 3 2+V÷+I+V÷÷3 5 

1 ¢ V ÷ ÷ 5  3 2 

l 2 ~ V ÷ - ~ 5  2 3 - 2 ¢ V ÷ - 3  5 2 

l ,  4 ~ o  reverses axes a~oo permutes axes 

3 $3 2 6 2 ÷ ÷ 2  4 1 3 ~3  2 6" 2 - -÷3  1 2 

1 l O J _ V ~ ÷ 2 3 5  V . t V ÷ ÷ 5 0  

1 10 1 0  1 0 T 2 3 5 ÷ + 2  3 5 V T 5 0 ~ * 2  3 5 

3 Ve 3 ÷ ÷ 0  1 0 Ve 5 2÷÷1 0 1 

2, 5 ~o~ is matrix inverse aS]00÷-~(~00 ) + .  x e  

I + / V ÷ - ' - 1 0  +IM÷+6 15 +/M÷÷5 7 9 

1 +\V÷-~2 5 i0 + \ M ÷ + 2  3pl 3 6 4 9 15 

1 + .  x is matrix product 

1 0 3 o . + 1 2 3÷-~M 

1 F[I] applies F along axis I 

A p p e n d i x  B. C o m p i l e r  f r o m  D i r e c t  to  C a n -  

o n i c a l  F o r m  

This  compiler has been adapted from [ 22, p.222 ] .  

It will not handle definit ions which include ~ or : 

or ~ in quotes. It consists of the functions Fzx and 

eg, and the  cha rac t e r  ma t r i ce s  c9 and Ag: 

F I X  

OpDFX F9 

D÷F9 E ; F ; I ; K  

F÷(,(E='~')o.~5~i)/,E,(~4,pE)p' Y9 ' 
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K÷K+2xK<I~K~I^K¢(>/I O~'÷D'o.=E)/K÷+\~I÷EcA9 

F÷(O,i+pE)[pD÷D,(F,pE)+~O -24K~' ',E,[I.5]';' 

D÷(FqD),[I]F[2] 'n',E 

C9 A9 

Z9÷ 0 1 2 3 ~ 5 6 7 8  

Y9Z9÷ 9ABCDEFGH 

Y9Z9÷X9 IJKLMNOPQ 

)/3+(0=i+, RSTUVWXYZ 

~EEgZ~D 
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FIB:Z,+/-2÷Z÷FIB~-i:~=i:i 

FIB 15 
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DCR'FIB' 

Z9~FIB Y9;Z 

÷ ( 0 = 1 + , Y 9 = 1 ) / 3  

÷ 0 o 0 p Z 9 ÷ l  

Z9÷Z,+/-2÷Z÷FIB Y9-1 

AFIB:Z,+/-2÷Z÷FIB~-I:m=i:i 
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